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Abstract: Maturana and Varela defined an autopoietic system as a self-
regenerating network of processes. We reinterpret and elaborate this 
conception starting from a process ontology and its formalization in terms of 
reaction networks and chemical organization theory. An autopoietic 
organization can be modelled as a network of “molecules” (components) 
undergoing reactions, which is (operationally) closed and self-maintaining. 
Such organizations, being attractors of a dynamic system, tend to self-
organize—thus providing a model for the origin of life. However, in order to 
survive in a variable environment, they must also be resilient, i.e. able to 
recover from perturbations. According to the cybernetic law of requisite 
variety, this requires cognition, i.e. the ability to recognize and compensate 
perturbations. Such cognition becomes more effective as it learns to accurately 
anticipate perturbations by discovering invariant patterns in its interactions 
with the environment. Nevertheless, the resulting predictive model remains a 
subjective construction. Such implicit model cannot be interpreted as an 
objective representation of external reality, because the autopoietic system 
does not have direct access to that reality, and there is in general no 
isomorphism between internal and external processes. 
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Introduction 

Half a century ago, the Chilean biologists Humberto Maturana and Francisco Varela 
introduced a revolutionary perspective on what it means to be a living system: 
autopoiesis (Maturana and Varela, 1980; Varela et al., 1974). For them, the essence of 
life is that it produces (poiesis) itself (auto). A living system is autonomous: it 
determines its own structures and processes, thus ensuring that its organization would 
maintain independently of what happens in its environment. Such active self-
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determination is to be contrasted with the passivity of non-living systems, such as a 
heap of sand or a drop of water, whose structure and evolution is purely the result of 
external forces, such as wind, rain, or gravity.  
 Autopoiesis entails a number of associated aspects: an unambiguous 
distinction or separation between the autonomous system (self) and the rest of the 
world, a circular or self-referential form of organization, and the ability of the system 
to compensate for external events that would otherwise disturb its organization. 
Unlike a heap of sand, a living system will actively counteract, neutralize or evade 
potentially damaging external influences, thus safeguarding its continued existence 
under variable circumstances.  
 For Maturana and Varela (1980), such compensation of perturbations implies 
cognition: the organism must be able to sense, recognize and adequately react to 
perturbations by performing the right counteractions. Vice-versa, cognition, in the 
sense of intelligently responding to perceived phenomena, only makes sense for 
autonomous, living systems. Thus, for them, autopoiesis and cognition are two sides 
of the same coin: the one cannot exist without the other. Later authors (e.g. Bitbol and 
Luisi, 2004; Bourgine and Stewart, 2004) have tended to separate these aspects, 
conceiving of primitive forms of autopoiesis that do not exhibit cognition, or of forms 
of cognition that do not require autopoiesis. In the following, we will argue for a 
continuum between the simplest, more rigid forms of self-production and the more 
intelligent or adaptive forms that appear to exhibit cognition. Thus, for us, cognition 
is inseparable from life and autopoiesis, albeit that it only comes to the fore as the 
autopoietic system evolves and becomes increasingly adaptive, or, as we will call it, 
resilient.  
 There is another aspect of the theory of autopoiesis that has as yet received 
less attention, which is that it presupposes a process ontology (Meincke, 2018). The 
standard ontology of science, which goes back to Aristotle, reduces all phenomena to 
objects: static, material components, such as atoms, molecules or stones, that may be 
moved or rearranged by external forces, but that retain their essential (i.e. defining) 
properties, independently of the processes in which they participate (Heylighen, 
2022a; Walsh, 2018). For example, traditional, Neo-Darwinist accounts of living 
systems tend to reduce them to assemblies of genes, i.e. invariant DNA molecules. 
Let us contrast these reductionist and materialist assumptions with the often-cited 
original definition of autopoiesis (Maturana and Varela, 1980; Varela, 1979; Bich and 
Etxeberria, 2013):  
 

An autopoietic system is organized (defined as a unity) as a network of 
processes of production (transformation and destruction) of components that 
produces the components which:  
(1) through their interactions and transformations regenerate and realize the 
network of processes (relations) that produced them; and  
(2) constitute it (the machine) as a concrete unity in the space in which they 
exist by specifying the topological domain of its realization as such a network 
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To clarify this notoriously complex statement, we will for the time being ignore 
condition (2), and unpack the first part of the definition into simpler propositions: 

• An autopoietic system is organized as a network of processes.  
• These processes produce, consume and transform the components of the 

system.  
• These components interact so as to regenerate the network of processes that 

produced them.  
Let us further reduce this description to its essence: the system’s processes produce its 
components, which in turn generate its processes. Given that they are being 
consumed, produced and transformed, the components here should not be seen as 
static objects, but as raw materials or intermediate stages within an on-going 
processing cycle. The only thing that maintains is the network of processes, which is 
continuously regenerating itself. This is the essence of “self-production”: while a 
process by definition transforms something into something else, the eventual output 
of the sequence of processes must be again the original input from which that 
sequence started, so that the whole cycle continues running.  

Thus, autopoiesis entails a cycle or loop, famously depicted as the Ouroboros, 
the snake that eats its own tail. This has inspired Varela and other autopoiesis 
theorists (Varela, 1979; Reichel, 2011) to investigate the seemingly paradoxical 
notion of self-reference—such as the sentence that says of itself that it is false. A 
perhaps more practical illustration of such circularity is the feedback loop that 
supports the system’s autonomy: by producing its own input or initial conditions, an 
autopoietic system makes itself largely independent from the environment 
(Heylighen, 2022b)—which would otherwise produce the inputs or initial conditions 
that determine the course of the dynamical process. 

Of course, thermodynamics requires autopoietic systems to be energetically 
open: they need an input of low-entropy resources (“food”) to sustain the on-going 
process, while producing an output of high-entropy “waste”, which they dissipate in 
their environment. But this input does not determine the processes that take place 
inside the autopoietic system: the system is operationally (or organizationally) closed. 
That means that these processes or operations do not change the essential organization 
of the system: the network of cause-effect relationships in which they take part 
remains the same throughout the operation of the system.  

What does change, however, is what Maturana and Varela call the “structure” 
of the system. Components may be consumed or newly produced, so that the physical 
composition of the system changes. This may be necessary in order to cope with 
changing conditions in the environment. Yet, the essence is that the process of 
autopoiesis is not interrupted, and therefore that the autopoietic system maintains its 
unity or identity within a universe of change.  

It is this continuity of identity across on-going change that we here wish to 
focus on, and this while starting from processes as fundamental elements. As 
explained further, these processes can be formally modelled as reactions. We will 
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show under which conditions networks of reactions can be understood as autopoietic. 
That will allow us to formalize and model the core concepts of the theory of 
autopoiesis.  

It must be noted that previous attempts at formalizing autopoiesis have mostly 
focused on its topological aspect, i.e. the formation of a boundary surrounding an 
autopoietic system (McMullin and Varela, 1997; Varela et al., 1974). This is more 
straightforward to model, in the sense that there exist plenty of mathematical 
formalisms for describing the formation of spatial structures. An example of a 
frequently used formalism is a two-dimensional cellular automaton, such as the 
“game of life” (Beer, 2020). It is much less obvious how to model abstract networks 
of processes, especially when these need to be self-producing. That is why we will 
mostly ignore the topological aspect, while focusing on more abstract—and typically 
less well-understood—features, such as organizational closure, autonomy and 
cognition, arguing that with the proper ontological assumptions and formal 
representation these features can be explained simply and transparently. 

A fundamental benefit of our approach is that it will allow us to model the 
origin or emergence of autopoiesis: how can initially independent processes become 
organized into a unified, self-producing network? This origin of autopoiesis can also 
be seen as the origin of life, autonomy, agency or goal-directedness (Heylighen, 
2022b; Heylighen et al., 2022). As yet, autopoiesis-inspired origin-of-life scenarios 
have mainly focused on the formation of an enclosing boundary, i.e. a primitive cell 
wall. Such a scenario has even been demonstrated in the laboratory, showing the 
spontaneous formation of “vesicles” that can grow and even multiply (Luisi, 2003, 
1994). However, the true wonder of life, for us, lies in its self-maintaining 
organization and its cognitive ability to deal with perturbations. It is this that turns the 
autopoietic system into an autonomous agent that is able to intervene in its situation, 
and thus to work towards situations that promote its further survival, while evading 
situations that endanger it. It is this origin of goal-directed action (Heylighen, 2022b) 
that we will now try to clarify by means of the reaction network formalism. 

 
 

Reactions as elementary processes 

A process ontology assumes that the most fundamental building blocks of reality are 
processes (Bickhard, 2011a; Rescher, 2000; Seibt, 2022), rather than static objects, 
particles or substances. The standard, object-based ontology that has dominated 
Western science and philosophy since Aristotle (Walsh, 2018) is materialistic: it 
assumes that objects consist of an inert substance, which we call matter, and that this 
matter ultimately consist of elementary components that we call particles. That 
allowed a reductionist strategy, in which complex phenomena, such as cells were 
analyzed into smaller and simpler components, such as molecules, thus facilitating 
modeling and understanding. Older process philosophies, such as the ones of 
Whitehead (1978), Teilhard de Chardin (1959) and Bergson (1911), did not 
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systematically use this strategy, but were rather focusing on grand, encompassing 
processes with many interconnected aspects, such as evolution or ontogenetical 
development. That made modeling difficult. Therefore, these philosophies seem to 
have had little impact in science. For modeling, an analytic strategy does remain 
useful, especially when trying to understand the origin of complex systems from 
simpler components. The approach we will use therefore starts from elementary 
processes (Finkelstein, 1973), which we will call “reactions”. These play the role of 
the elements or building blocks that constitute more complex processes—just like 
particles do in an object ontology.  
 A rationale for the primacy of elementary reactions over elementary particles 
can be found in quantum field theory (Bickhard, 2011b; Hättich, 2004; Kuhlmann, 
2000), which is the most fundamental (and most accurate) theory we have in physics. 
Here, “particles” are conceived as merely temporary excitations of a field that 
describes potential interactions. Particles can be emitted or absorbed, react with other 
particles in order to produce new particles, or sometimes even emerge from a 
“quantum fluctuation of the vacuum”, i.e. out of nothing. The only thing that really 
counts in quantum theory is how a particle reacts with another particle or with a 
larger-scale system (such as an observation apparatus), because it are these 
interactions that ultimately allow us to observe the particle’s behavior or properties. 
Particles that do not interact simply cannot be observed. Therefore, according to 
quantum mechanics they do not have any determinate properties (and we may as well 
assume that they do not exist). 
 For example, seeing an object, such as a flower, assumes that photons 
absorbed from the surrounding light and selectively reemitted by the pigment 
molecules in the flower are absorbed again by the cells in our retina. There they 
trigger electrical excitations (burst of electrons) that travel from neuron to neuron 
across our brain, while releasing and reabsorbing neurotransmitter molecules within 
the synaptic clefts between neurons. Thus, our conception of the flower as a static 
object just “being there” outside ourselves is actually the outcome of a very complex 
neural process that searches for invariants within a whirlwind of circulating processes 
of propagating activation, whose origin lies partly in the ever-changing stimuli from 
the surrounding environment, partly in the never-ending activity of the nervous 
system. 
 Let us then try to reduce this complexity by conceiving of the simplest 
possible process. This could be the appearance of some distinguishable condition a 
(e.g. light). We will represent this appearance, production, or generation of a by the 
following reaction: 
 
 → a 
 
We can similarly represent the disappearance, consumption or absorption of a (e.g. 
onset of darkness) as: 
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 a → 
 
Such processes on their own are not very useful yet, because we want to understand 
how conditions or processes interact, thus forming networks that may exhibit certain 
forms of invariant organization. The next simplest process is the transformation of 
some condition a into a different condition b: 
 
 a → b 
 
One way to interpret this is as a causation, with a as cause and b as effect. Another 
interpretation is what has been called a “condition-action rule” in Artificial 
Intelligence models of agents (Holland et al., 1989; Russell and Norvig, 2009). 
Whenever the condition a holds, some action is performed that changes this to the 
new condition b. That action may occur spontaneously, like when some change 
happens in the circumstances (e.g. rain cloud → rain), or, as we will discuss later, it 
may be initiated by some “agent”.  
 This simplest level of formalism is already sufficient to define a minimal 
autopoietic network of reactions: 
 
 → a 
 a → b 
 b → a 
 b →  
  
Here, component a produces component b, while b again produces a. This is the 
simplest form of a cycle, in which a and b produce each other. To take into account 
thermodynamics, we must also include dissipation, here represented as the loss or 
disappearance of some of the b. To compensate for that loss, there must be some 
(external) input (generation) of a (see Fig. 1).  
 

 
Figure 1: a minimal autopoietic network of reactions  
 
 

a b
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This example is of course trivial, and as such not very illuminating in terms of 
understanding living systems. We could make it more complex by adding 
intermediate stages, such as: a → b, b → c, c → d, d → a, but this cycle remains a 
simple series of repeating intermediate conditions. 
 The formalism becomes more interesting when we note that conditions can 
have internal structure. That means that we can decompose complex conditions into 
conjunctions of simpler conditions: a and b together produce c and d. Using the 
conventional notation for reactions in physics and chemistry, we will write such 
conjunctions with a “+” sign, e.g.: 
 
 a + b → c + d 
 
The simplest interpretation is that two or more specific components (here a and b) are 
jointly present, and that this combination triggers a process or reaction that transforms 
these components into a new combination of components (here c and d). These 
components could represent particles, molecules, organisms, physical structures, 
linguistic expressions, or social situations, or simply any kind of distinguishable 
conditions. Our process ontology does not care about what kind of “thing” it is that 
undergoes change, but only about what precisely the change consists of—i.e. in what 
way the resulting condition is distinct from the initial condition.  
 When investigating the origin of life, the most intuitive interpretation is that 
the conditions a, b, c, … represent the presence of molecules that undergo chemical 
reactions. However, the reaction network formalism is not restricted to chemistry, and 
can be applied in the most diverse disciplines, including ecology, physics, computer 
science and sociology. As such, it provides a language for transdisciplinary modeling 
of any kind of system (Heylighen, 2022a; Heylighen et al., 2015; Veloz and Razeto-
Barry, 2017).  
 An important observation is that a condition c may be necessary for a reaction 
to occur, however, while not being affected by that same reaction. In that case, the 
condition c appears both before and after the → sign that represents the process, as in: 
 
 a + c → d + c 
 
In chemistry, c can be interpreted as a catalyst: a molecule that enables the reaction 
but that is not consumed by that reaction. Another possible interpretation is that c is 
the agent of the action that transforms a into d—the way an animal transforms food 
and oxygen into waste and CO2, or a computer processes numerical data into 
diagrams. But c can also be a context, structure or background condition that must 
remain present for the reaction to take place. For example, falling is a process that 
moves a massive object from a higher position to a lower one, albeit under the 
condition that there is a gravitational field. In space, where there is no gravity, the 
process of falling will not take place. Another example of a necessary condition for a 
process is a road, canal or vessel that enables the transport of some substance from 
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one place to another. The autopoiesis-inspired theory of biological organization 
developed by Alvaro Moreno, Matteo Mossio and colleagues refers to all such 
process-guiding structures and conditions as “constraints”, and characterizes living 
systems as being able to produce their own constraints (Montévil and Mossio, 2015; 
Mossio and Moreno, 2010) 
 In the remainder, we will call such enabling but stable conditions “catalysts”. 
Yet, while catalysts remain invariant during the reactions they catalyze, there will in 
general be other reactions that do consume or produce them. Thus, while catalysts 
introduce a form of local stability in the formalism, the general assumption is still that 
everything is subject to change, and in particular that autopoietic systems produce 
their own catalysts. 
 A common model for the origin of life is an autocatalytic cycle, in which 
certain molecules indirectly catalyze their own production, so that their number 
increases. A simple example is the following: 
 
 a + x → b 
 b + y → c 
 c + z → 2a 
 
Here, a, b, and c are component molecules of a cycle that multiplies all these 
components while consuming the “food” molecules x, y and z. This could again be 
viewed as a simple, albeit somewhat more realistic, model of an autopoietic system. 
The cycle it forms is still a simple, linear succession of steps or stages, producing 
consecutively a, b, c, and then again a.  
 The metabolic reactions in actual organisms, however, are much more 
complex, with different reactions involving distinct yet overlapping types of 
molecules that occur in parallel (simultaneously) and not just sequentially. While the 
overall organization is autopoietic, we can no longer write it down or visualize it as a 
simple cycle. That is why we need a more general mathematical criterion for 
recognizing a network of reactions as autopoietic. An elegant way to do this was 
proposed by Peter Dittrich, thus founding an approach known as Chemical 
Organization Theory (COT), which we will now discuss. 
 
 

Chemical Organization Theory 

Chemical Organization Theory (Dittrich and Fenizio, 2007) is built on top of the 
formalism of reaction networks as we just sketched it. More precisely, such a network 
consists of a set of molecules or species: M = {a, b, c, …}, together with a set of 
reactions: R = {r1, r2, r3, …}. A reaction is defined as a mapping from a subset (or 
more generally a multiset) of molecules onto another such set: 
 
 ri Î R: Input(ri) → Output(ri),  
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Here Input(ri) and Output(ri) are both subsets of M. The molecules of the input set are 
called the “reactants” of the reaction. Unless they are catalysts, they are “consumed” 
(i.e. removed) by the reaction, and processed or converted into the molecules of the 
output set. These form the reaction’s “products”.  
 Note that the network defined by such reactions between molecules is not a 
directed graph (one-to-one connections), but a directed hypergraph (many-to-many 
connections) (Flamm et al., 2015). That is what will allow us to represent self-
producing networks more complex than cycles.  
 Like in the previous section, we will write the elements of the input and output 
sets as a list of items separated by the “+” operator: 
 
 ri: a + b + … → f + g + …,  
 where {a, b, …} = Input(ri) and {f, g, …} = Output(ri). 
  
The equivalent of an autopoietic system in COT is called a (chemical) organization. 
To define such an organization, we start with a subset O of the full set of molecules 
M, together with the subset R(O) of all those reactions in R that are triggered by the 
presence of molecules in O. That means that R(O) contains all those reactions ri for 
which the input set Input(ri) is a subset of O.  

{O, R(O)} is defined to be an organization if and only if it satisfies the following 
two conditions: 

1) Closure: this means that the output of any reaction in R(O) is a subset of O. In 
other words, the reactions working on the given set of molecules O will not 
produce any new molecules that were not already in that initial set. 

2) Self-maintenance: this means that all the molecules consumed by some 
reaction in R(O) are also produced by some other reaction in R(O), and this in 
an amount sufficient so that their overall concentration does not go down to 
zero.  

Together, the two conditions specify that while the reactions in R(O) are transforming 
the molecules into other molecules, the set of molecules available and the set of 
reactions taking place remain invariant: nothing new is added, nothing present is 
removed. That is exactly how we characterized autopoiesis in our paraphrase of 
Maturana’s and Varela’s definition: 

• An autopoietic system is organized as a network of processes (here formalized 
as a reaction network).  

• These processes (here formalized as reactions) produce, consume and 
transform the components of the system (here formalized as molecules).  

• These components (molecules) in turn interact (react with each other) so as to 
again generate the network of processes (reactions) that produced them. 

  
We still need to explain the last defining feature of autopoiesis, which we ignored up 
to now: the self-generating network must define the system as a unity, i.e. a coherent 



Paper submitted for a special issue of Biosystems on Autopoiesis and Cognition 

 - 10 - 

whole that is clearly distinguished or separated from its surrounding environment. 
Condition (2) of Maturana’s and Varela’s full definition suggests—and most 
subsequent treatments assume—that this unity is realized as a concrete compartment 
in space (such as a cell), which is physically separated from its surroundings by a 
topological boundary (such as a membrane). The reaction network formalism as yet 
does not include any notions of space or topology—although these can be added in 
various ways (Peter et al., 2021).  
 However, the definition of a chemical organization through its requirement of 
closure already implements a more abstract, algebraic form of distinct unity 
(Heylighen, 1990). That is because it unambiguously distinguishes between the 
molecules O that are part of the organization and all the other molecules in the 
“universe of discourse” M. Since these latter molecules by definition are not being 
produced or consumed by the processes that constitute the organization, they can only 
belong to its “outside”: they are alien to the organization, and not under the control of 
its processes. A remaining issue that we will explore in the sections on cognition is 
whether the organization can in some way still “know” that these molecules exist.  
 One advantage of such an algebraic notion of closure over a more concrete 
topological one is that it can be used to describe self-producing systems that are not 
localized in physical space. A classic application is to social systems, which 
according to the analysis of Luhmann are autopoietic networks of communications 
(Luhmann, 1986), even though they lack physical boundaries. Chemical Organization 
Theory can indeed be used to model such Luhmannian autopoietic systems (Dittrich 
and Winter, 2008). 
 The main import of the notion of topological boundary is in understanding the 
origin of the first living cells. Autocatalytic or RNA-world scenarios for the origin of 
life (Heylighen et al., 2022; Hordijk et al., 2018; Pressman et al., 2015) focus on 
either self-production or replication of chemical structures, albeit without specifying 
the space in which the corresponding reactions take place. However, one difficulty 
with such scenarios is that in the real world molecules tend to diffuse, with the result 
that concentrations may become too low to sustain either autocatalysis or replication. 
Enclosing the reacting molecules within a semi-permeable membrane can prevent that 
problem, by ensuring that the internal concentration remains high enough for all the 
necessary reactions to take place (Deacon et al., 2014; Heylighen et al., 2022).  
 One of the more concrete models for the origin of autopoiesis (Bourgine and 
Stewart, 2004) proposes an autocatalytic cycle (similar to the one we sketched 
earlier), but where one of the products is a molecule that forms an encapsulating 
sheet, thus combining a self-producing network of chemical reactions with the 
production of a boundary.  This boundary in fact plays the role of a catalyst for the 
reactions taking place within it, simply by ensuring that the molecule concentrations 
remain high enough to enable on-going reactions. This illustrates that even without a 
model of topology, the reaction network formalism can model the functional role of a 
membrane, simply by using different reactions to specify the dynamics of the system 
in either presence or absence of the membrane.  
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If such an assumption of membranes playing a catalytic role would be 
realistic, then we might expect that a chemical organization would be easy to evolve 
in the presence of some membrane generating process, while failing to arise in its 
absence. But to understand such scenarios better, we first need to examine another 
one of the main strengths of Chemical Organization Theory, namely its ability to 
model the self-organization of autopoietic systems. 
 
 

The origin of autopoiesis 

A reaction network can be seen as a dynamical system, with a state determined by the 
concentration of the different types of molecules, and a dynamical rule determined by 
the reactions working on these molecules. If we know the rate of the reactions (i.e. 
how much they produce or consume per unit of time), then we can calculate how the 
state changes over the time (Veloz et al., 2022). Such a dynamical system has 
typically one or more attractors. The attractors characterized by the sustained 
presence/activity of certain molecules and reactions are all chemical organizations—
as formally demonstrated by Peter and Dittrich (2011). That makes sense, because 
reaction networks that are not closed or not self-maintaining will by definition gain or 
lose some of their molecule species, in contradiction with the assumption that in the 
attractor the set of molecules is invariant.  
 A dynamical system, when left to evolve on its own, will eventually settle into 
one of its attractors. That means that an autopoietic network (chemical organization) 
will tend to self-organize under the right conditions (Heylighen et al., 2022). These 
conditions depend on the initial state (molecules present) and dynamics (applicable 
reactions) of the system. Clearly, not all combination of molecules and reactions will 
give rise to non-trivial, self-sustaining networks. Most are likely to just settle into an 
equilibrium in which nothing much happens. Still, by simulating the dynamics of 
networks generated from random reactions, our research group has found that 
organizations (autopoietic systems) do emerge in quite a number of different 
conditions. Simulations are still on-going in order to determine more precisely what 
these conditions are. But the general principle is simple enough to make it plausible 
that autopoietic networks can self-organize rather easily.  
 The basic algorithm for simulating such a self-organizing process is that you 
start with an initial set of randomly selected molecules. These then start reacting with 
each other while producing additional molecules, which react in turn producing 
further molecules. You then recursively add all molecules generated in this way to the 
set, until no further ones can be added. The network now has by definition become 
closed. You then recursively remove the molecules that are consumed, but not (or 
insufficiently) produced, until nothing more can be removed. The remaining network 
is now self-maintaining as well as closed. That means that it is a chemical 
organization. 
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 Let us illustrate this process using an example of a reaction network that was 
randomly generated to include 10 reactions, each producing or consuming between 1 
and 3 resources out of a 10-element molecule set (see Table 1). For simplicity, we 
here consider a qualitative simulation, which only takes into account the presence or 
absence of molecules (not their precise concentration) as defining the system’s state. 
 
 
r1: f  →  f + g  
r2: j + a   →  h 
r3: e + i + g   →  e 
r4: a + g   →  a + g + b  
r5: i + h  →  c + a  
r6: a  →  e + g + i  
r7: d  →  a + d  
r8: e + c   →  e + a  
r9: e  →  f + d  
r10: e  →  i + a  
 
Table 1. A reaction network consisting of ten randomly generated reactions R = {r1, 
r2, …, r10} that produce or consume ten molecules M = {a, b, ..., i, j} 
 
 The process starts from an initial state, for which we can take an arbitrary 
subset of the molecule set M, for example {d, h}. The only reaction applicable in this 
state is r7, which adds the resource a to the set, producing the extended set {a, d, h}. 
This new state enables r6, which adds e, g and i, thus producing the next state {a, d, e, 
g, h, i}. Note that while r6 consumes a, this does not immediately remove all a from 
the system, because we assume that a reaction has a finite rate. The presence of a and 
g activates reaction r4, which adds b to the set of molecules, while r5 adds c. Thus, we 
now have: {a, b, c, d, e, g, h, i}. The presence of e activates r9 which additionally 
produces f, resulting in {a, b, c, d, e, f, g, h, i}. The other enabled reactions (e.g. r10 or 
r3) merely add molecules that are already there. The set has now become closed: no 
further molecules can be added by applying any of the reactions.  
 In this set, most of the elements are produced by some reaction working on 
other molecules in the set (e.g. the a consumed by r6 is produced anew by r7 and by 
r10). However, h can only be produced by r2, which requires the molecule j that is not 
in the set. On the other hand, h is being consumed by r5. Therefore, h will eventually 
be eliminated from the set. Since c requires h for its production via r5, while being 
consumed by r8, it too will be eliminated. This leaves us with {a, b, d, e, f, g, i} = A1. 
This 7-element set is closed and self-maintaining and therefore an organization. It is 
the attractor reached by the reaction dynamics starting from the initial state {d, h}. 
 Let us now start from the initial state {f}. Only one reaction is applicable, r1, 
producing the new set {f, g} = A2. This set is closed, because no further reactions can 
be applied to it, and self-maintaining, because r1 continuously reproduces it. 
Therefore, it is an organization (albeit a rather trivial one), and an attractor of the 
dynamics.  
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Resilience 

The example of Table 1 can also be used to illustrate another important concept in the 
evolution of autopoietic systems: resilience (Heylighen et al., 2022; Veloz et al., 
2022). For an autopoietic system to survive in a real, natural environment, it should be 
able to cope with changes in that environment. Normally, external conditions change, 
independently of the internal dynamics of the autopoietic organization. That means 
that new molecules may be introduced to the overall reaction network, or that 
molecules present may be removed.  
 This will perturb the functioning of the autopoietic system if the molecules 
removed were being used by the autopoietic process, or if the new molecules react 
with some of the molecules in that process. The first type of perturbations can be 
interpreted as a lack of “food” (resources necessary for self-maintenance). The second 
type can be interpreted as the introduction of “toxins” that interfere with the self-
maintaining “metabolism” (Heylighen et al., 2022). On the other hand, if the 
molecules added or removed do not react with any of the molecules in the 
organization O, then the change will not affect the autopoietic process.  
 Thus, only certain changes in the overall reaction network will act as 
perturbations to the autopoietic system. For example, for an oxygen-breathing 
organism, such as the human body, lack of oxygen in the air is a potentially lethal 
perturbation, because oxygen plays a vital role in maintaining the metabolism. A 
somewhat more slowly working perturbation is the presence of carbon monoxide, CO, 
in the air, because CO reacts with the hemoglobin in the blood in such a way that this 
hemoglobin can no longer perform its function of transporting oxygen. On the other 
hand, if the nitrogen in the air would be replaced by another non-reactive gas, such as 
argon, then this would not have any effect on autopoiesis, because nitrogen does not 
react with any molecules used by the human metabolism.  
 For the autopoietic system to survive, it should be able to cope with such 
perturbations, i.e. adapt its internal processes to the changes in the concentration of 
available molecules in such a way that the overall process of self-maintenance is not 
interrupted. In the theory of autopoiesis and the related theory of cybernetics, this is 
called compensation of perturbations. The perturbation makes the internal 
composition of the system deviate from its normal, “homeostatic” way of functioning. 
If that deviation becomes too large, autopoiesis breaks down, and the organization 
dies. As we saw, an autopoietic system modelled as a reaction network defines a 
dynamical system whose variables are the concentrations of the different molecules. 
The range in which these variables can change without destroying the autopoietic 
system defines its domain of viability. This viability domain corresponds to the basin 
of attraction surrounding the attractor, while the attractor itself corresponds to the 
unperturbed autopoietic process. Indeed, as long as the system remains within this 
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basin, its intrinsic dynamics will make it return to the attractor, and thus automatically 
restore autopoiesis (Heylighen, 2022b).  
 Such ability of a system to recover from perturbations is called resilience. It 
means that if the system is pushed away from its normal regime, it will be able to 
“bounce back” and recover its essential organization. Resilience has been investigated 
from a dynamical systems perspective for ecosystems (Meyer, 2016; Walker et al., 
2004). Some of the relevant criteria proposed here are the system’s “latitude” (size of 
the basin of attraction), “resistance” (depth of the basin), and “precariousness” 
(minimum distance to the border of the basin). Generally speaking, the system will be 
the more resilient, the greater the distance between its normal, autopoietic regime 
(attractor) and the border of the basin, i.e. the greater a perturbation must be to push 
the system outside of its domain of viability (Heylighen et al., 2022).  
 The randomly generated example of an autopoietic network, whose reactions 
are listed in Table 1, was chosen not only because it self-organizes (implying that it 
has attractors that can be reached from a non-empty basin), but also because it 
illustrates different levels of resilience. We noted the existence of two attractors, the 
sets A1 = {a, b, d, e, f, g, i} and A2= {f, g}. This example was generated with an early 
version of our software that simulates the qualitative dynamics of a reaction network, 
i.e. the discrete appearance or disappearance of molecules (Heylighen et al., 2015), 
but not yet the quantitative dynamics, i.e. the continuous variation of molecule 
concentrations over time (Veloz et al., 2022). The (qualitative) state space of this 
system is the power set P(M), i.e. the set of all possible combinations of molecules 
from the 10-element set M. The size of that state space is 210 = 1024.  
 The software found that the great majority of these states, namely 927, end up 
in the attractor A1. That means that this attractor has a very large basin (great latitude). 
It is therefore very resilient: the probability that the combined removal or addition of 
any number of molecules would make the system end up in a different attractor is 
only (1024 – 927) / 1024 = 9.4%. The probability that the removal or addition of a 
single molecule would destroy the organization is actually zero (low precariousness). 
The reason is that any molecule lost from the organization can be reconstituted by 
other reactions working on different molecules. The only molecules that can be added 
(namely c, h, j) are eventually all consumed by reactions, but not produced again. We 
may conclude that A1 is a highly resilient organization.  
 The second organization, A2, on the other hand is not resilient at all. It has a 
basin containing only 2 states out of the 1024 possible ones, namely the states {f} and 
{f, g}. Practically any molecule change pushes the organization out of its basin and 
into a different basin, and thus eventually into a different attractor—most likely the 
attractor A1. 
 In a preceding paper (Heylighen et al., 2022), we have examined some of the 
general mechanisms that autopoietic systems can use to increase their resilience. 
These include negative feedback (increasing the relative production of molecules that 
are being depleted), buffering (storing reserves of resources to recover when they may 
be depleted), semi-permeable membranes to keep resources in and toxins out, and 
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degeneracy (producing the same resources by more than one pathway of reactions, so 
that if one is interrupted, another one can still function). (It seems to be this last 
property of degeneracy that explains the exceptional resilience of our example 
attractor A1.) In this paper, we will go into greater depth about those more specific 
mechanisms for the compensation of perturbations that can be understood as 
cognitive. 
 

Cognition as a resilience mechanism 

In a complex environment, such as a natural ecosystem, the variety of potential 
perturbations is very large. The need for some intelligent action selection mechanism 
to deal with that complexity can be derived from the famous cybernetic law of 
requisite variety. The law states that the larger the variety of perturbations a system is 
confronted with, the larger the variety of actions it must be able to perform in order to 
compensate these perturbations and thus remain within its domain of viability (Ashby, 
1958).  
 It is worth noting here that a common, stricter formulation of the law, 
according to which the variety of actions must be (at least) equal to the variety of 
perturbations, does not hold in general (Heylighen and Joslyn, 2003). One reason is 
that the goal of the system, in this case the autopoietic regime, still has a variety of 
potential realizations (what Maturana and Varela call structural changes). Therefore, 
not all variety must be neutralized. Another reason is that more rudimentary resilience 
mechanisms, such as degeneracy, buffering and membranes, can absorb a variety of 
perturbations without requiring any active intervention by the system. Aulin-
Ahmavaara (1979) gives the example of the tortoise shell, which absorbs most 
shocks, thus freeing the tortoise from the need to develop a variety of actions to 
defend against a variety of predator attacks.  
 These observations suggest that self-organized autopoietic systems can 
develop sufficient resilience to survive a variety of conditions without need for 
something as sophisticated as cognition (Bitbol and Luisi, 2004). That is good news if 
we wish to understand the origin of life: rudimentary self-maintaining reaction 
networks seem to be all that is needed to start a process of evolution towards ever 
more complex living organisms characterized by cognition (Heylighen et al., 2022). 
 Still, given that the number of potential perturbations is unlimited, it is useful 
to increase the variety of actions that can deal with such perturbations. Generally 
speaking, if two otherwise similar organisms compete, the one with additional variety 
of actions is more likely to be selected, given that sooner or later a perturbation is 
likely to arise that the first one can counteract, but the second cannot. Therefore, we 
may assume that as evolution advances, the variety of potential actions will tend to 
increase  (Heylighen, 1999). 
 However, as variety increases, so does the need for making sure the right 
action is selected from the repertoire of potential actions. This complementary 
principle can be formulated as a law of requisite knowledge (Heylighen, 2011, 1992; 
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Heylighen et al., 2022): the system must know which action to perform in order to 
compensate a given perturbation. The simplest way to represent such knowledge is 
what in AI has been called a condition-action rule (Holland et al., 1989; Russell and 
Norvig, 2009). It has the form: 
 
 IF a particular condition (perturbation p) is sensed,  
 THEN perform a particular action a appropriate for that condition.  
 
As we saw, such a rule is formally equivalent to a reaction, p → a, with the condition 
as input and the action as output. But in a reaction network, it could also be 
implemented as a more complex process consisting of several, consecutive reactions, 
involving other molecules, such as: 
 
 p → x + y,  
 y + z → u + z,  
 u → a + w 
 
These intermediate reactions could be seen as “inferences” in a cognitive process that 
ends in the conclusion a starting from the premise p (Heylighen and Beigi, 2018). 
Other molecules involved, such as x, y, z, u, and w, may play the role of intermediate 
steps, enabling conditions or side effects of the process. As long as these do not 
interfere with the overall autopoietic process, they can be seen as merely helping the 
inference process come to the right conclusion, namely, to produce the action a that 
will effectively deal with the perturbation p.  

However, note that for an outside observer, who notes that the system 
responds to “stimulus” p by performing action a, these intermediate reactions remain 
invisible. Thus, while such an observer may learn to correctly predict that the system 
will produce a when confronted with p, that observer cannot therefore know which 
precise processes are taking place inside the system. This brings us to the more 
general issue of modeling processes to which you do not have direct access. 
 
 

Is knowledge a representation of reality? 

Another, stricter formulation of the law of requisite knowledge is the good regulator 
theorem (Conant and Ashby, 1970), which has also been referred to as the law of 
regulatory models. It states that for a system to be successful in suppressing 
perturbations (i.e., to be a good regulator), its dynamics should contain an implicit 
mapping m from the set of potential perturbations P to the set of potential actions A, 
so that each perturbation p is mapped to the specific action a that is appropriate to 
compensate it: 
 
 m: P → A: p → m(p) = a 
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The rationale is that systems that respond to perturbations haphazardly, so that 
sometimes they act in one way, another time in another way, will only succeed part of 
the time in neutralizing the perturbation. Therefore, they will be worse regulators. 
Again, this formulation is more restrictive than it needs to be, because sometimes 
different actions can be equally successful, in the sense that their eventual effect on 
the perturbation is the same. However, this formulation will help us to clarify an 
important epistemological issue raised by Maturana and Varela (1980). 
 Conant and Ashby (1970) interpret this mapping m as a model of the system 
being regulated, in the sense that a one-to-one map establishes an isomorphism (or 
homomorphism) between the sets P and A. This seems to confirm the traditional 
epistemology according to which knowledge consists of some internal representation, 
model or map of the external world. According to this epistemology, knowledge is 
true if the representation is accurate, i.e. if each external phenomenon is mapped onto 
the corresponding internal concept that represents it. In this conception, knowledge is 
acquired by perception, which “in-forms” (organizes or structures) the cognitive 
system so as to better reflect the structure of the environment. Thus, true knowledge is 
assumed to be an objective reflection of reality (Turchin, 1993). 
 Maturana and Varela fundamentally reject this objectivist, representationalist 
philosophy of knowledge (Maturana, 1995; Maturana and Varela, 1980). Their 
position is similar to what von Glasersfeld (1984) has called radical constructivism. 
That means that knowledge is the product of an internal process of construction that 
helps the organism to survive in its environment. The environment did not “instruct” 
the organism about how to structure its knowledge; it at most eliminated organisms 
whose knowledge was inadequate for the purpose of surviving perturbations. Thus, 
knowledge is intrinsically subjective: it depends on the particular way the autopoietic 
system (subject) is organized.  
 Maturana (1995) adds that the nervous system, which is supposed to store 
knowledge in animals and humans, is organizationally closed, just like the autopoietic 
organism of which it forms part. That means that its activity is essentially self-
produced. He notes that at the level of activation circulating between neurons, there is 
no distinction between a perception and a hallucination. Only an outside observer 
may infer that in the case of a perception there is a correlation between the neural 
activity and some outside phenomenon, while in the case of a hallucination such 
correlation is lacking (Maturana, 1995). The organism itself, however, merely knows 
what is happening inside its own network of processes. It therefore cannot develop 
any objective representation of outside reality. 
 Formulated in this way, the autopoietic theory of cognition can be easily 
misinterpreted as solipsism (only the inside world of thought is real; there is no 
outside reality), as an extreme form of subjectivism (each subject lives in its own 
reality, independently of any others), or of relativism (any cognitive construction is as 
good as any other). However, that is not what Maturana and Varela have been saying. 
We will here not enter into the extensive and still on-going discussion about what 
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their epistemology implies for human knowledge, language, society and culture. 
Instead, we will go back to our reaction network model of autopoiesis in order to 
explain how knowledge can be a purely internal construction, yet still be an effective 
“regulator” or “model” in the sense of Conant and Ashby (1970).  
 The key insight is that the good regulator theorem establishes a mapping from 
the states of the system to be regulated to the actions that will bring that state back to 
the desired goal state. If the state of the system is already a goal state, then the 
corresponding action is simply to do nothing. Therefore, we have assumed that the 
only states that require specific actions are states that deviate from the goal, i.e. what 
we called perturbations. In the present context, the goal is the autopoietic regime of 
self-maintenance (Heylighen, 2022b). We also assumed that perturbations originate in 
the environment, i.e. in molecules and reactions that are not part of the autopoietic 
organization, but that are still part of our larger reaction network model of on-going 
processes. That means that we are looking at the overall network from the position of 
an outside observer. That observer may note how an external event (e.g. introduction 
of a new molecule in the network) leads to an internal action (e.g. the initiation of a 
reaction neutralizing that molecule).  
 The crucial issue here, which is clarified by the reaction network formalism, is 
the distinction between inside and outside. “Inside” is defined in chemical 
organization theory as the set of molecules and reactions that together form a closed, 
self-maintaining whole. “Outside” then refers to molecules and reactions that do not 
participate in this self-maintaining organization. However, outside elements may still 
react with, and thus affect, inside elements. Such reactions are what we called 
“perturbations”.  
 Let us illustrate this with our rudimentary example of an autopoietic network 
(Fig. 1), namely the circular process: a → b, b → a, with inflow → a, and outflow: 
b →. Let us assume that these reactions are part of a larger network that also contains 
the following reactions: 
 
 a + c → d + c 
 c + e → f 
 f + g → h 
 
If now the molecule c is added to the overall network, it will react with the molecule a 
that is part of the autopoietic cycle. This reaction will consume a and produce d. 
Therefore, less a will be available to produce b, and thus keep the autopoiesis going. 
In other words, the addition of c to the system will perturb the autopoietic 
organization. Happily, there is still an inflow of a, and a conversion from b back to a, 
so that autopoiesis can continue, albeit at a lower rate. The constant inflow of a and 
the reduced conversion of a to b together are sufficient to compensate the perturbation 
to some degree, via a negative feedback mechanism (Heylighen et al., 2022). This is a 
very simple, non-cognitive form of resilience.  
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 Imagine now that the autopoietic system has acquired a rudimentary form of 
knowledge, in the form of a reaction: 
 
 c + x → x 
 
x plays here the role of a catalyst that neutralizes (consumes) c without being affected 
itself. We can assume that x is just present in the autocatalytic organization, but in a 
passive form, not reacting with anything until c appears. Thus, it is kept in the 
organization’s “memory store”, being retained without changes until it may be needed 
(Heylighen et al., 2022).  The function of x (whose role in a cell may be played by an 
enzyme that dissolves molecules of type c) is to implement a condition-action rule 
that maps the perturbation c to a state where c has been removed, thus re-establishing 
the normal self-maintaining regime. In this case, we may say that c, the perturbation, 
belongs to what Maturana and Varela call the cognitive domain of the autopoietic 
system: the system can sense and appropriately respond to the appearance of this 
perturbation. Its implicit model maps this perturbation to the right action. 
 Let us now consider the introduction of molecules f and g to the same network 
of reactions. f does not react with any of the molecules in the autopoietic organization. 
It may react with g, but, again, the product of that reaction, h, does not interfere with 
the autopoietic system. Therefore, we can say that none of these molecules is part of 
the cognitive domain of the initial organization. That autopoietic organization cannot 
in any way sense whether these molecules are present or absent in its environment. 
This is similar to the example we discussed of nitrogen, whose presence or absence 
cannot be perceived by oxygen-breathing animals. Thus, as far as the autopoietic 
system is concerned, these molecules simply do not exist in its domain of awareness. 
No representation, map or model of these molecules can be found in the autopoietic 
organization.  
 The introduction of respectively c and f to the overall system represent distinct 
types of events, which are respectively inside the cognitive domain of the 
organization (mapped to an action) and outside of that domain (ignored). The 
introduction of e is a less straightforward case, because this molecule does not react 
with any molecules in the organization, but reacts with c, which is in the 
organization’s cognitive domain. Indirectly, the reaction of e with c will reduce the 
concentration of c, therefore the strength of the perturbation that needs to be 
compensated, and thus the need for a counteraction. However, the organization does 
not know whether c is decreasing because it is consumed by a reaction with e, or 
simply because there is less inflow. At the level of its reactions, there is no difference 
between both cases. Therefore, we may infer that e remains outside the cognitive 
domain of the system.  
 We can provisionally conclude that most events in the autopoietic system’s 
environment will not be mapped to specific actions, and therefore that they remain 
outside the cognitive domain. Insofar that they enter that domain, the system’s 
“knowledge” or “perception” of these events is limited to the triggering of certain 
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compensatory reactions. These reactions, as we have seen earlier, do not need to have 
any structural correspondence or isomorphism to the outside reactions that produced 
that event. Therefore, the reaction network model supports Maturana’s and Varela’s 
thesis that knowledge does not presuppose an objective representation of outside 
reality: cognition merely serves the subjective need for self-maintenance of the 
organism, and only “knows” how to deal with whatever interferes directly with that 
self-maintenance. But the accuracy of that knowledge remains of course crucial: 
performing the wrong actions (i.e. actions that do not neutralize the perturbation, or 
that make the system deviate even more from its autopoietic regime) may lead to the 
system’s destruction. 
 
 

Cognition as prediction 

The type of cognition we have discussed up to now is rudimentary: triggering a 
compensating reaction when a perturbation has made the system deviate from its 
autopoietic regime. This form of regulation or control relies on feedback: suppressing 
the deviation after it has been sensed. However, such after-the-fact reaction runs the 
risk that it may come too late: the deviation may have grown so strong that it can no 
longer be repaired. A potentially smarter strategy is to already start suppressing the 
factors that lead up to the perturbation, before the system has actually started to 
deviate from its autopoietic regime. Such a control strategy may be called 
feedforward: anticipating the effects of external events, and counteracting them before 
they have affected the system (Heylighen and Joslyn, 2003).  
 Some of the theorists that investigated autopoiesis and biological autonomy 
after the pioneering work of Maturana and Varela have suggested that we can only 
properly speak about cognition when what we called condition-action rules exhibit 
some form of anticipation (e.g. Bitbol and Luisi, 2004; Bourgine and Stewart, 2004; 
Di Paolo, 2005; Mossio and Moreno, 2010). This assumption is confirmed by the 
recently very influential predictive processing paradigm in cognitive science, which 
sees prediction as the essential function of the brain (e.g. Clark, 2013; Friston, 2018; 
Hawkins and Blakeslee, 2005; Hohwy, 2013). 
 However, it is not obvious in what way an autopoietic network can anticipate 
the effect of events that have not as yet affected its internal reactions. One perspective 
interprets an action as anticipatory if it suppresses processes moving towards the 
border of the system’s domain of viability. That means that the action must be 
initiated well before the system has reached that border, i.e. before any irreversible 
damage has occurred (Di Paolo, 2005). However, from a dynamical system 
perspective, such an action follows automatically from the dynamics (Heylighen, 
2022b). Indeed, the domain of viability here corresponds to the basin of attraction 
surrounding the attractor (which is the autopoietic regime). By definition of “basin of 
attraction”, any state in that basin, whether moving towards, sideways, or away from 
the border, will be led back to the attractor by the system’s intrinsic dynamics—i.e. its 
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network of reactions. Thus, any evolution that would make the autopoietic system 
more resilient by extending its basin of attraction would thereby also augment its 
capacity for “anticipatory” action. On the one hand, this suggests that basic aspects of 
cognition can evolve rather easily, by just extending the range of actions available to 
neutralize perturbations. On the other hand, this does not really clarify what precisely 
distinguishes “intelligent”, “anticipatory” cognition from mere “automatic” 
application of dynamical rules implemented as reactions. 
 The reaction network model suggests a different way to characterize 
anticipatory action. Let us go back to the example in the previous section of a 
rudimentary autopoietic cycle consisting of the mutually producing molecules {a, b}. 
That cycle is perturbed by the introduction of c, which reacts with a, thus removing it 
from the cycle. We saw that the autopoietic system could combat this perturbation 
with the help of some catalyst x that neutralizes c. Assume now that c itself is the 
product of some other molecule k, which in turn can be neutralized by the catalyst y: 
 
 k → c 
 y + k → y 
 
The action of y is here anticipating the action of x, by already neutralizing the 
precursor k of the perturbation c. This looks like a smart move, because if k is 
removed before its product c is formed, then c cannot damage the essential molecule 
a. Thus, having y react with k is a form of feedforward regulation: preventing the 
appearance of a perturbation c that will anyway produce some damage to the 
organization’s metabolism, even if it is almost immediately neutralized by x when it 
appears (a form of feedback regulation). We may expect that autopoietic systems that 
have incorporated the anticipatory catalyst y will be fitter than those that only 
incorporate the corrective catalyst x. Therefore, natural selection can be expected to 
promote the acquisition of such anticipatory compensation mechanisms.  
 We can conceive another anticipatory strategy that is perhaps more typically 
“cognitive”. There may be no need to neutralize the in se innocuous precursor k. 
However, the appearance of k announces the imminent production of c, which is not 
innocuous, and needs to be neutralized as quickly as possible by x. This may be 
achieved by a reaction that is triggered by the presence of k to produce more x, so that 
sufficient x would be available to neutralize any c that may appear. Thus, k is 
interpreted by the autopoietic system as a signal of a perturbation to come, triggering 
a number of reactions that prepare the system for neutralizing that perturbation. This 
strategy also works if k does not participate in the production of the perturbation, but 
is merely a side effect of some process that eventually leads to the production of c.  
 Up to now we have been basically considering reactions that produce or 
consume molecules that directly interact with the autopoietic system’s metabolic 
network. Yet, the reaction network formalism can just as well describe independent 
reactions that have an indirect relationship, such as co-occurrence, with the reactions 
in the metabolism. The products of these reactions, while not interfering with the 
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metabolism, may still be informative about the appearance of molecules that do 
interfere with the metabolism, in the sense that they can be interpreted as warning 
signals that help the system to prepare a defense against potentially lethal 
eventualities, but potentially also to get ready to exploit opportunities.  

For example, smells are low-concentration, diffuse molecules that may signal 
the presence of food or poison. The appearance of such challenges requires the 
appropriate actions, such as consuming the food or evading the poison. Therefore, 
evolution will tend to make autopoietic systems sensitive to such indirect markers that 
signal the need for action, e.g. by providing them with the necessary 
catalysts/reactions that set in motion the sequence of reactions that will deal with the 
expected challenges—i.e. exploit opportunities such as food through activities such as 
ingesting and digesting, and prevent dangers, e.g. by neutralizing toxins.  
 A signal may not immediately require action, because the challenge it points 
to will only appear if additional conditions are fulfilled. In this case, the cascade of 
reactions set in motion by the signaling molecule may merely prepare the organism 
for action (Heylighen and Beigi, 2018), e.g. by already mobilizing the needed 
resources, while waiting for an additional signal before using these resources to 
produce the necessary action. Such additional signals can modulate the reaction, so 
that one reaction is triggered in one condition, while a different reaction is triggered in 
another condition. This allows the autopoietic reaction network to evolve 
sophisticated “semiotic codes” (Görlich and Dittrich, 2013), where the same signaling 
molecules can have different pragmatic meanings  (i.e. triggering different pathways 
of action) depending on the context in which they are sensed. 
 
 

Can we cognize reality? 

We have seen that an autopoietic system is likely to evolve an increasingly 
sophisticated network of “cognitive” processes that take into account a growing 
variety of sensed conditions together with their interrelationships. These relationships 
allow the system to anticipate perturbations and prepare the appropriate actions, thus 
in practice “predicting” that a sensed signal will be followed by a particular challenge 
that requires a particular course of action.  

The further development of such a cognitive network may eventually take the 
physical shape of a nervous system, where neurons play the role of catalysts that 
convert an incoming signal (such as neurotransmitters absorbed) into an outgoing 
signal (such as an action potential propagate along the neuron’s axon) that is in turn 
picked up as input by further neurons connected to the first neuron via synapses. Such 
a neural network will eventually evolve the capacity to learn, i.e. adjust the strength 
of its connections depending on how successful they were in predicting processes or 
initiating appropriate actions. This modulation of connective strength could be 
modeled in the reaction network formalism by representing synapses as catalysts 
whose concentration corresponds to the intensity with which they transmit 
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neurotransmitters from one neuron to another one. Thus, we may expect that as the 
cognitive network evolves and learns, it will become increasingly effective in 
predicting and controlling outside processes that may affect the internal autopoiesis. 

This brings us to an age-old philosophical problem: can our nervous system 
eventually learn to know reality as it is, i.e. independently of our subjective 
perspective? Maturana and Varela as well as the radical constructivists (von 
Glasersfeld, 1984) would see this as a meaningless question. For them, the autopoietic 
system only has access to whatever reacts with its internal metabolism, whether in the 
form of actual perturbations (such as the ingestion of toxins) or of sensed signals 
announcing potential perturbations (such as a rotten smell indicating that a piece of 
food is spoilt and thus likely to contain toxins). It does not have access to whatever 
outside process is responsible for these internal reactions. This is the same logic that 
led Kant to observe that we have no access to the (external) things-in-themselves, only 
to our (internal) perceptions of these. Moreover, the system only truly cares about its 
internal metabolism, because its overarching goal is survival, i.e. continuing 
autopoiesis. 

Donald Hoffman has proposed a provocative formulation of the evolutionary 
implications of this logic, which he calls the “Fitness Beats Truth theorem”  
(Hoffman, 2019; Prakash et al., 2021). His argument (based on a game-theoretic 
simulation) is that when organisms can choose between an “objective”, “true” 
representation of reality and one that focuses on the “subjective” aspects most 
relevant for the organism’s survival, then organisms that choose the latter will win in 
the evolutionary race. This argument is almost self-evident, given that paying 
attention to potential fitness benefits will obviously tend to provide more such 
benefits than paying attention to irrelevant, “objective” properties of the environment. 
Moreover, as Maturana would note, we anyway do not have access to any objective 
representation of reality. Hence, what Hoffman is comparing in his evolutionary 
simulations are merely two models of his own making, none of which can be called 
objective. Therefore, his “FBT theorem” does not add much to the deeper 
epistemological issue. 

More relevant for the present discussion is the metaphor that Hoffman 
proposes to understand the subjective nature of the seemingly realistic representations 
provided by our senses—such as the visual perception of an object. According to his 
interface theory of perception (Hoffman, 2019; Hoffman et al., 2015), an apparently 
real object, such as a tomato or a stone, is rather like an icon on a computer desktop. 
Such an icon points to a file, while allowing us to manipulate that file. However, it 
has no intrinsic, structural similarity to that file. There is no isomorphism between the 
states of the different electronic components that make up the file in the computer’s 
memory and the pixels on the screen that make up the icon. Yet, we probably would 
not succeed in achieving anything useful if we had to manipulate the file at the level 
of its electronic components, while we can easily do that by manipulating the icon. 
The icon hides the internal complexity of the file, while highlighting its useful 
functions, thus making it manageable. 
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In Hoffman’s view, our perceptions of objects are similar: they highlight 
subjective affordances and potential problems, while ignoring what the object actually 
is constituted of. This is consonant with our process ontology, which assumes that 
apparently simple and stable objects are in reality immensely complex, dynamic and 
indeterminate networks of interactions between the quantum particles and fields that 
make up the different atoms, molecules and reactions in that object. Yet, the cognitive 
reduction of that network of processes to a stable object requires more than a selection 
of subjectively relevant features. That reduction only works because in the case of 
rigid objects such as stones (unlike e.g. clouds or waves) the overall organization 
emerging from these interactions is effectively quite stable. This stability can be 
explained by the fact that dynamical systems tend to settle down in attractors that 
have a much smaller range of variation than the original process. This is similar to 
how reactions networks settle down in self-maintaining organizations. The relatively 
invariant properties (such as volume, shape or mass) that emerge from such 
stabilization allow a cognitive system to predict how the object will react to various 
conditions or actions. Indeed, cognition is only possible in a world that is sufficiently 
stable so that the rules you have learned in the past can be trusted to still work now 
and in the future.  

The predictive processing theory of cognition is inspired by the hierarchical 
organization of neural networks in the brain. As incoming perceptions are processed 
by subsequent layers of neurons, their variable, contingent features, such as the 
changing play of light, perspective, or apparent size relative to the observer, are 
discarded, while increasingly abstract, invariant patterns, such as shape and absolute 
size, are extracted (Clark, 2013; Hawkins and Blakeslee, 2005). Thus, the brain is 
specifically adapted for the recognition of invariant patterns within the constantly 
varying stimuli that enter through the senses. Our intuitive idea of an “object”, such as 
a stone, is such an abstraction that groups together the features that remain invariant 
across different perceptions of the phenomenon.  

Cybernetic epistemology (Turchin, 1993) adds that these features should also 
remain invariant across actions performed by the subject on the phenomenon—such 
as picking up the stone. Thus, objects can be conceptualized as “eigen-solutions” or 
“eigen-behaviors” (Stern, 2007; von Foerster, 2003), i.e. those characteristics of 
sensed phenomena that do not change under their interactions with the subject. 
Recognizing such invariances allows autopoietic systems to predict and to act more 
effectively. For example, if I interpret that visual impression of a grey, irregular shape 
as a real stone (i.e. an invariant object) rather than as a hallucination or a 
misperception, then I can predict that a similar impression will still be visible when I 
draw nearer, close and reopen my eyes, or take it in my hand and throw it across the 
road.  

Now, we are ready to discuss whether such internal conceptions correspond to 
some kind of objective reality. We started by noting that there cannot be an 
immediate, structure-preserving mapping from outside phenomena to putative internal 
representations. From the reaction network perspective, reactions both inside and 



Paper submitted for a special issue of Biosystems on Autopoiesis and Cognition 

 - 25 - 

outside the autopoietic system are deeply entangled in different networks that are to 
some degree autonomous and self-maintaining. Such largely independent networks 
have only limited points of contact, namely when the product of an outside reaction 
affects some inside reaction (or vice versa). For example, a photon reflected by a 
flower may excite a neuron in my retina, or some of the perfume molecules it diffuses 
may be picked up by sensors in my nose. These points of contact can be conceived as 
an interface between the autopoietic system and its environment: they specify which 
externally originated conditions the system can sense (e.g. colors, certain smells), and 
which it can act upon (e.g. touch the flower with your fingers). These limited 
interactions, however, can function as signals that set in motion complex cognitive 
processes of anticipation and action. These processes may recognize invariant patterns 
within the sequence of sensed signals, and use these to summarize the most relevant 
and dependable features of the environment. They do that by creating the internal 
equivalent of an icon in an interface, i.e. a simple and intuitive pointer (e.g. the 
conception of a “flower”) indicating something that is intrinsically complex and 
dynamic, but that is sufficiently stable so that you can dependably predict or 
manipulate some of its aspects.  

Again, does such an internally conceived object, such as our conception of a 
flower or a stone, depict “reality”? Not in the sense that it would be isomorphic to the 
network of processes that produced the sensations from which it is derived. The 
network of organic, metabolic processes that make up the flower or the rigid 
crystalline bonds between the atoms that make up the stone have no equivalent in my 
neural conception of these objects.  

However, my conception that there is a stone on the table in front of me is 
realistic in the more pragmatic sense that different people looking from different 
perspectives at that table will all agree that there is a stone there, and that I will still 
perceive that stone if I close my eyes and then open them again. In practice, we 
distinguish between perception and hallucination by the degree of invariance of the 
corresponding sensations (Bonsack, 1977; Heylighen, 1997). If I merely dreamt or 
imagined that there was a stone on the table, then I would not be able to see that stone 
at a later moment, and neither would other people. The larger the number of 
perspectives, modes of perception, or manipulations that a phenomenon can undergo 
without losing its characteristic features, the more “real” we will consider it to be.  

In conclusion, what we call “reality” is largely constructed by autopoietic, 
cognitive systems, individually or collectively, as a way to organize and make sense 
of the interactions in which they engage. However, for such a cognitive construction 
to have any benefit for autopoiesis it should as much as possible capture the kind of 
invariances or regularities in the flow of processes that allow dependable predictions 
and actions. If science is considered to be our best tool for understanding the world in 
which we live, that is because science is systematically searching for regularities and 
invariances in observations, formulating hypotheses about the underlying patterns, 
and then performing experiments to test the predictions implied by these hypotheses. 
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If the predictions turn out to be wrong, then the hypothesis is abandoned, and a better 
one is searched for.  

However, that does not mean that a hypothesis or model that makes good 
predictions would depict reality as it is, independently of any observer. First, there 
will still be an infinite number of processes that the model cannot predict, so any 
model is essentially incomplete. Second, different models or theories of the same 
phenomena (e.g. different interpretations of quantum mechanics) can often make the 
same predictions, while disagreeing about what these phenomena actually are 
constituted of. For example, is an electron a particle, a wave, an excitation of the 
electromagnetic field, a process, a probability distribution, a type of consciousness, or 
a Platonic form? From an operational point of view, the differences between these 
interpretations only matter insofar that they lead to different testable predictions. If 
they do not, the choice of which one the observer assumes to be true will depend more 
on taste, intuition or aesthetics than on any underlying reality. That does not mean 
that they do not matter: after all, intuition is a powerful guide in making sense of 
complex phenomena and thus inferring non-obvious implications of the given data. 
However, we must be aware that our intuition is shaped by our particular biological, 
personal and cultural history, and that there are likely to be other intelligent agents 
(i.e. autopoietic systems), human or non-human, that have different intuitions and 
therefore different conceptions of reality… 
  
 

Conclusion 

This paper has revisited some of the classic ideas of Maturana and Varela on 
autopoiesis and cognition, albeit from a new perspective. This perspective starts from 
a process ontology, in which the world is conceived as a network of processes rather 
than as a collection of static objects (Heylighen, 2022a). This ontology is implicit in 
the original definition of an autopoietic system as a network of processes that 
regenerates itself, thus maintaining its distinct organization within a universe of 
change. The power of the concept of autopoiesis is precisely that it explains how an 
organism can appear as a stable, well-defined object, yet consist of a metabolic cycle 
in which components are continuously being broken down and reconstituted again. 
Such an entanglement of stability and change is counterintuitive, complex and 
confusing. That may explain in part why the work of Maturana and Varela has often 
been misunderstood, and why the notion of autopoiesis has made less of an impact in 
biology than it deserves.  
 Our approach has been to clarify the concept by proposing a simple formalism 
for modeling such entangled processes: reaction networks. A reaction represents an 
elementary process in which certain conditions are produced, consumed, or 
transformed into other conditions. Conditions can also enable or catalyze reactions. 
Reactions form a network because they are connected by the conditions they share. In 
the context of biological metabolism, the most obvious interpretation of the 
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conditions is as the presence of particular molecules. Yet, in fact, the formalism can 
represent any kind of component, structure or context that can be transformed into 
another one. What counts is how the production of a condition by one reaction may 
trigger one or more other reactions that produce further conditions, thus setting in 
motion a cascade of productions and consumptions propagating within the overall 
reaction network (Heylighen, 2022a). 
 In some cases, this cascade settles into a self-regenerating cycle, i.e. a 
subnetwork of reactions that trigger each other, so that the activity does not die down, 
but is sustained indefinitely. This abstract model of an autopoietic system has been 
called a chemical organization by Dittrich, thus founding an approach known as 
Chemical Organization Theory (Dittrich and Fenizio, 2007). The requirement for a set 
of molecules and reactions working on those molecules to be a chemical organization 
is that it is closed, in the sense that the reactions do not produce molecules outside the 
initial set, and self-maintaining in the sense that all molecules in the initial set 
consumed by reactions are produced again by other reactions. That means that the set 
of molecules is invariant under the reactions that act on them. Such self-regenerating 
reaction networks are attractors of the reaction dynamics. Therefore, they tend to self-
organize under a range of initial conditions. By simulating the dynamics of randomly 
generated networks, our research group is presently exploring what kinds of 
conditions are most conducive to the emergence of non-trivial, autopoietic networks 
(Veloz et al., 2022). 
 To model the origin of autopoiesis (and therefore the origin of life) in a 
realistic environment (Heylighen et al., 2022), however, such simulations must also 
include a variety of external processes that may perturb the incipient autopoietic 
system. Typical perturbations are the introduction of “toxic” molecules that interfere 
with autopoietic reactions, or the removal of molecules needed for self-maintenance. 
To survive in such precarious circumstances, the system must be resilient, i.e. able to 
bounce back to its autopoietic regime after it has been disturbed. In a preceding paper 
(Heylighen et al., 2022), we have reviewed a number of properties that can make an 
autopoietic network more resilient. These include degeneracy, a protective membrane, 
buffering, and regulation or control.  
 The control strategy, as demanded by the cybernetic laws of requisite variety 
and of regulatory models, entails cognition: the system must “know” which action to 
perform in order to compensate which perturbation. Such knowledge can be modeled 
as a mapping from the set of perturbations to the set of compensatory actions (Conant 
and Ashby, 1970). This mapping can be realized by some combination of reactions 
that are triggered by the perturbing condition, while ending in the production of some 
molecule that reacts with that condition and thus neutralizes it.  
 Such a mapping can be interpreted as an implicit model, implemented by the 
organization of the autopoietic network, of the domain of possible perturbations that 
the system can experience. However, it cannot be interpreted as a representation of 
the external reality that caused these perturbations. The reason is that the autopoietic 
system only has access to its own processes and the way these are perturbed, not to 
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whatever external processes caused or accompanied these perturbations. This is the 
same logic that led Kant to observe that we have no access to the external things-in-
themselves, only to our internal sensations and conceptions of these. Therefore, the 
epistemology implied by the theory of autopoiesis is constructivist, not 
representationalist, realist or objectivist.  
 However, the fact that the knowledge held by an autopoietic system is 
fundamentally subjective does not mean that it is arbitrary, or that any model is as 
good as any other. As organisms develop and evolve, they must become fitter, more 
resilient or more adaptive, in the sense that they acquire a greater variety of 
components and reactions that allows them to cope with a greater variety of 
perturbations. That also means that they must learn to counteract perturbations well 
before these have endangered the system’s survival. Thus, as their implicit model or 
cognitive system develops, it becomes better at predicting perturbations. This can for 
example be achieved through compensatory reactions that are triggered by molecules 
that can be interpreted as signals of an imminent perturbation. That allows the 
organism to already prepare an appropriate course of action before it has been hit by 
the perturbation.  

Thus, next to the selection of appropriate responses, a fundamental function of 
cognition is the accurate prediction of externally originating events. That again seems 
to imply that the internal cognitive model should objectively reflect some external 
reality. However, the only thing we can conclude from the reaction network 
formalism is that some internal mechanism adequately anticipates internal sensations 
resulting from putative external processes. What those processes precisely are remains 
out of reach of the autopoietic system. We illustrated this problem with an observer 
noting that the condition p elicits the reaction a, however, without being able to 
reconstruct the intermediate reactions leading up to this outcome. In other words, 
reality in essence remains a black box: we may be able to determine which inputs 
result in which outputs, but we cannot therefore discern the intermediate processes 
taking place inside the box. 

Still, the fact that reliable prediction is possible suggests that these processes 
must be characterized by some degree of invariance, so that patterns learned in the 
past remain applicable at later moments. That invariance also makes it possible for 
different observations using different perspectives to come to the same conclusion 
about what has been observed. Thus, in a pragmatic sense, observers can agree about 
whether a perception refers to some “real” (i.e. invariant) phenomenon rather than 
being a hallucination. That also allows them to distinguish better from worse 
predictive models.  

Yet, again, we cannot conclude that good models must therefore be 
isomorphic to the processes whose outcomes they predict. This is confirmed by 
chemical organization theory, which demonstrates how apparently simple, self-
maintaining sets of molecules can emerge from complicated, branching cycles of 
reactions (such as the one in Table 1). Thus, we come back to the original insight of 
Maturana and Varela, namely that apparently simple and stable units, such as 
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biological individuals, should properly be understood as complex, self-producing 
networks of processes. The moral of the story is then, perhaps, that the world is much 
more complex, interconnected and dynamic than the traditional, object-based 
ontology assumes, but that reasoning in terms of objects can still be a useful 
strategy—as long as these objects are understood as mere icons pointing to relatively 
invariant organizations of processes within an immensely larger network of ever-
varying processes.  

The main contribution of the reaction network model is that it proposes an 
explicit, formal mechanism for how such invariant organizations can emerge from the 
surrounding processes. In future research we hope to elucidate some of the details of 
that mechanism and its implications for the origin and evolution of life through 
further conceptual and mathematical analysis and computer simulation of reaction 
networks (Heylighen et al., 2022; Veloz et al., 2022). 
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