
Using glmulti with any type of statistical model,

with examples

Vincent Calcagno

February 18, 2012

1 General approach

glmulti is a generic function that acts of a wrapper to functions that actually
�t statistical models to a dataset (such as lm, glm or gls). glmulti works out-
of-the-box with several types of function (such as lm, glm or coxph), but it can
in principle be used with any such function my�ttingfunction, as long as

1. The function receives a model speci�cation in the form of a formula;

2. The function �ts the model by maximum likelihood, which can be accessed
through the standard LogLik function;

Even when the two conditions above are veri�ed, complications arise because,
unfortunately, di�erent �tting functions have di�erent conventions regarding
how characteristics of the �t should be accessed. Indeed, most of them come
from di�erent packages with di�erent authors and there is no common standard
so far.

Thus, in order to harnass glmulti to some speci�c �tting function, one should
also provide accessors, i.e. functions that allow glmulti to access the information
it needs, while taking care of the speci�cs of the �tting function. In other words,
these accessors will interface glmulti and the �tting function so that the two can
dialogue; they should return information in some standardized way (de�ned in
the glmulti package), regardless of the speci�c function used.

To perform model selection only, one only needs the two conditions above to
be veri�ed, which is very easy to achieve in general. At most, one has to de�ne
a suitable LogLik function, and wrap the �tting function so that it is called with
the standard syntax. But to go further, two accessors should be provided:

1. For model averaging, i.e. to obtain multimodel (unconditional) parameter
estimates, glmulti must be able to access the �tted coe�cients and related
information from a (�tted) model object. This is taken care of by the
get�t function.

2. For multimodel prediction, there should also exist a predict function that
can be applied on a (�tted) model object, and that behaves like pre-

dict.glm.

1

These two steps are not di�cult: one can essentially copy-paste one existing S4
method of function get�t and edit it to provide a suitable method for class my�t-

tingfunction. Similarly, one should provide a suitable predict.my�ttingfunction

function (in the classical S3 way).
These diferent steps are now illustrated for one speci�c type of statistical

models, that do not follow exactly the behavior of lm or glm and thus are not
supported out-of-the-box: mixed models and the lme4 package.

2 An example: using glmulti with lme4

2.1 Writing a wrapper of the lmer function

The lmer function from package lme4 takes model speci�cations as formulas but
adds some speci�ties compared to lm or glm: the random e�ects are speci�ed
with speci�c symbols in the formula. One may want to do model selection and
model averaging with respect to the �xed e�ects, but it would not be advisable
to shu�e the structure of the random e�ects (see the several threads on testing
signi�cance of random e�ects).

Hence, the di�erent candidate models will vary in their �xed e�ects but will
have a common random part. We will consider the simple case of one random
e�ect on the intercept, so that the random part would read

+(1|x)

with x the grouping variable for that random e�ect.
As glmulti will work on �xed e�ects only, we will use a wrapper function

for lmer that will take in formulas for the �xed e�ects and append to them the
(constant) random part. Let us call it lmer.glmulti. It will just be:

lmer.glmulti <- function (formula, data, random = "", ...) {

lmer(paste(deparse(formula), random), data = data, REML=F,
...)

}

Note that the function calls lmer with the REML=F option. This is because
to use AIC or related criteria, we need actual likelihoods and not restricted
likelihoods.

Now, we can run glmulti with mixed models, using lmer.glmulti as the �tting
function. This is an example with simulated data:

y=runif(30,0,10) # mock dependent variable

a=runif(30) # dummy covariate

b=runif(30) # another dummy covariate

c=runif(30) # an another one

x=as.factor(round(runif(30),1))# dummy grouping factor

2

glmulti(y~a*b*c,level=2,�tfunc=lmer.glmulti,random="+(1|x)")->bab

weightable(bab)

plot(bab, type=�s�)

2.2 Providing a get�t method for mer objects

Now, to do model averaging, the coef.glmulti function must know how to access
parameter estimates (for the �xed e�ects), standard errors, and degrees of free-
dom from individual lmer objects. Since the syntax to do this is a bit di�erent
from that for glm objects, the default get�t method will fail.

The get�t method should return a table with three columns: �rst the pa-
rameter estimates, then their standard errors, then the associated degrees of
freedom. The latter information is only used to build con�dence intervals with
small-sample adjustments (see the documentation for coef.glmulti). We thus
add a get�t method appropriate for lmer objects, as follows:

setMethod('get�t', 'mer', function(object, ...) {

summ=summary(object)@coefs

summ1=summ[,1:2]

if (length(dimnames(summ)[[1]])==1) {

summ1=matrix(summ1, nr=1, dimnames=list(c("(Intercept)"),c("Estimate","Std.
Error")))

}

cbind(summ1, df=rep(10000,length(summ1[,1])))

})

The if part is only here to deal with the null model (y ∼ 1|x), for some automatic
simpli�cations by R must then be overcome. Note that degrees of freedom were
set to an arbitrary high value. This is because there are di�erent ways to
compute them in mixed models, and we do not want to get into these details
here. This choice means that only asymptotic con�dence intervals (i.e. standard
ones) will be computed by coef, whatever the method retained. It will a�ect
con�dence intervals only. You can put in any computation of degrees of freedoms
that you would know is appropriate.

Now, we can do model averaging by calling coef on the glmulti object:

coef(bab)

Note how the model-averaged importances shown in the earlier plot (with option
type=�s�) can be recovered from the �importance� column of coef 's output.

3

2.3 Providing a predict function for mer objects

Finally, to do model averaged predictions, we must de�ne an appropriate pre-

dict.mer function. The predict function should, when applied to a �tted model
object, behave like predict.glm, i.e. return:

• A vector of predicted values for the original sample, or for the new sample
(if newdata was speci�ed);

• A vector of associated standard errors (if se.�t was set to TRUE)

Such a function is not provided in the lme4 package for understandable reasons:
prediction from mixed model is not quite a straightforward topic. It is not
the role of glmulti to make decisions regarding this topic. Rather, either the
developers of the �tting function, or the �nal user, should make those decisions.
This is why no function to do prediction for mer objects is builtin in glmulti.

In general, one can take example on the code for predict.lm or predict.glm to
write a customs predict function. For illustration, here is one function one may
decide to use. It would be appropriate only for the speci�c case of one random
e�ect that we use as example:

predict.mer=function(objectmer,random=random, newdata, with-
Random=F,se.�t=F, ...){

only the case of lmer with one random e�ect on the intercept is
handled here

if (missing(newdata) || is.null(newdata)) {

DesignMat <- model.matrix(objectmer) }

else {

DesignMat=model.matrix(delete.response(terms(objectmer)),newdata)

}

output=DesignMat %*% �xef(objectmer)

if(withRandom){

!!!! all levels of random e�ects must be present in the new data

z=unlist(ranef(objectmer)) # �tted random e�ects

if (missing(newdata) || is.null(newdata)) {

Zt<- objectmer@Zt

} else {

Zt<-as(as.factor(newdata[,names(ranef(objectmer))]),"sparseMatrix")
sparse model matrix for random e�ects

}

output = as.matrix(output + t(Zt) %*% z)

}

4

if(se.�t){

pvar <- diag(DesignMat %*% tcrossprod(vcov(objectmer),DesignMat))

if(withRandom){

pvar <- pvar+ VarCorr(objectmer)[[1]]

}

output=list(�t=output,se.�t=sqrt(pvar))

}

return(output)

}

Note that we added a withRand argument, controlling whether inference should
be entirely conditional on the �tted random e�ect, or whether uncertainty on
the random e�ect should be considered as well.

Now, we can do model averaged predictions from the glmulti object:

predict(bab, se.�t=T, withR=T)

compare with/without uncertainty on the random e�ect

plot(predict(bab, withR=T)$�t,predict(bab, withR=F)$�t)

generate a new sample

neolia=data.frame(a=runif(30), b=runif(30),c=sample(c))

predictions for the new sample

predict(bab, newdata=neolia, withR=T, se.�t=T)

3 Another example: multinomial models from

package nnet

Function multinom from package nnet adjusts multinomial models through neu-
ral networks. An important di�erence with glm-like functions is that each 'pa-
rameter' has one estimated value per level of the dependent variable. As a
consequence, coef returns a matrix instead of a vector (and so does predict).

It is therefore necessary to provide a get�t method suitable for objects multi-

nom, if one wants to do model averaging (i.e. to use coef.glmulti).

3.1 Providing a get�t method for class multinom

coef applied on multinom objects returns a matrix of estimated values (with-
out standard errors). The value returned by get�t should be a three-column
data.frame with estimates, standard errors, and degrees of freedom (columns)
for each parameter (rows). One thus simply has to �atten the matrix repre-
sentation returned by coef.multinom to produce a standard vector of estimated
values. In doing so, each element of the matrix represents one parameter, and

5

should be given a name. A reasonable way to proceed is pasting the row name
(which describes the variable) and the column name (which represents the level
of the dependent variable). This will produce the �rst column (estimates) to
be returned by get�t. Regarding standard errors and degrees of freedom, they
are irrelevant here, and so we will simply �ll the second and third columns with
zeros.

Here is a get�t method that does just that:

setMethod("get�t", signature(object="multinom"), function(object,
...)

{

coefs<- coef(object)

turn matrix representation to vector (glm-like) representation

length(coefs)-> nbpars

as.vector(coefs)-> neocoefs

dimnames(coefs)-> namez

unlist(lapply(namez[[2]], function(x) lapply(namez[[1]], function(y)
paste(x,y,sep="/"))))-> neonamez

#assemble and return dataframe

return(data.frame(Estimate=neocoefs, Std.Error=rep(0, nbpars), df=rep(0,
nbpars),row.names=neonamez))

})

3.2 Running example

This is a simple example using simulated data. We generate a random dependent
variable (a factor with several levels). We generate two independent continuous
variables to be used as predictors, and we use glmulti to compare all possible
models involving no interactions.

library(glmulti); library(nnet)

runif(100)-> lol

as.factor(round(lol,1))-> lol2

rnorm(100)+1-> x1

rnorm(100)+1-> x2

conditional inference

multinom(lol2~x1+x2)-> anacond

coef(anacond)

multimodel inference

glmulti(lol2~x1+x2, level=1, �tfunc=multinom, cri)-> anamulti

coef(anamulti)

6

Note that the values returned for the unconditional variance only includes model
selection uncertainty here, since standard errors were arbitrarily set to zero
and thus ignored, for each model. This variance should not be taken as an
indicator of the estimator variance (it lacks the conditional components and is
thus underestimated). Similarly, con�dence intervals were not computed as they
would require estimates of the sampling variance for each model. Only the �rst
column should be considered, as improved (model averaged) point estimates.

7

