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PREFACE

First I would like to thank Johann Rocholl for his contributions.  While I have not met him, much of 
what is written here is thanks to him.  For example, all of the Rostock images were generated using 
modified versions of his OpenSCAD model for the Rostock.  His Marlin code was also a source of 
my verifying the concepts.  And then of course I would like to thank him for creating the best DIY 
3D printer in existence.  BTW, I don't yet own a delta printer.  I do have a very old fashioned 
cartesian.  I did the Kickstarter for Kossel Clear (Blue Eagle Labs). I am scheduled for this month.  
I can't wait!

INTRODUCTION

This is my analysis of the style of delta robot used in the Rostock printer.  I have yet to see a 
published analysis of this style.  There are a number analyzing the original delta robot, the Clavel. I 
realize that the coordinate translation for Rostock is already available in firmware and is probably 
described some where on the Internet if I look long enough, but I like to understand things myself.  
And it is my philosophy that if the problem appears to be something I can figure out myself, then I 
want to do that before reading about it.  It gives me more insight and my brain is not biased by the 
accepted solution.  I may come up with different way of looking at the problem than the accepted 
solution. For example, my method using the circumcenter for the forward kinematics might be 
unique, since I came up with it on my own.

Once you break it down, this is a reasonably simple geometry problem.  So it is important to 
describe the geometry and define the formulas that are derived from that geometry.  Part of 
describing the geometry is to also establish naming conventions.  The delta robot has three columns 
(The Rostock uses a pair of rods, gray in the fig. 1).. We will call the three columns A, B, and C. 
Each column has a carriage (yellow in fig. 1) that runs up and down the column.  Each carriage has 
two parallel arms (blue in the fig. 1) that connect to the effector platform (green in the fig. 1).  Each 
pair of arms are the same length and the connections on each carriage are exactly parallel to the the 
bottom surface of the robot.  The bottom surface is called the bed (red in the fig. 1).  To make the 
arms parallel, the connection points on each carriage and the effector platform are the same distance 
apart.



Fig. 1

The first thing I see is that part of the geometry follows the principle of the pantograph.  The 
parallel arms are not only parallel to each other but they also force the edge of the effector platform 
to be parallel to the connection points on the carriage.  We can see this in Fig. 2 with a view directly 
above the robot.  Since there are three carriages and all three have connection points parallel to the 
bed, the plane of the effector platform must always be parallel to the plane of the bed. To repeat, the 
parallel arms from the carriages to the effector platform force its plane to be parallel to the 
plane of the bed. I have seen posts questioning the parallel arms, here you have why they exist.  To 
my thinking, making the effector platform be parallel to the bed is the main benefit of the parallel 
arms.

And since the edge of the effector platform is parallel to the connection points on each carriage, the 
distance between corresponding points on the effector platform and the carriage is the same.  So for 
the math we can choose the line that connects the point half way along the edge of the effector 
platform and half way between the connection points of the corresponding carriage.  For most 
calculations we can use this line.  We will call this our line of action. The end points of this line are 
exactly between the pivot points on the effector platform and exactly between the pivot points on 
the carriage.  When we refer to the carriage or the effector platform these are the points of 
reference.  For example, the height of the carriage above the bed is the distance from the bed to this 
point.  And the height of the carriage above the effector platform is the vertical distance from the 
point on the effector platform and the point on the carriage.  To summarize, the math can be based 
on a single line of action connecting the carriage and the effector platform with the knowledge that 
the parallel arms maintain a geometric orientation around this line of action.



Fig. 2

There are some simplifying assumptions to make.  First we will assume that the columns form an 
equilateral triangle.  This is not necessary, one can have a non-equilateral triangle, but this 
assumption simplifies the math by allowing us to use one variable for the distance between 
columns.  That is, the distance between any two columns is the same as any other two columns.  We 
will call that distance S (side of triangle).  It also allows us to choose a coordinate system where the 
columns are all at the same distance from the origin.  Note that the columns can be represented by 
points.  In the case of the Rostock each column point is at the midpoint between the two rods.  

Next we will assume that all three pairs of arms are the same length.  We will call that length L.  I 
don't believe it is necessary that the distance between columns be the same or that the arms are all 
the same length.  The math can be worked out with different lengths between columns and/or with 
one or more arms of different lengths.  It changes the shape of the area that can be covered.  This 
might be beneficial for a robot that prints specialized objects (a house?).  The next assumption is 
that the head is mounted exactly in the center of the effector platform.  We will call the distance 
from where the line of action meets the edge of the effector platform to the center of the effector 
platform E. The coordinates X, Y and Z are the coordinates of the extrusion point on the bottom 
of the hot head. The center of the effector platform is exactly above the extrusion point and it has 
the same X, Y coordinates as the head. 
   

As discussed, we will measure the height of each carriage where the line of action terminates in 
between the connection points.  We will call the height of each carriage above the effector platform 
Acz, Bcz and Ccz.  We will call the height of the carriages above the bed Az, Bz and Cz.  We 
will call the distance the head extends below the carrier Hcz. The height of the head above the bed 



is Z.  So Az = Z + Acz + Hcz, Bz = Z + Bcz + Hcz and Cz = Z + Ccz + Hcz.  So 
this leads us to another simplification of the problem.  We can derive the formulas for a given X,Y 
plane and remove Z from the equations.  Then we can translate that plane to any Z location.  All we 
need to concern ourselves with is Acz, Bcz and Ccz.  Since they are all relative to the effector 
platform, we can calculate X,Y coordinates in the plane of the effector platform.

Az = Z + Acz + Hcz
Bz = Z + Bcz + Hcz
Cz = Z + Ccz + Hcz

Solving for Z
Z = Az - Acz - Hcz
Z = Bz - Bcz - Hcz
Z = Cz - Ccz – Hcz

This brings us to a discussion of the Z axis.  One can see by the geometry that if one moves all the 
carriages up by an equal amount then one will change only the Z component of the head.  So the Z 
component is directly related to the carriage heights (Az, Bz and Cz).   This is also shown in the 
above formula. Now implied by the observation about the Z component and the formula above is 
that Acz, Bcz and Ccz are only dependent on X, Y.  This leads to the following discussion for the 
inverse kinematics.

INVERSE KINEMATICS

The inverse kinematics are the basis for the formulas used in software for controlling the printer.  
They take the desired X,Y,Z coordinates and calculate the carriage positions (Az, Bz, Cz) that 
will cause the robot to move to those coordinates.



Fig. 3

Now we need to define a coordinate system.  We are going to choose a cartesian system with the 
origin at the center of the bed.  We are going to place column A on the positive Y axis at a distance R 
+ Aey + Acoy from the origin.  The other columns will lie on a circle at that distance at 120 
degrees. Column B will be 120 degrees clockwise when viewed from above.  Column C is another 
120 clockwise from B or 120 counterclockwise from A.

One important set of formulas can be derived by observing that the arms and the vertical rise form a 
right angle triangle where the third leg is in the plane of the effector platform.  Now we need to 
understand how the the third leg relates to our X, Y point in the middle of the effector platform.  
My first thought was that our line of action passes through the center of the effector platform.  But 
this is not true.  The line from the center of the effector platform to edge of the effector platform 
where the line of action meets the effector platform is perpendicular to the edge.  Since the edge is 
parallel to connection points on the carriage the line on the effector platform will maintain the same 
orientation in the X,Y plane.  It is a fixed vector.  We will call these vectors Ae, Be and Ce.  By our 
definition, they are all the same length and the direction is determined by the orientation of the 
corresponding column.  Since vector addition is commutative, we will show that these vectors can 
be moved from the end of the arc and applied to the column positions.  This changes the pivot point 
to a virtual column position that the points of interest form an arc around, simplifying the math 
when doing kinematic calculations.  So the distances from the edges to the center of the effector 
platform become some constants applied once when initializing the software.



Fig. 4

Now to determine what formulas we can derive from the right angle triangles formed by each arm, 
the vertical rise (virtual column) and leg in the X-Y plane.  We will call the distances of the triangle 
legs (effector platform edge to the point below the carriage pivot point) in the XY plane Ad, Bd, 
and Cd.  Using the Pythagorian theorem we get the formulas 

Ad^2 + Acz^2 = L^2
Bd^2 + Bcz^2 = L^2
Cd^2 + Ccz^2 = L^2

Now let's relate our columns to the X, Y plane.  First important thing is to describe the locations of 
the base of the columns A, B and C in the X, Y plane.  We will call the physical locations Ax, 
Ay; Bx, By and Cx, Cy. By observation we can see that the actual pivot points are the points 
exactly below where each line of action terminates on its carriage.  We can calculate these locations 
by subtracting a vector from each column which represents the carriage offset. We will call these 
pivot locations Apx, Apy; Bpx, Bpy and Cpx, Cpy. We will use these values for now, but later 
we can reduce the number of unknowns by moving these locations to virtual column positions.  For 
this analysis we hold Z constant, so we are restricting our effector platform to a given XY plane.  
The line of action for each column pivots around the point on the carriage.  When the carriage is at 
a given height above the effector platform, the possible locations in the XY plane where the edge of 
a effector platform meets a given line of action is an arc around the pivot point.  If the vector Ae, 
Be and Ce were zero and the lines of action met at the center of the effector platform our X, Y 
coordinates would be the intersection between these arcs.  But since Ae, Be and Ce are not zero, 
the problem is a little more complicated.

Let's make some equations to relate Ae, Be and Ce to our X, Y coordinates.  Let's call the 



coordinates where the lines of action meet the effector platform Acx, Acy ; Bcx, Bcy and 
Ccx, Ccy.  We know that a vector can be represented by a delta X and delta Y, so we will break the 
vectors down to Aex, Aey; Bex, Bey and Cex, Cey.  We will define the vectors as pointing 
from the edge to the center of the effector platform.  So we have the following

X = Acx - Aex = Bcx - Bex = Ccx - Cex
Y = Acy - Aey = Bcy - Bey = Ccy - Cey
 

Based on our discussion above the line of action travels on an arc. The formula for a circle is (X - 
CX)^2 + (Y - CY)^2 = CR^2.  Where CX, CY is the center of the circle and CR is the radius.  
We should be able to solve the equations for one column and determine the other two by similarity. 
So looking at column A.
(Acx - Apx)^2 + (Acy - Apy)^2 = Ad^2
Solving for Acx and Acy above and substituting we get
Acx = X - Aex
Acy = Y - Aey

(X + Aex - Apx)^2 + (Y + Aey - Apy)^2 = Ad^2

We see a simplification, we can treat the pivot points of the circle as Apx - Aex, Apy - Aey.  
We will call this point Avx, Avy. We will define the following:
Avx = Apx - Aex
Avy = Apy - Aey

Bvx = Bpx - Bex
Bvy = Bpy - Bey

Cvx = Cpx - Cex
Cvy = Cpy - Cey

These are the locations of our "virtual" columns.  These locations can be calculated in software at 
initialization and then used for all subsequent calculations.  We show the virtual columns in fig. 5 
& 6.  We also show single arms on the lines of action. So fig. 6 is a physical representation of 
our mathematical model.  The arms meet at the X,Y coordinates and travel on virtual columns at 
locations at a distance of the carriage offset plus the effector offset away from the physical column 
locations. This is the model we will use in firmware. 



Fig. 5

Fig. 6



Now with our simplified model we have the following formulas.

(X - Avx)^2 + (Y - Avy)^2 = Ad^2 = L^2 - Acz^2
solve for Acz
Acz^2 = L^2 - (X - Avx)^2 - (Y - Avy)^2
Acz = sqrt(L^2 - (X - Avx)^2 - (Y - Avy)^2)

By similarity the formulas for the carriage height above the effector platform Bcz and Ccz are:

Bcz = sqrt(L^2 - (X - Bvx)^2 - (Y - Bvy)^2)
Ccz = sqrt(L^2 - (X - Cvx)^2 - (Y – Cvy)^2)

The real values we want is the distance of each carriage above the bed. These formula were given 
above.  Here they are again:

Az = Z + Acz + Hcz
Bz = Z + Bcz + Hcz
Cz = Z + Ccz + Hcz

These are the formulas used for the inverse kinematics in software.

Now let us check our formulas for validity.  If we have columns that are arranged on a circle so that 
the virtual columns are at radius R from the center 0, 0 and one leg (A) is on the Y axis we get the 
following:

Avx, Avy => 0, R
Bvx, Bvy => R*sin(30), -R*cos(30) = R/2, -R*sqrt(3)/2
Cvx, Cvy => -R*sin(30), -R*cos(30) = -R/2, -R*sqrt(3)/2

So
Acz = sqrt(L^2 - (X - Avx)^2 - (Y - Avy)^2) = 
sqrt(L^2 - (X - 0)^2 - (Y - R))^2)

Bcz = sqrt(L^2 - (X - Bvx)^2 - (Y - Bvy)^2) = 
sqrt(L^2 - (X - R/2)^2 - (Y + R*sqrt(3)/2)^2)

Ccz = sqrt(L^2 - (X - Cvx)^2 - (Y - Cvy)^2) = 
sqrt(L^2 - (X + R/2)^2 - (Y + R*sqrt(3)/2)^2)

L and R are known constants, You plug in these and the desired X and Y and you get Acz, Bcz and 
Ccz.

So let's determine the Acz, Bcz and Ccz for X,Y => 0,0 they should be equal

The only difference between the three equations is
-(X - Avx)^2 - (Y - Avy)^2
-(X - Bvx)^2 - (Y - Bvy)^2
-(X - Cvx)^2 - (Y - Cvy)^2 

If we set X and Y to 0 and multiply by -1, these can be rewritten as
Avx^2 + Avy^2
Bvx^2 + Bvy^2
Cvx^2 + Cvy^2

If these terms are equal the equations are equal



Avx^2 + Avy^2 = 0 + R^2 = R^2

Bvx^2 + Bvy^2 = (R/2)^2 + (-R*sqrt(3)/2)^2 = (R^2)/4 + (R^2 * 3)/4
factor out the /4 and combine terms
(4*R^2)/4 = R^2

Cvx^2 + Cvy^2 = (-R/2)^2 + (-R*sqrt(3)/2)^2 = (R^2)/4 + (R^2 * 3)/4 =
factor out the /4 and combine terms
(4*R^2)/4 = R^2

The equations are equal, our formulas are valid for this scenario.

FORWARD KINEMATICS

Forward kinematics are the formulas which determine the X-Y-Z coordinates of the effector 
platform when given the carriage positions. They are a little more difficult than the inverse 
kinematics.  Our mathematical model using the virtual column positions is still useful.  If we use the 
virtual column positions the center of the effector platform is the point that is L away from each 
carriage position on the virtual column.  This gives the following equations.

(X - Avx)^2 + (Y - Avy)^2 + Acz^2 = L^2
(X - Bvx)^2 + (Y - Bvy)^2 + Bcz^2 = L^2
(X - Cvx)^2 + (Y - Cvy)^2 + Ccz^2 = L^2

Where Acz, Bcz and Ccz are the height of each carriage above the plane of the effector platform 
and relate to Z as follows

Acz = Az - Z - Hcz
Bcz = Bz - Z - Hcz
Ccz = Cz - Z - Hcz

Az, Bz and Cz are the Z components of the given carriage positions.



Fig. 7

We have three equations and three unknowns but the squares make these difficult equations to 
solve.  We need to find a frame of reference to simplify the problem.  One possible frame is formed 
by the three points of the virtual carriage positions (shown in green in Fig. 7).  If we shift to that 
frame we find that a normal vector to the plane passing through the effector platform location also 
passes through the circumcenter of the triangle formed by the three points.  The circumcenter of a 
triangle is the point where lines at right angles to the median point (center) of each leg meet.  The 
center of the effector and the three carriage positions form a tetrahedron where the delta arms form 
three sides of the tetrahedron and the triangle formed by the carriage positions is the base of an 
irregular pyramid.  The sides of this pyramid are equilateral triangles.  By definition, lines that are 
at right angles to the median points of the bases of equilateral triangles go through the apex of the 
triangles.



Fig. 8

Fig. 9

Now we can use the formulas to find the circumcenter point. From the Wikipedia entry 
“Circumscribed Circle” we have the following:



Barycentric coordinates from cross- and dot-products

In Euclidean space, there is a unique circle passing through any given three non-collinear points P1,P2, and 

P3. Using Cartesian coordinates to represent these points as spatial vectors to use the dot product and cross 

product to calculate the radius and center of the circle. Let

Then the radius of the circle is given by

The center of the circle is given by the linear combination

where

We can derive code using these formulas.  Below is a Java routine using this formula.  After we find 
the circumcenter point, we find the distance along the normal vector to the cartesian point.  Then we 
can add the proper sized normal vector to the circumcenter point to find our cartesian point.

double[] forwardKinematics(double[] dZ){
    double[] cartesian = new double[3];
    double[][] dColP = new double[3][3];
    //Create the three points from the X-Y for each column combined with
    //the input Z values
    for(int iIdx = 0; iIdx < 3; iIdx++){
        dColP[iIdx][0] = dCol[iIdx][0];
        dColP[iIdx][1] = dCol[iIdx][1];
        dColP[iIdx][2] = dZ[iIdx];
    }
    //dColP now has the three points on the columns.  Calculate the vectors
    //representing the sides of the triangle
    double[] dv01 = vectorSub(dColP[1], dColP[0]);
    double[] dv02 = vectorSub(dColP[2], dColP[0]);
    double[] dv12 = vectorSub(dColP[2], dColP[1]);
    double dMag01 = vectorMag(dv01);
    double dMag02 = vectorMag(dv02);
    double dMag12 = vectorMag(dv12);
    //This gives us a vector normal to the plane of the triangle



    double[] dvZ = vectorCrossProd(dv02, dv01);
    double dMagZ = vectorMag(dvZ);
    double dDeterminate = 2 * Math.pow(dMagZ, 2);
    double alpha = Math.pow(dMag12, 2) * vectorDotProd(dv01, dv02)/dDeterminate; 
    double beta = -Math.pow(dMag02, 2) * vectorDotProd(dv12, dv01)/dDeterminate; 
    double gamma = Math.pow(dMag01, 2) * vectorDotProd(dv02, dv12)/dDeterminate; 
    double[] pCircumcenter = 
        vectorAdd(vectorMult(dColP[0], alpha), vectorMult(dColP[1], beta));
    pCircumcenter = vectorAdd(pCircumcenter, vectorMult(dColP[2], gamma));
    double[] dvCircumcenter = vectorSub(pCircumcenter, dColP[0]);
    //Find the length from the circumcenter to the carriage point on a column
    //(by the definition of circumcenter the distance is the same to any column)
    double dMag2Circumcenter = vectorMag(dvCircumcenter);
    //Now use the Pythagorem theorum to calculate the distance
    double dZLen = 
        Math.sqrt(Math.pow(dArmLen, 2) - Math.pow(dMag2Circumcenter, 2));
    //Create the new vector and add it to the circumcenter point
    cartesian = vectorAdd(pCircumcenter, vectorMult(dvZ, dZLen/dMagZ));
    return cartesian;
}

More Delta Analysis

Now that we have the formula for forward and inverse kinematics, we can answer some often asked 
questions.  Two of the most common questions are: “What is the shape of the printing area?” and 
“How do errors in the carriage positions affect the effector position?”  To that end I have written a 
program that creates a color topological map showing the print shape and the possible error.  Based 
on the above discussion, we can analyze an X-Y plane and the results can be translated to any other 
X-Y plane.

I have written a program that steps through the X-Y space and uses the inverse kinematics to 
calculate the carriage positions needed for that X-Y location.  I then vary each column from the 
target value by the error value.  There are a couple of modes.  In the multiple column mode I try all 
combinations of error (+, 0, -) with all three columns (26 combinations, the 27th is all 0s) and look 
for the maximum error.  In single column mode I vary each column between – and + holding the 
other two columns at 0 (6 combinations) and look for maximum error.  I also have some other 
modes they are: Error in X, error in Y, error in Z, error in X-Y and error in X-Y-Z.  A note about Z.  
Even though we are working in one given Z plane, the resulting carriage positions could cause the 
effector to leave that plane. Hence Z error.

A further discussion of error is in order.  I have tried to do some research on this but I haven't found 
anything that makes me feel like I have a handle on the subject.  So I don't feel qualified for this 
discussion, but here goes.  As an engineer, I take any case of making measurements and think about 
a probability distribution.  In many cases one would approximate a probability distribution with a 
guassian function.  But to my thinking, the type of mechanism determines the error.  An acme 
screw, for example, must have some backlash.  One is almost sure to have some error.  So the error 
distribution is not necessarily centered on 0 and is probably not guassian.  On the other hand, the 
belt drives used in the DIY 3d printers probably have an error that is more distributed around 0 and 
the distribution is more likely to be guassian.  I mention this because when we are analyzing the 
error in the delta, one must take into account that there are three sources contributing to the error.  
One can calculate the maximum error at a given point based on the maximum error in all three 
columns, but one must be aware that the error distribution has changed.  For example, if there is a 
10% probability for the maximum error in a given column, then the chances of the maximum error 
in all three is 10% * 10% * 10% (0.1 * 0.1 * 0.1 * 100) or 0.1%.  But in the case of the acme screw 
where that error is more likely, then the multiple column error has more meaning.  So I have created 



two modes for measuring error.  As always, the truth is somewhere in between.

Note that each image has its own color legend.  For each set of calculations the range of errors is 
divided into 10 regions and is assigned the colors shown in the legend at the bottom.  This first set 
of images uses the values I found in Johann's Marlin code. The virtual radius is 124mm and the arm 
length is 250mm.

Following the first set of images which show various error modes are some images showing the 
printing area for different arm and radius combinations.  These patterns would scale based on the 
ratio between arm and radius.
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