
RANDOM QUASI-LINEAR UTILITY

ERYA YANG1 AND IGOR KOPYLOV2

Abstract. We propose a random quasi-linear utility model (RQUM) where sto-
chastic choices maximize quasi-linear utility functions that are randomly drawn
via some probability distribution π. Utility ties are allowed and broken by a
convenient lexicographic rule. Our main result characterizes RQUM and iden-
tifies the probability measure π uniquely and explicitly in terms of stochastic
choice data. McFadden’s (1973) additive random utility model is obtained as
a special case where ties have probability zero. Another distinct case captures
finite populations and derives π with a finite support. Our main axioms con-
strain aggregate effects of cost variations on choice probabilities. In particular,
context and reference dependence are prohibited. We also characterize RQUM
through a suitable version of McFadden and Richter’s (1990) axiom of revealed
stochastic preferences (ARSP). This approach extends to incomplete datasets.

1. Introduction

Empirical observations of consumers’ aggregate choices are stochastic in trans-
portation (McFadden [23]), recreational fishing (Train [30]), selection of appliance
efficiency levels (Revelt and Train [26]), and many other settings. A single agent’s
choices can be also random due to intertemporal planning (Rust [27]) or sponta-
neous variations in her tastes (e.g. Agranov and Ortoleva [2]).

Random utility models (RUM) represent stochastic choices by maximization of
utility functions that are randomly drawn via some probability distribution π. Such
π is interpreted in terms of heterogeneous preferences. More formally, π is defined
over a suitable set Θ of complete and transitive preferences on some consumption
space X. Then any alternative x in any finite menu A ⊂ X should be chosen with
probability

(1) ρ(x,A) = π(R ∈ Θ : x maximizes R in A).
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In the classic RUM of Block and Marschak [7] (henceforth BM), the domain
X is finite, and Θ is the set of all total orders (i.e. complete, transitive, anti-
symmetric preferences over X). Falmagne [10] characterizes the classic RUM via
non-negativity of BM polynomials. McFadden and Richter [24] provide another
characterization based on their Axiom of Revealed Stochastic Preference (ARSP).

In many applications, it is convenient to associate the set Θ with some particular
class of utility functions on X. Most importantly, McFadden’s [21] additive RUM
adopts representation (1) where the domain

X = {(i, α) : i ∈ {0, 1, ..., n} and α ∈ R}
consists of pairs of consumption goods i and monetary costs α, and the set Θ
consists of all quasi-linear preferences. By definition, such preferences can be
represented by quasi-linear utility functions that are standard in discrete choice
theory and estimation methods. Quasi-linearity is also very common in mechanism
design, auction theory, bargaining theory, public economics etc.

To make the additive RUM well-defined, it is necessary that “the probability
of ties is zero” (McFadden [22, p. S15]). Therefore, π cannot have atoms1 and
hence, cannot have a finite support either. Thus finite populations are inconsistent
with the additive RUM, which can be problematic for welfare analysis and other
applications.

Under suitable continuity assumptions, the additive model is well-defined, but
its axiomatic meaning is still unclear from a decision theoretic perspective. Indeed,
the well-known characterization result by Daly and Zachery [9] (henceforth, DZ)
relies heavily on differentiation of choice probability functions. In particular, DZ
require that

∂ρk(c)

∂cj
=
∂ρj(c)

∂ck
where ρk and ρj denote the probabilities of choosing goods k and j respectively
when c = (c0, c1, . . . , cn) is the cost vector. Such differential conditions cannot be

refuted by empirical data because partial derivatives like ∂ρk(c)
∂cj

are unobservable.

Moreover, the DZ Theorem does not accommodate some familiar continuous dis-

tributions (e.g. uniform or exponential) for which partial derivatives ∂ρk(c)
∂cj

do not

exist at some cost vectors c.
Our random quasi-linear utility model (RQUM) extends the additive RUM and

achieves several objectives. First, it allows any Borel probability measure π over
Θ or more formally, over the Euclidean space Rn that parametrizes Θ.

Second, RQUM is characterized via novel axioms that do not use differentiation,
but constrain aggregate effects of cost variations on choice probabilities.

Third, the probability measure π is identified uniquely and explicitly, which
allows to interpret its parametric structure in terms of the observable ρ.

1Suppose that π(R) > 0 for some preference R with a quasi-linear utility representation.
Then R should be indifferent between some distinct alternatives x, y ∈ X. By (1), ρ(x, {x, y}) +
ρ(y, {x, y}) ≥ 1 + π(R) > 1 because π(R) is counted both in ρ(x, {x, y}) and in ρ(y, {x, y}).
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To formulate RQUM, associate each vector v ∈ Rn with the quasi-linear pref-
erence Rv that is represented over X by the function qv(i, α) = vi − α. Here
v1, . . . , vn reflect reservation values for consumption goods i = 1, . . . , n respec-
tively, and v0 = 0 by convention.

RQUM represents stochastic choices via

(2) ρ(x,A) = π({v ∈ Rn : x has the lowest grade among maxima of Rv in A})
where π is a Borel probability measure on the Euclidean space Rn, and the grade
of any pair (i, α) is defined as i. In other words, we combine the additive RUM
with the tie-breaking rule that favors alternatives with lower grades.

Our main result (Theorem 1) characterizes RQUM via axioms that do not as-
sume or imply differentiability for the functions ρk(c). Roughly speaking, our
main axioms prohibit context dependence, reference dependence, and a more com-
plicated non-monotonic pattern that would contradict the identification of the
probability distribution π below.

A major benefit of RQUM is that π can be uniquely and explicitly derived from
the observed stochastic choice rule ρ. Indeed, the cumulative distribution function
of π for all v ∈ Rn must satisfy

(3) Fπ(v) = ρ((0, 0), A)

where the menu
A = {(0, 0), (1, v1), (2, v2), . . . , (n, vn)}

provides all goods i = 0, 1, . . . , n at costs 0, v1, . . . , vn respectively. Here it follows
from (2) that for any vector w ∈ Rn, the comparisons vi ≥ wi should hold for all
i = 1, . . . , n if and only if the preference Rw is maximized by the alternative (0, 0)
in the menu A. Obviously, formula (3) implies the uniqueness of π, which is not
guaranteed by the classic RUM. Turansick [31] shows that such uniqueness can
be only obtained under stringent single-crossing conditions on the support of π.
Apesteigua, Ballester, and Lu [3] use a strong version of single-crossing to derive
π uniquely in terms of choices in binary menus.

Special cases of Theorem 1 include (but not limited to)

• McFadden’s additive RUM where “the probability of ties is zero”,
• finite populations where π has a finite support.

To illustrate the analytical power of (3), we provide another quick example where
the distribution π is derived in the multivariate exponential form when the function
ρ in (3) satisfies a multiplicative Cauchy equation. Identification (3) is substantially
simpler than the counterpart in the classic RUM where the construction of π
employs a multi-step procedure based on BM polynomials. The identification (3)
is also the cornerstone of our proofs, but the full argument is complicated and
invokes some results from probability theory (e.g. Billingsley [6, Theorem 12.5])
rather than differentiability techniques (see Koning and Ridder [15] and Forgerau
et al. [11] for recent proofs and discussions of the differentiation approach).

Our next result (Theorem 3) characterizes RQUM via McFadden and Richter’s
[24] linear programming approach. This approach extends to finite datasets where
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the identification of π is based on the Farkas Lemma rather than the formula (3).
We argue that there are no observable distinctions between grading procedures if
all ties are broken by any permutation of the set {0, 1, . . . , n}. So the bias in favor
of goods with low grades can be motivated by Occam’s razor: it simplifies the
grading procedure without changing its observable meaning.

Our work contributes to the growing list of refinements of RUM. In the random
expected utility model (REUM) of Gul and Pesendofer [13], the domain X consists
of lotteries over deterministic prizes, and Θ is the class of preferences that have
expected utility representations. In this case, the distribution π is determined
uniquely by ρ, but the identification of π relies on compactness arguments from
real analysis. Gul and Pesendorfer consider only the regular case where utility ties
have probability zero. Piermont [25] combines REUM with various tie-breaking
rules, but his extensions do not identify π in terms of ρ and impose consistency
conditions on a pair (π, ρ) instead. Besides the REUM of Gul and Pesendofer
[13] and the single-crossing RUM in Apesteigua, Ballester, and Lu [3], there are
applications to random attention in Manzini and Marriotti [20], choices over state-
contingent acts in Lu [16, 17], dynamic choices in Frick, Iijima, and Strzalecki [12],
and various other settings.

Our model includes the additive RUM as a special case and hence, can be com-
bined with the pure characteristic models (see, e.g. Berry and Pakes [5]). When
taken to data, pure characteristic models are usually written as an average utility
plus a random error. The special case where the error term follows the extreme
type I distribution while the average utility has the logistic form, is equivalent to
the Luce model [18].2 The Luce model is the foundation of the discrete choice
literature, and its variations such as the random coefficient logit model (aka the
mixed logit model), are used in many demand estimation papers in empirical in-
dustrial organization. The Berry-Levison-Pakes estimator [4] is a classic method
for estimating demand functions. Recent econometric literature (e.g. Shi, Shum,
and Song [29], Khan, Ouyang, and Tamer [14]) provides many other estimation
methods for the mixed logit model.

In contrast with the econometric literature, we focus on testable conditions for
observable choice data that must hold whenever the noise distribution is invariant
of the consumption menu. Thus we do not discuss the separation of the average
utility and the error term for the RQUM.

2. Primitives and Functional Forms

Let N = {0, 1, . . . , n} be a finite set of consumption goods. Assume that n ≥ 1
so that N has at least two elements. The subset of goods with positive indices is
written as [1, n] = {1, . . . , n}.

2This equivalence result is attributed to Holman and Marley in Luce [19], and is also shown
in Yellot [32] and McFadden [21].
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Let X = {x, y, . . . } be the set N × R of all pairs (i, α) that combine some
consumption i ∈ N with a monetary cost α ∈ R. If good i is paired with a positive
reward β > 0, then its cost α = −β is negative.

Let A = {A,B, . . . } be the set of all menus—finite non-empty subsets A ⊂ X.
Singleton menus {x} are written without curly brackets hereafter.

Let Ω be the set of all pairs (x,A) such that A ∈ A and x ∈ A, that is, x is a
feasible element in a menu A. Such pairs are called trials.

A function ρ : Ω→ [0, 1] is called a stochastic choice rule (scr) if

(4)
∑
x∈A

ρ(x,A) = 1 for all A ∈ A.

Here the probability ρ(x,A) of any trial (x,A) ∈ Ω is interpreted as the likelihood
of x being chosen when the menu A is feasible.

2.1. Quasi-Linear Orders. Let R = {R, . . . } be the set of all orders—complete
and transitive relations on X. An order R ∈ R is called total if for all x, y ∈ X,
xRyRx implies x = y.

A function q : X → R is called quasi-linear if

q(i, α) = q(i, 0)− α for all (i, α) ∈ X.

Let Q ⊂ R be the set of all orders that have quasi-linear utility representations.
Such orders are called quasi-linear as well.

The set Q has a convenient parametrization by the Euclidean space Rn. For any
vector v = (v1, . . . , vn) ∈ Rn, let Rv be represented by the quasi-linear function

qv(i, α) = vi − α for all (i, α) ∈ X,
where v0 = 0 by convention. Here the vector v specifies reservations values for
goods i ∈ [1, n] when v0 is normalized to zero. It is easy to check that3

R ∈ Q ⇔ R = Rv for some v ∈ Rn,

and such v ∈ Rn is determined uniquely by R ∈ Q. This parametrization is
analytically simpler than its counterparts for expected utility functions used by
Gul and Pesendrofer and other authors. Their parameter spaces are topologically
equivalent to a sphere, which is more complicated (e.g. for tie-breaking) than the
Euclidean space Rn.

2.2. Main Representation. Next, we adapt the random utility model for quasi-
linear orders or equivalently, quasi-linear utility functions.

For any order R ∈ R and trial (x,A) ∈ Ω, say that x

• maximizes R in A if xRy for all y ∈ A,
• strictly maximizes R in A if yRx does not hold for any y ∈ A \ x.

3Indeed, if Rv = Rw, then v = w. For example, if vi > wi, then (i, vi)Rv(0, 0), but
(i, vi)Rw(0, 0) does not hold. Moreover, if R is represented by some quasi-linear utility func-
tion q, then R = Rv where vi = q(i, 0) − q(0, 0) for all i ∈ [1, n]. Thus v ↔ Rv is a bijective
mapping between the Euclidean space Rn and the space Q.
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Say also that x is a maximum or a strict maximum for R in A respectively.
Let Π = {π, . . . } be the set of all Borel probability measures on Rn. A Borel

probability measure π ∈ Π is called a regular representation for a stochastic choice
rule ρ if for all trials (x,A) ∈ Ω,

(5)
ρ(x,A) = π(M(x,A)) where

M(x,A) = {v ∈ Rn : x maximizes Rv in A }
In other words, the observed likelihood of any trial (x,A) should equal the prob-
ability that the measure π assigns to all types v ∈ Rn for which the order Rv—
or equivalently, the function qv—is maximized by x in the menu A. Therefore,
representation (5) refines the general form (1) for Θ = Q.

For any π ∈ Π, representation (5) is consistent with the definition of a stochastic
choice rule if and only if4 for all (x,A) ∈ Ω,

(6)
π(M(x,A)) = π(S(x,A)) where

S(x,A) = {v ∈ Rn : x strictly maximizes Rv in A }.
This condition requires that π should assign a zero probability to quasi-linear utility
ties. In particular, if π has a finite support over Rn, then (6) must be violated
because for any v ∈ Rn such that π(v) > 0, there are trials (x,A) ∈ Ω such that x
maximizes Rv in A, but not strictly so.

To combine the random utility model with any Borel probability measure π ∈ Π,
consider a convenient tie-breaking rule.

Define the grade of any alternative (i, α) ∈ X as i. Say that x is a low maximum
for an order R ∈ R in a menu A if x maximizes R in A, and has the lowest grade
among all maxima of R in A.

Say that π is a low representation for an scr ρ if for all trials (x,A) ∈ Ω,

(7)
ρ(x,A) = π(L(x,A)) where

L(x,A) = {v ∈ Rn : x is a low maximum for Rv in A}.
Representation (7) is well-defined for any π ∈ Π and A ∈M because for any vector
v ∈ Rn, the quasi-linear order Rv has a unique low maximum in A and hence,

Rn =
⋃
x∈A

L(x,A)

4For any (x,A) ∈ Ω, the set M(x,A) contains S(x,A). Thus (5) and (4) imply

ρ(x,A) = 1−
∑

y∈A\x

ρ(y,A) = 1−
∑

y∈A\x

π(M(y,A)) ≤ π(S(x,A)) ≤ π(M(x,A)) = ρ(x,A)

and hence, (6). On the other hand, (5) and (6) imply that for any A ∈ A,

1 = π(Rn) ≤
∑
x∈A

π(M(x,A)) =
∑
x∈A

ρ(x,A) =
∑
x∈A

π(S(x,A)) ≤ 1

because the sets S(x,A) are disjoint, and the sets M(x,A) cover Rn.
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is a partition of the Euclidean space Rn. Obviously, the low representation (7)
implies the regular one (5) when π satisfies (6). In this case, for all (x,A) ∈ Ω,

ρ(x,A) = π(L(x,A)) ≤ π(M(x,A)) = π(S(x,A)) ≤ π(L(x,A)

because S(x,A) ⊂ L(x,A) ⊂M(x,A).
We call representation (7) the random quasi-linear utility model (RQUM), and

refer to the tie-breaking rule in (7) as the grading procedure.

2.3. Reduced Form. Let RN be the set of all functions c : N → R. Such func-
tions c = (c0, c1, . . . , cn) ∈ RN are called cost vectors. Obviously, RN is isomorphic
to the Euclidean space Rn+1.

For any c ∈ RN , define its assortment

A(c) =
⋃
k∈N

(k, ck)

as a menu that provides all goods in N at the costs c0, c1, . . . , cn respectively.
For any scr ρ, define its reduction as the function ρ∗ : RN → RN such that for

any good k ∈ N and cost vector c ∈ RN ,

ρ∗k(c) = ρ ((k, ck), A(c))

is the probability of choosing alternative (k, ck) in the assortment A(c). Thus the
reduction ρ∗ restricts the stochastic choice rule ρ to assortments.

RQUM implies that for any c ∈ RN ,

(8)
ρ∗k(c) = π(Lk(c)) where

Lk(c) = L ((k, ck), A(c)) .

This representation can be applied if ρ∗ is given as a primitive without ρ.
Say that ρ∗ : Rn → [0, 1] is a reduced stochastic choice function (reduced scr) if

for all c ∈ RN , ∑
k∈N

ρ∗k(c) = 1.

We call representation (8) for ρ∗ the reduced RQUM.

2.4. Identification. RQUM identifies the measure π via a transparent formula.
For any vectors w, v ∈ Rn, write v = w if vi ≥ wi for all i ∈ [1, n]. For any

measure π ∈ Π, its cumulative distribution function (cdf) is defined as

Fπ(v) = π({w ∈ Rn : v = w}).
It is easy to check that for any v ∈ Rn,

{w ∈ Rn : v = w} = L((0, 0), A(0, v)) = L0(0, v)

because for any w ∈ Rn, the dominance v = w holds if and only if the alternative
(0, 0) is a low maximum for Rw in the assortment

A(0, v) = {(0, 0), (1, v1), (2, v2), . . . , (n, vn)}.
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Thus the definition of cdfs and the reduced representation (8) imply that

(9) Fπ(v) = ρ∗0(0, v).

For any vectors v, w ∈ Rn such that v = w, formula (9) can be extended to the
rectangle

(w, v] = {r ∈ Rn : wi < ri ≤ vi for all i ∈ [1, n]}
that consists of all vectors bounded by v from above and strictly bounded by w
from below. Indeed, it is well-known (e.g. Billingsley [6, Section 12]) that

(10) π((w, v]) =
∑

K⊂[1,n]

(−1)|K|Fπ(wKv),

where for any K ⊂ [1, n], wKv ∈ Rn denotes the composite vector such that

(wKv)i =

{
wi if i ∈ K
vi if i ∈ [1, n] \K.

Obviously, the probability of any single vector v ∈ Rn can be found as

π({v}) = lim
m→∞

π((wm, v])

where wm =
(
v1 − 1

m
, v2 − 1

m
, . . . , vn − 1

m

)
.

More generally, formula (10) establishes that π is uniquely derived by its cdf
for all Borel sets because the semiring of rectangles (w, v] generates the entire
Borel σ-algebra. Thus the probability measure π is uniquely determined by ρ, or
even by the component ρ∗0 of the reduction ρ∗. Here the special role of the zeroth
component ρ∗0 is an artifact of the grading procedure where any tie between (0, 0)
and (k, vk) is broken in favor of the former alternative.

Finally, formula (9) can be rewritten in terms of choices in menus where the cost
of good zero is arbitrary.

For any α ∈ R and vector v ∈ Rn, let v + α be the vector in Rn such that
(v + α)i = vi + α for all i ∈ [1, n]. Similarly, define c + α when c ∈ RN . Then for
all v ∈ Rn, RQUM implies that

(11) Fπ(v) = ρ∗0(α, v + α)

because L0(0, v) = L0(α, v + α).

3. Main Representation Results

RQUM has several implications for stochastic choice rules ρ. To wit, let π ∈ Π
be a low representation for ρ.

Say that x ∈ X is discounted by y ∈ X if x = (i, α) and y = (i, β) for some
i ∈ N and β < α. Such y provides the same good i as x at a discounted cost.

Axiom 1 (No Complementarity (NC)). For all (x,A) ∈ Ω and y ∈ X,

(12) ρ(x,A ∪ y) ≤ ρ(x,A),

and if x is discounted by y, then ρ(x,A ∪ y) = 0.
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Inequality (12) is inherited from the classic RUM. It asserts that adding any
extra option y to a menu A should not increase the probability of choosing any
feasible x ∈ A. Thus NC excludes complementarities across distinct consumption
goods. Moreover, it excludes context effects where the presence of y can make
x more likely to be chosen due to increased attention or reason-based heuristics
(e.g. Shafir, Simonson, and Tversky [28]). The second part of NC requires that x
should be never chosen in the presence of a discounted alternative y. It is assumed
here that all choices should reveal a perfect perception with respect to monetary
costs. Note that NC remains plausible in any random utility model where all types
should strictly prefer more money to less money.

Other axioms for RQUM are formulated in terms of the reduction ρ∗ and rely
on quasi-linearity in a more substantial way. The reduction ρ∗ makes it convenient
to analyze the effects of changing monetary costs on stochastic choices.

For any k ∈ N , let ~k ∈ RN be a cost vector such that ~kk = 1 and ~ki = 0 for all

i ∈ N \ k. The difference ρ∗
(
c+ γ~k

)
− ρ∗(c) describes how stochastic choices are

affected when the cost of good k varies by γ.

Axiom 2 (Cross-Price Neutrality (CPN)). For any γ > 0, cost vector c ∈ RN ,
and distinct goods k, j ∈ N ,

ρ∗k(c)− ρ∗k
(
c− γ~j

)
≥ ρ∗j

(
c+ γ~k

)
− ρ∗j(c).

In other words, the effect of decreasing the cost of good j by some γ > 0 on
the demand for good k should be greater or equal than the effect of increasing the
cost of k by the same γ on the demand for j. Roughly speaking, CPN assumes
that the perception of money is linear and has no reference points. For example,
increasing ck from 0 to γ should not be viewed as more prominent than decreasing
cj from 0 to −γ.

A function F : Rn → [0, 1] is called jointly monotone if for all vectors v, w ∈ Rn,

v = w ⇒
∑

K⊂[1,n]

(−1)|K|F (wKv) ≥ 0.

For any α ∈ R and v ∈ Rn, let

Gα(v) = ρ∗0(α, v + α).

By (11), RQUM implies that each Gα : Rn → [0, 1] should equal the cdf Fπ of some
Borel probability measure π. As all cdfs must satisfy (10), then RQUM implies

Axiom 3 (Joint Monotonicity (JM)). For any α ∈ R, Gα is jointly monotone.

For example, if n = 2 and (v1, v2) = (w1, w2), then JM requires that

Gα(v1, v2)−Gα(v1, w2)−Gα(w1, v2) +Gα(w1, w2) ≥ 0.

Next, consider two continuity conditions.
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Axiom 4 (Archimedean Continuity (AC)). For any ε > 0, there is δ > 0 such
that for all c ∈ RN and k, j ∈ N ,

ck − cj > δ ⇒ ρ∗k(c) < ε.

This axiom asserts that any possible type should reject good k if it is feasible to
get some other good j with a sufficiently high discount. In particular, AC excludes
lexicographic types who would choose good k over other alternatives regardless of
monetary costs.

Say that ρ∗ is continuous in a direction d ∈ RN if for all c ∈ RN ,

lim
γ→0, γ≥0

ρ∗ (c+ γd) = ρ∗(c)

where the parameter γ is constrained to be non-negative.

Axiom 5 (Grading Continuity (GC)). ρ∗ is continuous in the direction (0, 1, . . . , n).

Here the special direction (0, 1, . . . , n) reflects the grading procedure.5 The
meaning of Axioms 1–5 and their logical independence are clarified further by
several examples after our main result below.

A low representation π ∈ Π is called finite-ranged if π has a finite range.

Theorem 1. A stochastic choice rule ρ satisfies Axioms 1–5 if and only if ρ has
a low representation π ∈ Π. This representation is

(i) uniquely identified by the reduction ρ∗ via (11),
(ii) regular if and only if ρ∗ is continuous,

(iii) finite-ranged if and only if ρ∗ has a finite range.

This result characterizes RQUM. The two special cases where the representa-
tion is either regular or finite-ranged require that ρ∗ is continuous or finite-ranged
respectively. These conditions are mutually exclusive. Note also that continuity
of ρ∗ implies GC and hence, can replace GC in the list of axioms for the regular
representation.

To prove that Axioms 1–5 are sufficient for the low representation (7), we proceed
in three broad steps. First, we use JM, AC, and GC to construct a Borel probability
measure π ∈ Π with a cumulative distribution function such that

Fπ(v) = G0(v) = ρ∗0(0, v)

for all v ∈ Rn. The existence of such π follows from Billingsley [6, Theorem 12.5].
Second, we use CPN to show that for all cost vectors c ∈ RN and goods k ∈ N ,

ρ∗k(c) = π(Lk(c)).

CPN is crucial here. This step takes the most effort in the proof of Theorem 1.
Third, we use NC to establish that the low representation (7) holds for all menus

A ∈M rather than just for assortments A(c) with cost vectors c ∈ RN . All details
are in the appendix.

5GC can be naturally adapted if the grading procedure minimizes some permutation p : N →
N to break ties. Then ρ∗ should be continuous in the direction (p(0), p(1), . . . , p(n)).
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In the above outline, NC is invoked only at the last step to extend a low rep-
resentation from the reduction ρ∗ to the entire scr ρ. Thus Theorem 1 can be
rewritten in a reduced form as follows.

Corollary 2. A reduced scr ρ∗ satisfies Axioms 2–5 if and only if ρ∗ is represented
by (8) for some π ∈ Π. Moreover, there is a unique stochastic choice rule ρ that
satisfies NC and has ρ∗ as its reduction.

Here the identification (11) still applies, and the probability measure π can be
used as a low representation for the unique extension ρ. Similarly, the regular and
finite-ranged cases can be characterized in terms of ρ∗ as well.

Theorem 1 can be refined further by imposing parametric structures on the
distribution π via the endogenous cdf G0. To illustrate, suppose that for all v, w ∈
Rn

+,

(13) 1−G0(v + w) = (1−G0(v))(1−G0(w)) < 1.

This multiplicative version of the Cauchy functional equation implies (e.g. Aczel[1,
Theorem 1, p. 215] that the cdf G0 must have the form

(14) G0(v) =

{∏n
i=1(1− exp(−λivi)) for all v ∈ Rn

+

0 otherwise

for some positive parameters λ1, λ2, . . . , λn > 0. Thus G0 is a multivariate expo-
nential cdf. Theorem 1 (or Corollary 2) characterizes RQUM with the exponential
distribution G0 via Axioms 1–5 and the additional condition (13). This specifica-
tion is an example of the exponomial discrete choice model under the convention
that the value v0 is unperturbed.

3.1. RQUM vs the classic RUM. Similarly to the classic RUM, RQUM can be
characterized in terms of a Farkas-style condition.

Axiom 6 (Axiom of Revealed Stochastic Quasilinearity (ARSQ)). For any finite
sequence of trials {(xk, Ak) ∈ Ω}mk=1,

(15)
m∑
k=1

ρ(xk, Ak) ≤ max
v ∈ Rn

|{k ∈ {1, . . . ,m} : xk strictly maximizes Rv in Ak}|.

Note that the sequence {(xk, Ak) ∈ Ω}mk=1 may include multiple copies of the
same trial (x,A) ∈ Ω. ARSQ follows from RQUM and implies all testable proper-
ties in Theorem 1.

Theorem 3. For any stochastic choice rule ρ,

Axioms 1–5 ⇒ ARSQ ⇒ Axioms 1–3.

An immediate corollary of Theorems 1 and 3 is that

RQUM ⇔ ARSQ, AC, GC.

Note that ARSQ alone is not sufficient for RQUM because it does not imply the
continuity conditions AC and GC (see examples in the discussion section below).
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Theorem 3 clarifies the connection of RQUM to the classic RUM. Obviously,
ARSQ strengthens McFadden and Richter’s[24]

Axiom 7 (Axiom of Revealed Stochastic Preference (ARSP)). For any finite se-
quence of trials {(xk, Ak) ∈ Ω}mk=1,

(16)
m∑
k=1

ρ(xk, Ak) ≤ max
total R ∈ R

|{k ∈ {1, . . . ,m} : xk maximizes R in Ak}|.

To see that (15) implies (16), note that x is a strict maximum for some Rv in A if
and only if x is a maximum for the total order Tv such that for all (i, α), (j, β) ∈ X,

(i, α)Tv(j, β) ⇔ either qv(i, α) > qv(j, β), or qv(i, α) = qv(j, β) and i ≤ j.

Recall that ARSP is equivalent to the non-negativity of Block-Marschak poly-
nomials written for any finite menu A ∈ M. This equivalence follows from the
characterizations of the classic RUM by Falmagne [10] and McFadden and Richter
[24] (see also Chambers and Echenique [8, Theorem 7.2].) Thus ARSQ implies
that BM polynomials should be non-negative in any finite menu A ⊂ X.

On the other hand, ARSP does not imply ARSQ (see an example in the dis-
cussion section below). To summarize, RQUM strengthens the classic RUM by
refining ARSP to ARSQ and adding the continuity conditions AC and GC.

3.2. RQUM in Finite Datasets. Another benefit of ARSQ is that it can still
characterize RQUM in finite datasets where Axioms 1–5 may be all vacuous and
hence, insufficient for any representation.

Suppose that the stochastic choice rule ρ is observed only in a subclass of menus
F ⊂ A. Define the corresponding set of trials as

Ω(F) = {(x,A) : A ∈ F and x ∈ A}.
A pair (ρ,F) is called a stochastic dataset if F ⊂M and ρ : Ω(F)→ [0, 1] is a

function such that ∑
x∈A

ρ(x,A) = 1 for all A ∈ F .

RQUM and ARSQ can be adopted as is.

Theorem 4. A stochastic dataset (ρ,F) satisfies ARSQ if and only if there is
π ∈ Π such that for all (x,A) ∈ Ω(F),

(17) ρ(x,A) = π(L(x,A)).

Moreover, it is without loss in generality to take π regular or finite-rangged.

This result identifies π via the Farkas Lemma. In contrast with Theorem 1,
the identification of π is not unique, and arrives as a solution to a linear program
rather than the explicit formula (11).

Theorem 4 also implies that there is no empirical difference between RQUM and
its modifications where the grading procedures relies on any permutation of N to
break ties. Indeed, ARSQ is invariant of such permutations, as long as the grading
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procedure is used in all menus. It is only the GC axiom that can be affected by
the permutation of N in the grading procedure.

4. Discussion

To clarify Theorem 1 further, it is useful to illustrate the logical independence
of Axioms 1–5 and connect them to other conditions.

NC can be violated by context effects. For example, if x discounts y, then
the presence of y can make x more likely to be chosen due to increased attention
or reason-based heuristics (e.g. Shafir, Simonson, and Tversky [28]). Note that
Axioms 2–5 need not be violated by context effects because the reduction ρ∗ is
restricted to assortments that have the same size n+ 1.

Several examples below use N = {0, 1} with two elements. In this binary frame-
work, any reduced scr ρ∗ : R2 → [0, 1] determines a unique scr ρ that satisfies NC
and has ρ∗ as its reduction.6 So in these examples, it is enough to specify ρ∗.

Without CPN, the evaluation of monetary costs need not be linear, and some
types can exhibit reference dependence where positive costs can appear more sig-
nificant than negative ones (i.e. rewards). To illustrate, let N = {0, 1} and

ρ∗0(c0, c1) =

{
1 if u(c1)− u(c0) ≥ 1

0 otherwise

where u(α) = α for all α ≥ 0 and u(α) = α
2

for all α < 0. JM is trivial here
because ρ∗0 is increasing in c1. AC and GC are also obvious. However, CPN does
not hold. For example, if c = (0, 0), then increasing the cost of good 1 by one unit
increases ρ∗0 from 0 to 1, but decreasing the cost of good 0 by one unit does not
change ρ∗1 at all.

Without JM, the weights of some possible types can become negative. To illus-
trate, let N = {0, 1}, and for all c ∈ RN ,

ρ∗0(c0, c1) =

{
1 if c1 − c0 ∈ [0, 1) ∪ [2,+∞)

0 otherwise.

Here CPN holds because ρ∗ is determined by the difference c1 − c0. AC and GC
are obvious. However, JM does not hold because ρ∗0 is not increasing with respect
to c1. One can interpret ρ∗ as an aggregation of three quasi-linear orders with unit
weights: positive ones R0 and R2 and a negative one R1.

Without AC, there can be possible types who do not care about money at all.
To illustrate, let N = {0, 1} and

ρ∗0(c0, c1) = 1

6In any menu A that provides only one good, 0 or 1, the cheapest option is selected with
probability one. In any menu A where c0 and c1 are the smallest available costs for goods 0
and 1, the pairs (0, c0) and (1, c1) must be chosen with probabilities ρ∗0(c0, c1) and ρ∗1(c0, c1)
respectively. All other alternatives must be chosen with probability zero.
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for all c ∈ RN . Then Axioms 1–5 hold, except for AC that is obviously false.
The reason is that ρ∗ is produced by an agent who is not willing to reject good 0
regardless of its cost. ARSQ holds here because any finite dataset that is generated
when ρ∗0(c0, c1) = 1 can be also generated by RQUM with a single type R−α for
sufficiently large α > 0.

Without GC, there can be other tie-breaking rules that are consistent with
Axioms 1–4. To illustrate, let N = {0, 1} and

ρ∗0(c0, c1) =


1 if c1 > c0

1
2

if c1 = c0

0 if c1 < c0.

Then Axioms 1–4 are obvious, but GC is violated at c = (0, 0) because ρ∗(0, 0) = 1
2
,

but ρ∗0 ((0, 0) + γ(0, 1)) = 1 for all γ > 0. This example corresponds to the uniform
tie-breaking rule that is distinct from our grading procedure. Note that ARSQ
holds in this example as well. To see this, note that

ρ = 1
2
ρ+ + 1

2
ρ−

where ρ+ is generated by RQUM with one type R0, and ρ− is generated by the
mirror version of RQUM with one type R0 where all ties are broken in favor of
good 1. As both ρ+ and ρ− satisfy RQUM, then ρ satisfies RQUM as well.

4.1. Other Axioms. Besides Axioms 1–5 in Theorem 1, RQUM implies other
important conditions for stochastic choice rules. It is easy to conclude from (8) that
the reduction ρ∗ should be invariant to wealth variations where the cost differentials
across all goods in N are unchanged.

Axiom 8 (Wealth Invariance). For all c ∈ RN and γ ∈ R, ρ∗(c) = ρ∗(c+ γ).

Axioms 1–5 imply Wealth Invariance, but this claim is not trivial and requires
a technical Lemma 5.1 in the proofs. This lemma could be omitted if Wealth
Invariance is just added to the assumptions in Theorem 1, but then the list of our
axioms would become redundant.

Finally, suppose that the reduction ρ∗ is continuously differentiable and has all
continuous partial derivatives up to order n. Then RQUM implies DZ’s axioms,
which assert that for all c ∈ RN and distinct k, j ∈ N ,

∂ρ∗k(c)

∂cj
=
∂ρ∗j(c)

∂ck
(18)

∂nρ∗k
∂c0∂c1 . . . ∂ck−1∂ck+1 . . . ∂cn

≥ 0.(19)

In this case, one can establish7 that the combination of conditions (18)–(19) is
equivalent to our CPN and JM.

Unlike the DZ conditions, both CPN and JM are written in terms of observed
choice probabilities rather than their derivatives and put no resrictions on the

7This argument is available upon request.
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Borel probability measure π over the vectors v ∈ Rn. Moreover, the DZ Theorem
is stated in terms of the reduced scr and hence, does not apply in menus where
some consumption goods are unavailable at any cost.

Finally, consider an example where ARSP holds, but ARSQ does not. Let
N = {0, 1}, and

ρ∗0(c0, c1) =

{
1 if c0 ≤ 0

0 if c0 > 0.

Let ρ be the unique extension of ρ∗ that satisfies NC. ARSQ does not hold here
because CPN is violated:

1 = ρ∗1(1, 0)− ρ∗1(0, 0) > ρ∗0(0, 0)− ρ∗0(0,−1) = 0.

However, ρ satisfies ARSP because ρ selects the maximizer of a total order R that
is represented by a utility function

u(i, α) =


−3− α if i = 0 and α > 0

3− α if i = 0 and α ≤ 0

arctan(−α) if i = 1.

Of course, this total order does not have a quasi-linear utility representation.

5. APPENDIX

Show Theorem 1.
Suppose that a Borel probability measure π ∈ Π is a low representation (7) for

a stochastic choice rule ρ. Then NC holds because for all (x,A) ∈ Ω and y ∈ X,

L(x,A ∪ y) ⊂ L(x,A)

and L(c, A ∪ y) = ∅ if y discounts x.
Representation (7) for ρ implies (8) for its reduction ρ∗.
Show CPN. By (8),

ρ∗k(c)− ρ∗k
(
c− γ~j

)
= π

[
Lk(c) \ Lk

(
c− γ~j

)]
ρ∗j

(
c+ γ~k

)
− ρ∗j(c) = π

[
Lj(c+ γ~k) \ Lj(c)

]
because Lj(c) is a subset of Lj

(
c+ γ~k

)
, and Lk

(
c− γ~j

)
is a subset of Lk(c).

Moreover, (8) implies another set inclusion

(20)
[
Lj

(
c+ γ~k

)
\ Lj(c)

]
⊂
[
Lk(c) \ Lk

(
c− γ~j

)]
.

Indeed, take any type v ∈ Rn such that its quasi-linear order Rv is maximized by

(j, cj) in the assortment A
(
c+ γ~k

)
, but not in A(c). Then (k, ck) should maximize

Rv in A(c). By quasi-linearity, (k, ck) cannot maximize Rv in A
(
c− γ~j

)
because

then (j, cj) would not maximize Rv in A
(
c+ γ~k

)
. By (8), CPN follows from the

set inclusion (20).
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Show JM. Take any α ∈ R. By (11), the function

Gα(v) = ρ∗0(α, v + α)

is the cdf of π. Thus every Gα is jointly monotone.
Show AC. For all m = 1, 2, . . . ,, let

Vm = {v ∈ Rn : max
k∈[1,n]

|vk| ≥ m}.

These sets are monotonically decreasing, V1 ⊃ V2 ⊃ . . . , and satisfy
⋂∞
k=1 Vk = ∅.

As π is countably additive, then

lim
m→∞

π(Vm) = 0.

Take any ε > 0. Pick m such that π(Vm) < ε. Let δ = 2m. Take any c ∈ RN and
k, i ∈ [1, n] such that such that ck − ci > δ. Suppose that v ∈ Lk(c). Then (k, ck)
maximizes qv in A(c). It follows that vk − ck ≥ vi − ci where v0 by convention.
Thus vk − vi ≥ ck − ci > 2m and hence, either vk ≥ m or vi ≤ −m. In either case,
v ∈ Vm and hence,

ρ∗k(c) = π(Lk(c)) ≤ π(Vm) < ε.

Show GC. Take any c ∈ RN and k ∈ N . For all m = 1, 2, . . . , let

• Wm be the set of all v ∈ Rn such that

vk − ck > vi − ci + 1
m

for all i ∈ N such that i < k

vk − ck ≥ vj − cj for all j ∈ N such that j ≥ k.

• W ′
m be the set of all v ∈ Rn such that

vk − ck > vi − ci for all i ∈ N such that i < k

vk − ck ≥ vj − cj − 1
m

for all j ∈ N such that j ≥ k.

The set inclusions W1 ⊂ W2 ⊂ . . . and W ′
1 ⊃ W ′

2 ⊃ . . . are obvious.
As Lk(c) =

⋃
m→∞Wm =

⋂
m→∞W

′
m and π is countably additive, then

ρ∗k(c) = π(Lk(c)) = lim
m→∞

π(Wm) = lim
m→∞

π(W ′
m).

Let d = (0, 1, . . . , n). Then for all 0 < γ < 1
mn

,

Wm ⊂ Lk (c+ γd) ⊂ W ′
m.

Thus limγ→0,γ≥0 ρ
∗
k (c+ γd) = limγ→0,γ≥0 π (Lk (c+ γd)) = ρ∗k(c). As k ∈ N is

arbitrary, then ρ∗ is continuous in the direction d.
Suppose that π satisfies the regularity condition (6). Show that ρ∗ is continuous.

For any c ∈ Rn and k ∈ N ,

lim
γ→0,γ≥0

π(Lk(c− γ~k)) = π(M((k, ck), A(c))) = π(Lk(c)) =

π(S((k, ck), A(c))) = lim
γ→0,γ≥0

π(Lk(c+ γ~k)).
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Take any sequence c(m) ∈ Rn such that limm→∞ c(m) = c. Take any ε > 0. Then
there is γ > 0 such that

π(Lk(c− γ~k))− π(Lk(c+ γ~k)) < ε.

Then for all sufficiently large m, ||c(m)− c|| < γ and hence,

Lk(c+ γ~k) ⊂ Lk(c(m)) ⊂ Lk(c− γ~k).

As Lk(c+ γ~k) ⊂ Lk(c) ⊂ Lk(c− γ~k) as well, then

|π(Lk(c(m)))− π(Lk(c))| < π(Lk(c− γ~k))| − π(Lk(c+ γ~k)) < ε.

Thus limm→∞ ρ
∗
k(c(m)) = ρ∗k(c).

Suppose that π has finite range. Then it is obvious that ρ∗ has a finite range as
well because each of its components ρ∗i has a finite range.

5.1. Sufficiency of Axioms. Suppose that ρ satisfies Axioms 1–5. Take any
α ∈ R. For all v ∈ Rn, let

Gα(v) = ρ∗0(α, v + α).

By JM, Gα is jointly monotone. By AC, for all j ∈ [1, n],

(21) lim
vj→−∞

Gα(v) = 0

because the cost differential α−(vj+α) between goods 0 and j becomes arbitrarily
large in this limit. Similarly by AC,

(22) lim
γ→+∞

Gα(γ, . . . , γ) = 1

because Gα(γ, . . . , γ) = 1−
∑n

k=1 ρ
∗
k(α, γ + α, γ + α, . . . , γ + α). Here

lim
γ→+∞

ρ∗k(α, γ + α, γ + α, . . . , γ + α) = 0

for all k ∈ [1, n] because the cost of good k exceeds the cost of good 0 by γ that
becomes arbitrarily large.

Argue that Gα is monotonically increasing with respect to each of its variables.
Suppose that

Gα

(
v − γ~k

)
−Gα(v) > 0

for some v ∈ Rn, k ∈ [1, n], and γ > 0. Let ε = Gα

(
v − γ~k

)
− Gα(v). By AC,

there is δ > 0 such that for all c ∈ RN and j ∈ N ,

c0 − cj ≥ δ ⇒ ρ∗0(c) < ε
2n
.

Take w ∈ Rn such that wk = vk − γ and wi = −δ for all other i ∈ [1, n] \ k. Then
for any K ⊂ [1, n] such that K 6= ∅ and K 6= {k},

Gα(wKv) = ρ∗0(α, (w + α)K(v + α)) ≤ ε
2n
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because α− (wj + α) ≥ δ for j ∈ K \ k. Thus

Gα(v)−Gα

(
v − γ~k

)
= Ga(w∅v)−Gα(w{k}v) =∑

K⊂[1,n]

(−1)|K|Gα(wKv)−
∑

K⊂[1,n]:K 6=∅ and K 6={k}

(−1)|K|Gα(wKv) ≥

∑
K⊂[1,n]

(−1)|K|Gα(wKv)− (2n − 2) ε
2n
> −ε

because v = w and Gα is jointly monotone. This contradicts the definition of ε.
Thus Gα is weakly increasing with respect to all of its variables.

Show that Gα satisfies continuity from above. To do so, take any vectors
w, v(1), v(2), · · · ∈ Rn such that v(1) = v(2) = . . . and

lim
k→∞

v(k) = w.

Let d = (1, 2, . . . , n). Take any ε > 0. By GC, there is γ > 0 such that

Gα (w + γd) ≤ Gα(w) + ε.

The convergence limk→∞ v(k) = w implies that there is m such that w + γd =
v(k) = w for all k ≥ m. As Gα is weakly increasing in all variables, then

Gα(w) ≤ Gα(v(k)) ≤ Gα (w + γ) ≤ Gα(w) + ε.

As ε is arbitrary, then Gα is continuous from above.
Besides the joint monotonicity and continuity from above, the function Gα :

Rn → [0, 1] satisfies the asymptotic normalizations (21)–(22). Billingsley’s Theo-
rem 12.5 implies that Gα is the cdf of some Borel measure πα ∈ Π.

The next lemma establishes that the functions Gα—and hence, the correspond-
ing measures πα—are invariant of α.

Lemma 5.1. For all α ∈ R, Gα = G0.

Proof. Suppose first that n = 1. Take any α ≥ 0 and v ∈ R. Then

G0(v)−Gα(v) = ρ∗0(0, v)− ρ∗0(α, v + α) =

ρ∗0(0, v)− ρ∗0(0, v + α) + ρ∗0(0, v + α)− ρ∗0(α, v + α) = as n = 1, then ρ∗0 = 1− ρ∗1

ρ∗0(0, v)− ρ∗0(0, v + α) + [ρ∗1(α, v + α)− ρ∗1(0, v + α)] ≤ by CPN

ρ∗0(0, v)− ρ∗0(0, v + α) + [ρ∗0(0, v + α)− ρ∗(0, v)] = 0.

Similarly,

Gα(v)−G0(v) = [ρ∗0(α, v + α)− ρ∗0(α, v)] + [ρ∗1(0, v)− ρ∗1(α, v)] ≤ by CPN

[ρ∗1(α, v)− ρ∗1(0, v)] + [ρ∗1(0, v)− ρ∗1(α, v)] = 0.

Thus Gα(v) = G0(v).



RANDOM QUASI-LINEAR UTILITY 19

Let n ≥ 2. Take any γ ∈
(

0, 2
n(n−1)

]
. Show that for all α, β ∈ R and v ∈ Rn,

(23)

∣∣∣∣∫
w∈Rn:v+γ=w=v

[Gα(w)−Gβ(w)]dw

∣∣∣∣ ≤ (α− β)2.

where the integration is taken over all vectors w ∈ Rn such that v + γ = w = v.
Before proving (23), observe that (23) implies Gα = G0. Indeed, suppose that

Gα(v) 6= G0(v) for some α ∈ R and v ∈ Rn. Both Gα and G0 are continuous from
above and hence,∫

w∈Rn:v+γ=w=v
Gα(w)dw 6=

∫
w∈Rn:v+γ=w=v

G0(w)dw

for all sufficiently small γ. However, (23) implies that for any m = 1, 2, . . . ,∣∣∣∣∫
w∈Rn:v+γ=w=v

[Gα(w)−G0(w)]dw

∣∣∣∣ ≤ m α2

m2 = α2

m
.

As m is arbitrary, then the inequality Gα(v) 6= G0(v) is impossible.
So it remains to show (23). The proof invokes the Fubini theorem as in Billingsley

[6, Theorem 18.3].
Without loss in generality, let β = α + ε for some ε ≥ 0. Then

Gα(w)−Gβ(w) = ρ∗0(α,w + α)− ρ∗0(β, w + β) =

ρ∗0(α,w + α)− ρ∗0(α,w + β) + ρ∗0(α,w + β)− ρ∗0(β, w + β) =

ρ∗0(α,w + α)− ρ∗0(α,w + β) +
n∑
k=1

[ρ∗k(β, w + β)− ρ∗k(β, w + β)] ≤ (By CPN)

ρ∗0(α,w + α)− ρ∗0(α,w + β) +
n∑
k=1

[ρ∗0(α,w + β)− ρ∗0(α,w + β − ε~k)] =

Gα(w) + (n− 1)Gα(w + ε)−
n∑
k=1

Gα(w + ε− ε~k) =

∫
r∈Rn

[
g(r, w) + (n− 1)g(r, w + ε)−

n∑
k=1

g(r, w + ε− ε~k)

]
dπα(r) ≤∫

r∈Rn

∑
i,j∈[1,n]:i>j

h(r, w)dπα(r)

where g(r, w) and h(r, w) are indicator functions such that

g(r, w) =

{
1 if w = r

0 otherwise
h(r, w) =

{
1 if ri − wi ∈ (0, ε] and rj − wj ∈ (0, ε]

0 otherwise.
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Here the inequality

(24) g(r, w) + (n− 1)g(r, w + ε)−
n∑
k=1

g(r, w + ε− ε~k) ≤
∑

i,j∈[1,n]:i>j

h(r, w)

must hold for all r, w ∈ Rn. To see this, consider several cases.

If w = r, then g(r, w) = g(r, w + ε) = g(r, w + ε− ε~k) = 1 for all k ∈ [1, n], and
hence, the left hand side of (24) is zero.

If w + ε = r is not true, then g(r, w) = g(r, w + ε) = g(r, w + ε− ε~k) = 0 for all
k ∈ [1, n], and hence, the left hand side of (24) is zero.

So suppose that w + ε = r and there is a positive count p of variables i ∈ [1, n]
such that ri − wi ∈ (0, ε]. Then the left hand side of (24) is p − 1, and the right

hand side is p(p−1)
2

. Thus (23) must hold.
Conclude the proof of (23) by the Fubini theorem.∫
w∈Rn:v+γ=w=v

[Gα(w)−Gβ(w)]dw ≤

∫
w∈Rn:v+γ=w=v

∫
r∈Rn

∑
i,j∈[1,n]:i>j

h(r, w)dπα(r)

 dw = Fubini

∫
r∈Rn

∫
w∈Rn:v+γ=w=v

∑
i,j∈[1,n]:i>j

h(r, w)dw

 dπα(r) ≤

∫
r∈Rn

n(n−1)
2

γn−2ε2dπ(r) ≤ ε2.

because for any fixed r ∈ Rn, the Lebesgue measure of the intersection of the set
{w ∈ Rn : v + γ = w = v} with the constraints ri −wi ∈ (0, ε] and rj −wj ∈ (0, ε]
for any distinct i, j can be bounded by γn−2ε2. As γ ≤ 2

n(n−1)
, then γ ≤ 1 and

hence n(n−1)
2

γn−2ε2 ≤ ε2.
Similarly,

∫
w∈Rn:v+γ=w=v[Gβ(w)−Gα(w)]dw ≤ ε2 when β < α. �

Let π = π0. Take any cost vector c ∈ RN . Let v = (c1 − c0, c2 − c0, . . . , cn − c0).
By Lemma 5.1,

ρ∗0(c) = Gc0(v) = G0(v) = π({w ∈ Rn : w 5 v}) = π(L0(c))

because {w ∈ Rn : w 5 v} = L0(c0, v + c0) = L0(c).
Extend the low representation to all other goods k > 0.

Lemma 5.2. For all c ∈ Rn and k ∈ [1, n],

(25) ρ∗k(c) ≥ π(Sk(c))

where Sk(c) = {v ∈ Rn : (k, ck) strictly maximizes Rv in A(c)}.
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Proof. Take any c ∈ RN and k ∈ [1, n]. For any t = 1, 2, . . . , let

Vt =
4t−1⋃
m=0

[
L0

(
c+ 1

2t
~k − m

2t
~0
)
\ L0

(
c− m

2t
~0
)]
.

Show that these sets are nested:

V1 ⊂ V2 ⊂ V3 ⊂ . . .

Take any v ∈ Vt. Then there is m ∈ {0, 1, . . . , 4t − 1} such that

v ∈ L0

(
c+ 1

2t
~k − m

2t
~0
)
\ L0

(
c− m

2t
~0
)

If v ∈ L0

(
c+ 1

2t+1
~k − 2m

2t+1
~0
)

, then v ∈ Vt+1 because

v ∈ L0

(
c+ 1

2t+1
~k − 2m

2t+1
~0
)
\ L0

(
c− 2m

2t+1
~0
)
.

If v 6∈ L0

(
c+ 1

2t+1
~k − 2m

2t+1
~0
)

, then v ∈ Vt+1 because

v ∈ L0

(
c+ 1

2t+1
~k + 1

2t+1
~k − 2m

2t+1
~0
)
\ L0

(
c+ 1

2t+1
~k − 2m

2t+1
~0
)
.

Next, show that the union
⋃∞
t=1 Vt contains Sk(c). Suppose that v ∈ Rn is such

that (k, ck) is a strict maximum for Rv in A(c). Then vk − ck > −c0. Take t such
that

• vk − ck ≤ 2t − c0, and
• vk − ck − 1

2t
> vi − ci for all i ∈ [1, n] \ k.

Pick m ∈ {0, . . . , 4t − 1} such that
m
2t
− c0 < vk − ck ≤ m+1

2t
− c0.

Then v ∈ L0

(
c+ 1

2t
~k − m

2t
~0
)
\ L0

(
c− m

2t
~0
)

and hence, v ∈ Vm.

v

0

1
2

c2

c1

(a) Type v’s choice of 0, 1, 2 partitions the
space R2

c

S0(c)

S2(c)

S1(c)

v2

v1

(b) Partition of the type space R2 according
to choices at cost c. Green types choose good
1, red types choose good 2, and blue types
choose the status quo 0.

Figure 1. Partition by v and by c, where v0 = 0, c0 = 0 are fixed
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c

V0 V1

c

c2

c1

Figure 2. Fix c = 0 and k = 1. Then V0 is the area shaded by
vertical lines; V1 is the area shaded by vertical lines. Here the width
of V0 is one monetary unit, and the width of V1 is two monetary
units.

For each t = 1, 2, . . . ,

ρ∗k(c)− ρ∗k(c− 2t~0) =
4t−1∑
m=0

[
ρ∗k

(
c− m

2t
~0
)
− ρ∗k

(
c− m+1

2t
~0
)]
≥ (by CPN)

4t−1∑
m=0

ρ∗0

(
c+ 1

2t
~k − m

2t
~0
)
− ρ∗0

(
c− m

2t
~0
)

= π(Vt)

As t→∞, the limit of ρ∗k(c− 2t~0) should be zero by AC, and hence,

ρ∗k(c) = lim
t→∞

π(Vt) ≥ π(Sk(c))

because π is countably additive.
This proof can be illustrated in Figure 1. WLOG let N = {0, 1, 2}. Fix v0 =

0, c0 = 0, and let each vector in (c1, c2) ∈ R2 represent the the costs on goods 1
and 2, respectively. For simplicity, consider regular distribution of types. Figure
1(A) shows that if the cost vector falls in regions 0, 1, or 2, then type v chooses
0, 1, or 2, respectively. Figure 1(B) shows that a given cost c = (c1, c2) partitions
the R2 space into S0(c), S1(c) and S2(c). Figure 2 illustrates Vt for t = 0, 1.

�

Let d = (0, 1, 2, . . . , n).
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Lemma 5.3. For any c ∈ Rn, there is a sequence {γt ≥ 0}∞t=1 such that

(1) for all k ∈ N and t = 1, 2, . . . ,

π(Lk(c+ γtd)) = π(Sk(c+ γtd))

(2) limt→∞ γt = 0.

Proof. Suppose that the lemma is not true. Then there are c ∈ RN , k ∈ N , and
ε > 0 such that

π(Lk(c+ γd)) > π(Sk(c+ γd))

for all γ ∈ [0, ε]. Note that

Lk(c+ γd) \ Sk(c+ γd) ⊂
⋃

i∈N\k

T (i, γ)

where T (i, γ) = {v ∈ Rn : qv(i, ci + γi) = qv(k, ck + γk)}. As i 6= k, then
T (i, γ) ∩ T (i, α) = ∅ for all α 6= γ. As π is countably additive, then there can be
only countably many points γ ∈ R such that π(T (i, γ)) > 0. Thus there can be
countably many points γ ∈ R such that

π(Lk(c+ γd)) > π(Sk(c+ γd))

can hold. Thus this inequality does not hold for some γ ∈ [0, ε]. �

Take any c ∈ Rn. Take a sequence {γt ≥ 0}∞t=1 that satisfies Lemma 5.3. For all
k ∈ N and t = 1, 2, . . . , Lemma 5.2 implies

1 =
∑
k=0

ρ∗k(c+ γtd)) ≥
∑
k=0

π(Sk(c+ γtd)) =
∑
k=0

π(Lk(c+ γtd)) = 1

and hence,
ρ∗k(c+ γtd)) = π(Lk(c+ γtd)).

Let ρ∗∗ be the reduced scr that has π as a low representation. Both ρ∗ and ρ∗∗

satisfy GC. Thus

(26) ρ∗(c) = lim
t→∞

ρ∗(c+ γtd)) = lim
t→∞

ρ∗∗(c+ γtd)) = ρ∗∗(c).

Thus π is a low representation for ρ∗.
Extend this representation for the entire ρ. Take any trial (x,A) ∈ Ω. Let

B ⊂ A consist of all alternatives (i, α) ∈ A such that for all β < α, (i, β) 6∈ A. If
x ∈ A \B, then x is discounted by some y ∈ A and hence, by NC

ρ(x,A) = 0 = π(∅) = π(L(x,A)).

Suppose that x ∈ B. For each i ∈ N and t = 1, 2, . . . , define a cost vector
c(t) ∈ RN as

(27) ci(t) =

{
min{α ∈ R : (i, α) ∈ B} if (i, α) ∈ B for some α ∈ R
t if (i, α) 6∈ B for all α ∈ R.

Then B is a subset of the assortment A(c(t)). Take any x = (i, α) ∈ B. By NC,

ρ(x,B) ≥ ρ∗i (c(t)).
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The sets Li(c(t)) are nested

Li(c(1)) ⊂ Li(c(2)) ⊂ . . .

and
⋃∞
t=1 Li(c(t)) = L(x,B). Thus

ρ(x,B) ≥ lim
t→∞

ρ∗i (c(t)) = lim
t→∞

π(Li(c(t))) = π(L(x,B)) = π(L(x,A)).

By NC, ρ(y,B) ≥ ρ(y, A) for all y ∈ B. Thus

1 =
∑
y∈B

ρ(y,B) ≥
∑
y∈B

ρ(y, A) =
∑
y∈B

ρ(y, A) +
∑
y∈A\B

ρ(y, A) = 1.

Thus ρ(y,B) = ρ(y, A) for all x ∈ B. Similarly, for all y ∈ A, ρ(y, A) ≥ π(L(y, A))
and hence,

1 =
∑
y∈A

ρ(y, A) ≥
∑
y∈A

π(L(y, A)) = 1.

Thus ρ(y, A) = π(L(y, A)) which implies that π is a low representation for ρ.
If ρ∗ is continuous, then π must satisfy the regularity condition (6). Indeed,

suppose that π(M(x,A)) > π(S(x,A)) for some (x,A) ∈ Ω. Let x = (i, α) for
some i ∈ N and α ∈ R. Construct the menu B and vectors c(t) as in (27). As
π(M(x,A)) > 0, then x ∈ B and

π(M(x,B)) = π(M(x,A)) > π(S(x,A)) = π(S(x,B)).

For all t = 1, 2, . . . let Mt(x,B) ⊂M(x,B) be the set of all v ∈M(x,B) such that
qv(x) > qv(k, t) for all k ∈ N . By countable additivity,

lim
t→∞

π(Mt(x,B)) = π(M(x,B)).

Take t such that π(Mt(x,B)) > π(S(x,B)). Note that Mt(x,B) ⊂ Li(c(t)−γ~i) for
all γ > 0 because any x ∈ Mt(x,B) is a maximum for Rv in A(c(t)), and hence a

strict maximum for Rv in A(c(t)− γ~i).
Moreover, Li(c(t) + γ~i) ⊂ S(x,B) for all γ > 0. As ρ∗i is continuous, then

π(Mt(x,B)) ≤ lim
γ→0

Li(c(t)− γ~i) = ρ∗i (c(t)) = lim
γ→0

Li(c(t) + γ~i) ≤ π(S(x,B))

which contradicts π(Mt(x,B)) > π(S(x,B)). Thus the regularity (6) must hold.
Finally, suppose that ρ∗ has a finite range. Show that the support of π must be

finite. To show this, define the marginal cdfs for all i ∈ N and α ∈ R as

Fi(α) = π{v ∈ Rn : vi ≤ α}.
Each of these values is the limit of the values of the joint cdf Fπ and hence, belongs
to the closure of the finite range of ρ∗0. The closure of a finite set is the same finite
set. Thus Fi has a finite range as well, and hence, finitely many discontinuity
points Di ⊂ R. By construction,

π({v ∈ Rn : vi ∈ Di}) = 1

and hence, π(D0 ×D1 × · · · ×Dn) = 1 as well.



RANDOM QUASI-LINEAR UTILITY 25

Corollary 2 asserts equality (26), which was derived above from Axioms 2–5
without NC.

6. Proof of Theorem 3

Suppose that ρ satisfies Axioms 1–5. By Theorem 1, ρ has a low representation
π ∈ Π. For any type v ∈ Rn, define its indicator lv : Ω→ {0, 1} for all (x,A) ∈ Ω
as

lv(x,A) =

{
1 if x is a low maximum for Rv in A

0 otherwise.

Then the low representation (7) implies that for all trials (xk, Ak),

ρ(xk, Ak) =

∫
v∈Rn

lv(xk, Ak)dπ(v)

and hence,

m∑
k=1

ρ(xk, Ak) =

∫
v∈Rn

[
m∑
k=1

lv(xk, Ak)

]
dπ(v) ≤

max
v∈Rn

m∑
k=1

lv(xk, Ak) = max
v ∈ Rn

|{k ∈ {1, . . . ,m} : v ∈ L(xk, Ak)}|.

Take any w ∈ Rn such that

|{k ∈ {1, . . . ,m} : w ∈ L(xk, Ak)}| = max
v ∈ Rn

|{k ∈ {1, . . . ,m} : v ∈ L(xk, Ak)}|.

Then for sufficiently small γ > 0,

w ∈ L(xk, Ak) ⇔ [w − γ(0, 1, . . . , n)] ∈ S(xk, Ak).

Therefore ρ satisfies ARSQ because
m∑
k=1

ρ(xk, Ak) = |{k ∈ {1, . . . ,m} : [w − γ(0, 1, . . . , n)] ∈ S(xk, Ak)}|.

Show next that ARSQ implies Axioms 1–3.

Lemma 6.1. If {(xk, Ak) ∈ Ω}mk=1 and {(yi, Bi) ∈ Ω}ti=1 are finite sequences of
trials such that for all v ∈ Rn,

(28)
m∑
k=1

lv(xk, Ak) ≤
t∑
i=1

lv(yi, Bi),

then ARSQ implies that

(29)
m∑
k=1

ρ(xk, Ak) ≤
t∑
i=1

ρ(yi, Bi).
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Proof. Inequality (28) implies

m∑
k=1

lv(xk, Ak) +
t∑
i=1

∑
z∈Bi\yi

lv(z, Bi) ≤ t

because
∑

z∈Bi\yi lv(z, Bi) = 1− lv(yi, Bi) for all i = 1, . . . , t. Thus t is the maximal
number of low maxima—and a fortiori, strict maxima—for the type v ∈ Rn in the
sequence of all trials in the left-hand side of the above inequality. By ARSQ,

m∑
k=1

ρ(xk, Ak) +
t∑
i=1

∑
z∈Bi\yi

ρ(z,Bi) ≤ t

and hence,
∑m

k=1 ρ(xk, Ak) ≤ t−
∑t

i=1

∑
z∈Bi\yi ρ(z, Bi) =

∑t
i=1 ρ(yi, Bi). �

Assume ARSQ. Show NC. For all (x,A) ∈ Ω and y ∈ X, lv(x,A ∪ y) ≤ lv(x,A)
for all v ∈ Rn. By (29), ρ(x,A∪y) ≤ ρ(x,A). If y discounts x, then lv(x,A∪y) = 0
for all v ∈ Rn. Thus ρ(x,A ∪ y) = 0.

Show CPN. Take any γ > 0, c ∈ RN , and distinct goods k, j ∈ N . We claim
that for all v ∈ Rn,

(30)
lv

(
(k, ck), A

(
(c− γ~j

))
+ lv

(
(j, cj), A

(
c+ γ~k

))
≤

lv((k, ck), A(c)) + lv((j, cj), A(c)).

If lv

(
(k, ck), A

(
(c− γ~j

))
= lv

(
(j, cj), A

(
c+ γ~k

))
= 0, then (30) is trivial.

Suppose that lv

(
(k, ck), A

(
(c− γ~j

))
= 1. As (k, ck) is a low maximum in

A
(

(c− γ~j
)

, then (j, cj) cannot be a low maximum in A
(
c+ γ~k

)
because the cost

difference between the two goods is unchanged. Therefore, lv

(
(j, cj), A

(
c+ γ~k

))
=

0. As (k, ck) must be a low maximum in A(c), then lv((k, ck), A(c)) = 1. Thus (30)
must hold.

Suppose that lv

(
(j, cj), A

(
c+ γ~k

))
= 1. Similarly, to the previous case,

lv

(
(k, ck), A

(
(c− γ~j

))
= 0. Moreover, the low maximum in A(c) must be ei-

ther (k, ck) or (j, cj). Therefore, lv((k, ck), A(c)) + lv((j, cj), A(c)) ≥ 1 and hence,
(30) must hold.

CPN follows from (30) and Lemma 6.1.
Show JM. Take any α ∈ R, and show that Gα is jointly monotone. Take any

vectors r, w ∈ Rn such that r = w. Then for all r ∈ Rn

(31) S =
∑

K⊂[1,n]

(−1)|K|lv((0, α), A(α,wKr)) ≥ 0.

To show this claim, consider two cases. Suppose first that vi + α > wi for all
i ∈ [1, n]. Then for all non-empty K ⊂ [1, n], (0, α) is not a maximum for Rv in
A(α,wKr) because vi − wi > −α for i ∈ K. Thus S = lv((0, α), A(α, r)) ≥ 0.
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Suppose next that vi + α ≤ wi for some i ∈ [1, n]. Take any K ⊂ [1, n] \ i. Then
(0, α) is a low maximum for Rv in A(α,wKr) if and only if it is a low maximum
for Rv in A(α,w(K ∪ i)r) because vi−wi ≤ −α and hence, (i, wi) cannot be a low
maximum in the presence of (0, α). Thus

lv((0, α), A(α,wKr)) = lv((0, α), A(α,w(K ∪ i)r))
and hence,

S =
∑

K⊂[1,n]\i

(−1)|K| [lv((0, α), A(α,wKr))− lv((0, α), A(α,w(K ∪ i)r))] = 0.

Thus S = 0. By (31),∑
even K⊂[1,n]

lv((0, α), A(α,wKr)) ≥
∑

odd K⊂[1,n]

lv((0, α), A(α,wKr)).

By (29), ∑
even K⊂[1,n]

ρ((0, α), A(α,wKr)) ≥
∑

odd K⊂[1,n]

ρ((0, α), A(α,wKr))

and hence, ∑
even K⊂[1,n]

ρ∗0(α,wKr) ≥
∑

odd K⊂[1,n]

ρ∗0(α,wKr).

By definition of the function Gα,∑
K⊂[1,n]

(−1)|K|Gα((w − α)K(r − α)) ≥ 0.

Substitute w + α for w and r + α for r to argue that Gα is jointly monotone. JM
follows.

7. Proof of Theorem 4

Take a stochastic dataset ρ : Ω(F) → [0, 1]. Low representation (17) implies
ARSQ by the same argument as for stochastic choice rules.

Suppose instead that ρ satisfies ARSQ. Then Lemma 6.1 holds as is.
As Ω(F) is finite, then there are only finitely many functions l : Ω(F)→ {0, 1}

such that l = lv for some v ∈ Rn. Pick a finite set W ⊂ Rn such that for every
v ∈ Rn, there is w ∈ W such that lv = lw. Use the Integer-Real Farkas Lemma
(Chambers and Echenique [8, Lemma 1.13]) to conclude the proof. By that result
exactly one of the following cases must hold.

Case 1. The stochastic dataset ρ : Ω(F)→ [0, 1] can be written as

ρ =
∑
w∈W

π(w)lw
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where π(w) ≥ 0 for all w ∈ W . Then the probabilistic normalization
∑

w∈W π(w) =
1 holds because for any A ∈ F ,

1 =
∑
x,A

ρ(x,A) =
∑
x,A

∑
w∈W

π(w)lw(x,A) =
∑
w∈W

π(w)

[∑
x,A

lw(x,A)

]
=
∑
w∈W

π(w).

Case 2. There exists an integer valued function z : Ω(F)→ Z such that

(32)
∑

(x,A)∈Ω(F)

z(x,A)lw(x,A) = 0

for all w ∈ W , but

(33)
∑

(x,A)∈Ω(F)

z(x,A)ρ(x,A) < 0.

It follows from (32) that∑
(x,A)∈Ω(F),z(x,A)≥0

z(x,A)lw(x,A) ≥
∑

(x,A)∈Ω(F),z(x,A)<0

(−z(x,A))lw(x,A)

for all w ∈ W . By Lemma 6.1,∑
(x,A)∈Ω(F),z(x,A)≥0

z(x,A)ρ(x,A) ≥
∑

(x,A)∈Ω(F),z(x,A)<0

(−z(x,A))ρ(x,A),

which contradicts (33).
Thus Case 1 must hold.
Show that the identification of π can be modified to be regular. For each w ∈ W ,

there exists a sufficiently small γ > 0 such that

w ∈ L(xk, Ak) ⇔ [w − γ(0, 1, . . . , n)] ∈ S(xk, Ak).

Let Bw be a small open neighborhood of w−γ(0, 1, . . . , n) such that for all v ∈ Bw

and k ∈ {1, . . . ,m},
w ∈ L(xk, Ak) ⇔ v ∈ S(xk, Ak).

Replace π by a continuous distribution σ =
∑

w∈W π(w)δw where δw ∈ Π has
density

f(v) =

{
1

λ(Bw)
if v ∈ Bw

0 if v 6∈ Bw

where λ(B) is the Lebesgue volume of the neighborhood Bw. Then the dataset ρ
has σ as a low representation as well.



RANDOM QUASI-LINEAR UTILITY 29

References

[1] J. Aczel. Lectures on Functional Equations and Their Applications. Dover Publications,
Mineola, New York, third edition, 1966.

[2] M. Agranov and P. Ortoleva. Stochastic choice and preferences for randomization. Journal
of Political Economy, 125:40–68, 2017.

[3] J. Apesteguia, M. A. Ballester, and J. Lu. Single-crossing random utility models. Economet-
rica, 85(2):661–674, 2017.

[4] S. Berry, J. Levinsohn, and A. Pakes. Automobile prices in market equilibrium. Economet-
rica: Journal of the Econometric Society, 63(4):841–890, 1995.

[5] S. Berry and A. Pakes. The pure characteristics demand model. International Economic
Review, 48(4):1193–1225, 2007.

[6] P. Billingsley. Probability and Measure. Wiley, New York, third edition, 1995.
[7] H. D. Block and J. Marschak. Random orderings and stochastic theories of response. Dis-

cussion papers 289, Cowles Foundation for Research in Economics, Yale University, 1959.
[8] C. P. Chambers and F. Echenique. Revealed preference theory, volume 56. Cambridge Uni-

versity Press, 2016.
[9] A. Daly and S. Zachery. Improved multiple choice models. In D. Hensher and Q. Dalvi,

editors, Identifying and Measuring the Determinants of Mode Choice. London: Teakfield,
1979.

[10] J.-C. Falmagne. On a class of probabilistic conjoint measurement models: Some diagnostic
properties. Journal of Mathematical Psychology, 19(2):73–88, 1979.

[11] M. Fosgerau, D. McFadden, and M. Bierlaire. Choice probability generating functions. Jour-
nal of Choice Modelling, 8:1–18, 2013.

[12] M. Frick, R. Iijima, and T. Strzalecki. Dynamic random utility. Econometrica, 87(6):1941–
2002, 2019.

[13] F. Gul and W. Pesendorfer. Random expected utility. Econometrica, 74(1):121–146, 2006.
[14] S. Khan, F. Ouyang, and E. Tamer. Inference on semiparametric multinomial response

models. Quantitative Economics, 12:743—-777, 2021.
[15] R. H. Koning and G. Ridder. Discrete choice and stochastic utility maximization. The Econo-

metrics Journal, 6(1):1–27, 2003.
[16] J. Lu. Random choice and private information. Econometrica, 84(6):1983–2027, 2016.
[17] J. Lu. Random ambiguity. Theoretical Economics, 16(2):539–570, 2021.
[18] R. D. Luce. Individual choice behavior, 1959.
[19] R. D. Luce and P. Suppes. Preference, utility, and subjective probability. In R. Bush and

E. Galanter, editors, Handbook of Mathematical Psychology, volume 3, pages 249–410. Wiley
New York, 1965.

[20] P. Manzini and M. Mariotti. Stochastic choice and consideration sets. Econometrica,
82(3):1153–1176, 2014.

[21] D. McFadden. Conditional logit analysis of qualitative choice behavior. pages 105–142. Aca-
demic Press, New York, 1973.

[22] D. McFadden. Econometric models for probabilistic choice among products. The Journal of
Business, 53:13–29, 1980.

[23] D. McFadden. Economic choices. American Economic Review, 91(3):351–378, 2001.
[24] D. McFadden and M. K. Richter. Stochastic rationality and revealed stochastic preference.

In J. S. Chipman, D. McFadden, and K. Richter, Marcel, editors, Preferences, Uncertainty,
and Optimality, Essays in Honor of Leo Hurwicz, pages 161–186. Westview Press, 1990.

[25] E. Piermont. Disentangling strict and weak choice in random expected utility models. Jour-
nal of Economic Theory, 1202:1–34, 2022.

[26] D. Revelt and K. Train. Mixed logit with repeated choices: Households’ choices of appliance
efficiency level. The Review of Economics and Statistics, 80:647–657, 1998.



30 ERYA YANG1 AND IGOR KOPYLOV2

[27] J. Rust. Optimal replacement of GMC bus engines: An empirical model of harold zurcher.
Econometrica, 55:999–1033, 1987.

[28] E. Shafir, I. Simonson, and A. Tversky. Reason-based choice. Cognition, 49:11—-36, 1993.
[29] X. Shi, M. Shum, and W. Song. Estimating semi-parametric panel multinomial choice models

using cyclic monotonicity. Econometrica, 86:737–761, 2018.
[30] K. Train. Recreation demand models with taste differences over people. Land Economics,

74:230–239, 1998.
[31] C. Turansick. Identification in the random utility model. arXiv Preprint arXiv:2102.05570,

2021.
[32] J. I. Yellott Jr. The relationship between luce’s choice axiom, thurstone’s theory of compara-

tive judgment, and the double exponential distribution. Journal of Mathematical Psychology,
15(2):109–144, 1977.


