
Misusing Misuse-Resistance in APE

Dhiman Saha1, Sukhendu Kuila2, Dipanwita Roy Chowdhury1

1Department of Computer Science and Engineering, IIT Kharagpur, India
{dhimans,drc}@cse.iitkgp.ernet.in

2Department of Mathematics, Vidyasagar University, India
babu.sukhendu@gmail.com

Abstract. Misuse-resistance has increasingly become an important property of authenti-
cated ciphers. It is particularly useful in lightweight cryptographic applications where main-
taining a nonce generator entails high overhead. The ongoing CAESAR competition also
encourages this feature and addresses it in detail in the selection portfolio. In this work we
showcase how misuse-resistance can be misused in the context of di�erential fault analysis of
on-line authenticated encryption schemes like APE which is a submission to CAESAR and
a member of the PRIMATEs family of authenticated ciphers. Using the misuse, we �nally
present a diagonal fault attack1 on APE-80 that is able to reduce the key-search space from
2160 to 225 using just two random diagonal faults. Increasing the number of faults to 4 results
in the unique identi�cation of the key with a high probability.

1 Introduction

The idea of nonce-based encryption was formalized by Rogaway in [14]. The primary condition to
be ful�lled is the uniqueness of the nonce in every instantiation of the cipher. All security claims
rely on this premise. An interesting consequence of a unique nonce is the automatic protection from
Di�erential Fault Analysis (DFA). Fault analysis constitutes one of the most popular forms of side
channel attacks. The prospect of using faults to attack cryptographic hardware was �rst explored
by Boneh et. al. [8, 9] in 1996. Biham and Shamir introduced Di�erential fault analysis (DFA) in
[6] which was later successfully applied on the Advanced Encryption Standard (AES). One of the
primary assumptions of DFA is the ability to induce faults in the intermediate state of the cipher
while replaying the encryption with the same plaintext. Herein, comes the role of the unique nonce
which prohibits the replaying criterion. Nonces have been used in Public-Key cryptography to
thwart fault attacks. The famous Bellcore attack [9, 12] on RSA-CRT signatures can be prevented
if the message is padded with a random nonce which is recoverable only when verifying a correct
signature. Though Coron et. al. have shown that in [10] that in some limited setting these nonces
can be tackled, the techniques used rely on theoretical constructs which may not directly work
in their private-key counterparts. Thus, nonce-based encryption as professed by Rogaway seem to
be have an in-built protection against DFA. In practice, however, ensuring the uniqueness of the
nonce incurs high overhead speci�cally in lightweight cryptographic applications where resources
may be highly constrained. Hence, nonce reuse or misuse becomes an important issue that should
be addressed while designing crypto primitives like authenticated encryption (AE). On the other
hand this implies that DFA may again become relevant. In this work we explore this prospect by
showcasing a technique that reinstates the replaying criterion of DFA on the authenticated cipher
APE.

In FSE 2014, Andreeva et. al. introduced a scheme named Authenticated Permutation-based
Encryption (APE) [3] targeted for lightweight cryptography. It is the �rst permutation-based AE
scheme that is resistant against nonce misuse. APE is basically a mode of operation which iterates

1 The fault attack presented in this work has been communicated to a conference with proceedings.

a �xed permutation in a manner that is inspired from the Sponge [5] construction. In [3], the au-
thors instantiated APE with permutations of lightweight hash functions like Spongent, Quark and
Photon. However, in 2014, the authors reintroduced APE along with GIBBON and HANUMAN as
part of the authenticated encryption family PRIMATEs [1] which is one of the submissions to the
ongoing CAESAR competition. Unlike [3], in [1] the authors proposed an indigenous permutation
called PRIMATE to serve as the underlying permutation for PRIMATEs. In terms of the internal
state size the permutation has two variants : PRIMATE-80 and PRIMATE-120. The PRIMATE
permutation family is inspired from FIDES [7] authenticated cipher and structurally follows the
round function of the Rijndael block cipher [11].

Finally, in this work, we present Escape - a di�erential fault analysis of APE. It is interesting
to note that, APE drops two important aspects of FIDES, �rstly, the assumption of a nonce-
respecting adversary and secondly, the �nal truncation operation. Our research reveals that both
these changes result in e�cient di�erential fault attacks. We �rst show how misuse resistance can be
exploited to repeat the encryption on the same plaintext. Thus dropping the nonce constraint opens
up the scheme to fault attacks, which require an attacker to be able to observe faulty ciphertexts
by injecting faults while repeating the same encryption. We next mount diagonal fault attack[15]
which has been stated in literature [13] as one of the most e�ective DFA on AES. We exploit the
fact that PRIMATE closely follows the structure of AES round function. However, the inclusion
of last round MixColumns transformation makes direct application of diagonal attack as described
in [15] ine�cient. In order to overcome this we come up with a tweak using the linearity of the
MixColumns and ShiftRows operations. Finally, removal of the �nal truncation of FIDES in APE
helps in improving the attack further by using the knowledge of the last block of the ciphertext.
The results presented here are with reference to PRIMATE-80. However, all the claims can be
easily extended to PRIMATE-120. The contribution of this work is summarized below:

� Show how misuse resistance can be misused to make an AE scheme vulnerable to di�erential
fault analysis.

� Present the �rst fault analysis that exploits a Sponge based mode of operation.

� E�cient adaptation of the classical diagonal fault attack on APE

� Reduce average key-space from 2160 to 225 and 1 for two and four faults respectively.

The rest of the paper is organized as follows: The notations used in this work along with a
brief description of APE is given in section 2. The idea of misusing misuse-resistance in the light
of DFA and fault di�usion in the internal state of APE permutation PRIMATE are discussed in
section 3. Section 4 introduces the proposed diagonal attack - Escape. The concluding remarks
are furnished in section 5.

2 Preliminaries

2.1 The Design of PRIMATE

PRIMATE has two variants in terms of size : PRIMATE-80 (200-bit permutation) and PRIMATE-
120 (280-bit) which operate on states of (5× 8) and (7× 8) 5-bit elements respectively. The family
consists of four permutations p1, p2, p3, p4 which di�er in the round constants used and the number
of rounds. All notations introduced in this section are with reference to PRIMATEs-80 with the
APE mode of operation.

De�nition 1 Let T = F[x]/(x5 + x2 + 1) be the �eld F25 used in the PRIMATE MixColumn
operation. Then a word is de�ned as an element of T.

De�nition 2 Let S = (T5)8 be the set of (5 × 8)-word matrices. Then the internal state of the
PRIMATE-80 permutation family is de�ned as an element of S. We denote a state s ∈ S with
elements si,j as [si,j]5,8.

s = [si,j]5,8, where

{
si,j ∈ T
0 ≤ i ≤ 4, 0 ≤ j ≤ 7

(1)

In the rest of the paper, for simplicity, we omit the dimensions in [si,j]5,8 and use [si,j] as the
default notation for the 5× 8 state. We denote a column of [si,j] as s∗,j while a row is referred to
as si,∗. We now describe in brief the design of PRIMATE permutation. APE instantiates p1 which
is a compositions of 12 round functions.

p1 : S −→ S, p1 = R12 ◦ R11 ◦ · · · ◦ R1

Rr : S −→ S, Rr = αr ◦ µr ◦ ρr ◦ βr

where Rr is a composition of four bijective functions on S. The index r denotes the rth round
and may be dropped if the context is obvious. Here, the component function β represents the non-
linear transformation SubBytes which constitutes word-wise substitution of the state according to
prede�ned S-box.

βr : S −→ S, s = [si,j] 7−→ [S(si,j)]

where S : T −→ T is the S-box given in Table 1. The transformation ρ corresponds to ShiftRows
which cyclically shifts each row of the state based on a set of o�sets.

ρr : S −→ S, s = [si,j] 7−→ [si,(j−σ(i)) mod 8]

where, σ = {0, 1, 2, 4, 7} is the ShiftRow o�set vector and σ(i) de�nes shift-o�set for the ith row.
The MixColumn operation, denoted by µ, operates on the state column-wise. µ is actually a left-
multiplication by a 5× 5 matrix (Mµ) over the �nite �eld T.

µr : S −→ S
s = [si,j] 7−→ s′ = [s′i,j]

s′∗,j =Mµ × s∗,j

The last operation of the round function is α which corresponds to the round constant addition.
The constants are the output {C1, C2, · · · , C12} of a 5-bit LFSR and are xored to the word s1,1 of
the state [si,j]. The APE mode of operation is depicted in Fig. 1.

αr : S −→ S
[si,j] 7−→ [s′i,j]

s′i,j =

{
si,j ⊕ Cr if i, j = 1

si,j , Otherwise

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

Table 1: The PRIMATE 5-bit S-box

Fig. 1: The APE mode of operation [1](encryption)

2.2 Notations

De�nition 3 A diagonal of a state (s = [si,j]) is the set of words which map to the same column
under the Shift-Row operation.

dk = {si,j : ρ(si,j) ∈ s∗,k}, where

{
k = (j − σ(i)) mod 8

σ = {0, 1, 2, 4, 7}
(2)

De�nition 4 A di�erential state is de�ned as the element-wise XOR between a state [si,j] and
the corresponding faulty state [s′i,j].

s′i,j = si,j ⊕ δi,j , ∀ i, j (3)

δ fully captures the initial fault as well as the dispersion of the fault in the state. In this work we
assume induction of random faults in some diagonal of a state. Thus, if the initial fault occurs in
diagonal dk ∈ s, the di�erential state is of the following form :

δi,j =

{
f : f

R←− T \ 0, if k = j − σ(i) for at least one (i, j)

0, Otherwise
(4)

If ∃j : δi,j = 0 ∀i then δ∗,j is called a pure column, otherwise δ∗,j is referred to as a faulty column.

De�nition 5 A Hyper-state of a state s = [si,j], denoted by sh = [shi,j], is a two-dimensional

matrix, where each element shi,j is a non-empty subset of T, such that s is an element-wise member

of sh.

sh =

sh00 s

h
01 · · · sh07

sh10 s
h
11 · · · sh17

...
...

. . .
...

sh40 s
h
41 · · · sh47

 where

{
shi,j ⊂ T, shi,j 6= ∅
si,j ∈ shi,j ∀i, j

(5)

The signi�cance of a hyper-state sh is that the state s is in a way `hidden' inside it. This means
that if we create all possible states taking one word from each element of sh, then one of them will
be exactly equal to s. We now de�ne a transformation ρ′ on a hyper-state sh which is analogous
to ρ de�ned in the PRIMATE round functions.

De�nition 6 The Hyper-state ShiftRow transformation (ρ′) corresponds to cyclically shifting
each row of sh based on the prede�ned set of o�sets σ.

ρ′ :
7×
j=0

shi,j −→
7×
j=0

shi,(j−σ(i)) mod 8 ∀i

shi,∗ 7−→ shi,(∗−σ(i)) mod 8 ∀i

It is interesting to note that, every word in the state ρ(s) will be a member of the corresponding
element of ρ′(sh), thereby implying that ρ′(sh) = (ρ(s))h.

De�nition 7 The size of a hyper-state sh, denoted by
∣∣sh∣∣ is the maximum number of the states

that can be constructed by selecting a single word from each element of the hyper-state such that
every state formed is an element-wise member of sh.

∣∣sh∣∣ = 4,7∏
i,j=0

|shi,j | (6)

The notion of Hyper-state will be used while we execute the Inbound phase of Escape described
in subsection 4.1.

De�nition 8 If sh be a hyper-state of s, then Kernel of a column sh∗,j ∈ sh, denoted by Ks
h
∗,j , is

de�ned as the cross-product of sh0,j , s
h
1,j , · · · , sh4,j.

Ks
h
∗,j =

{
wk : wTk ∈

4×
i=0

shi,j , 1 ≤ k ≤
4∏
i=0

∣∣shi,j∣∣
}

Subsequently, Kernel of the entire hyper-state is the set of the Kernels of all of its columns: Ksh =

{Ks
h
∗,0 ,Ks

h
∗,1 , · · · ,Ks

h
∗,7}

Here, wTk represents the transpose of wk, thereby implying that wk is a column vector. One should

note that s∗,j ∈ Ks
h
∗,j ∀j. Thus each column of s is contained in each element of Ksh . We now

de�ne an operation µ′ over the Kernel of a hyper-state which is equivalent to µ that operates on
a state.

De�nition 9 TheKernel-MixColumn transformation (µ′) is the left multiplication of Mµ to

each element of each Ks
h
∗,j ∈ Ksh .

µ′(Ks
h
∗,j) = {Mµ × wi, ∀wi ∈ Ks

h
∗,j}

µ′(Ks
h

) = {µ′(Ks
h
∗,0), µ′(Ks

h
∗,1), · · · , µ′(Ks

h
∗,7)}

An important implication is that µ′(Ksh) = Kµ(s)h . The notion of Kernel will be used while we
execute the Outbound phase of Escape described in subsection 4.2.

3 Misusing Misuse-Resistance

The fault model assumed in this work states that: The attacker can induce random uni-word faults
in the internal state of APE permutation p1. The primary aim here is to produce faulty collisions
of the tag. A faulty collision is not a real collision. In a faulty collision, the attacker induces a
fault in the state of the cipher so that two di�erent plaintexts produce the same tag. We later
show that the ability to collide the tag will result in highly e�cient fault attacks on the overall
scheme. It is interesting to note that the attacker is able to produce faulty collisions by exploiting
two very desirable properties of authenticated ciphers : �rstly, the misuse-resistance and secondly,
the online nature. In the next paragraph we describe the process of producing faulty collisions in
the AE scheme APE.

The designers of APE in their revised2 submission document [2] have emphasized that APE
is misuse-resistant up to a common pre�x. As per [4] this means that for an AE scheme, E :

2 It is interesting to mention that in FSE 2014 paper [3] and in original submission [2] of PRIMATEs
the authors mentioned that 'the use of nonce is optional'. In this scenario, the ability to produce faulty
collisions would hold automatically.

K ×
(
{0, 1}n

)+ → (
{0, 1}n

)+
if nonce and associated data are same for two plain-texts then

the outputs are same for a common pre�x. So, the �rst |P | bits are same for Ek(P ||X) and
Ek(P ||X ′) for any P,X,X ′ ∈ ({0, 1}n)+. From, the point of view of the attacker this implies
that the plaintexts must vary at least in one block. The attacker now arbitrarily chooses the
�rst message P ||X = (x0||x1|| · · · ||xi|| · · · ||xw), xi ∈ {0, 1}n ∀i and adaptively chooses the next
P ||X ′ = (x0||x1|| · · · ||x′i|| · · · ||xw) in such a way that ∃i x′i 6= xi. The attacker manipulates x′i
using the fact that APE is an online-cipher and using the assumed fault model. Let Ek(P ||X) =
(y0||y1|| · · · ||yi|| · · · ||yw), yi ∈ {0, 1}n ∀i. Now, while processing the second message (P ||X ′), the
attacker induces a fault at the output of APE in yi−1 and gets y′i−1. He now prepares the ith block
of the second message as x′i = yi−1 ⊕ y′i−1 ⊕ xi. This means that the input to the permutation is
x′i ⊕ y′i−1 = xi ⊕ yi−1. This ensures that Ek(P ||X) = Ek(P ||X ′) for all xi ∈ X except the block
where the fault is induced. This also implies that TAG(P ||X) = TAG(P ||X ′) thereby producing
a faulty collision. The process is depicted in Fig. 2. It is worth mentioning that by virtue of the
above event, the inputs to the internal permutation PRIMATE while processing both X and X ′

remain same. Thus one can infer that the ability to produce faulty collision is equivalent to the
ability to replay the encryption with the same nonce, associated data and the same plain-text. We
later show that this makes APE vulnerable to e�cient di�erential fault analysis attacks. In the
rest of the paper, we assume that replaying encryption with the same plain-text is possible and
refrain from explicitly mentioning it again unless it is absolutely necessary. The next section is a
direct consequence of the faulty collisions produced earlier.

Fig. 2: Exploiting Misuse-resistance to get faulty collisions in APE3

3 According to APE speci�cation, the `Message IV' di�ers depending on the nature of the length of the
message. This attack is independent of the actual value of the `Message IV'.

3.1 Fault di�usion in PRIMATE permutation

In this section we describe the induction and di�usion of faults in the last iteration of APE. In
the last section, we demonstrated the ability to replay the encryption with the same plain-text.
We now build upon this and induce a secondary fault while replaying the encryption. In this way
we are able to produce a faulty tag that is related to the original tag. In fact, our intention is to
study the fault di�usion in the di�erential state of the PRIMATE permutation. Next we exploit the
di�erential state to mount e�cient diagonal fault attacks on APE. The secondary fault induction
and subsequent di�erential state formation are illustrated in Fig 3. One can see that the fault is
induced in the input of Round 10 of the PRIMATE permutation during the last iteration before
tag generation. The logic behind this will be clear from the following important property of fault
di�usion in the internal state of PRIMATE.

Fig. 3: Fault induction in APE and the di�erential state

Property 1 If a single diagonal (dk) is faulty at the start of Rr−2 then there are exactly three
pure columns after βr.

Analysis: This property is attributed to the non-square nature of the state matrix. To observe
this we need to �rst look at how the diagonal fault di�uses in the state in the (r− 2)th round. Let
us denote the di�erential state at the input of Rr−2 as s = [si,j]. Here, we are not concerned about
the actual value of s, rather we track how the fault structurally disperses in it. At the beginning
of Rr−2 only diagonal dk is faulty. In the following analysis we have omitted the transformation
α, since round-constant addition has no e�ect on the di�erential state.

� Fault di�usion in Rr−2
• βr−2 : No di�usion, fault limited to same diagonal.
• ρr−2 : Fault shifts from diagonal dk to column s∗,k.
• µr−2 : Intra column di�usion. Fault di�uses within s∗,k.

dk
βr−2−−−→ dk

µr−2◦ρr−2−−−−−−−→ s∗,k (7)

� Fault di�usion in Rr−1
• βr−1 : No di�usion, fault limited to s∗,k.

• ρr−1 : Fault shifts from s∗,k to �ve words {si,(k−σ(i)) mod 8 : 0 ≤ i < |σ
∣∣}.

• µr−1 : Fault spreads to each column s∗,k−σ(i).

ck
βr−1−−−→ ck

ρr−1−−−→ {si,(k−σ(i)) mod 8}
µr−1−−−→ {s∗,(k−σ(i)) mod 8} (8)

� Fault di�usion in Rr
• βr : No di�usion, fault limited to same columns as after µr−1.

{s∗,(k−σ(i)) mod 8}
βr−→ {s∗,(k−σ(i)) mod 8} (9)

From (7), (8) and (9) we have the following relation between the faulty diagonal dk at the start
Rr−2 and the faulty columns after βr.

dk
βr◦Rr−1◦Rr−2−−−−−−−−−−→

{
s∗,(k−σ(i)) mod 8 : 0 ≤ i <

∣∣σ∣∣} (10)

For PRIMATE-80, σ = {0, 1, 2, 4, 7}, implying that
∣∣σ∣∣ = 5. From (10), we have

∣∣{s∗,(k−σ(i)) mod 8

}∣∣ =∣∣σ∣∣ = 5. Thus a single faulty diagonal before Rr−2 results in �ve faulty columns and respectively
8− 5 = 3 pure columns at the end of βr. An example of the fault di�usion with the initial fault in
diagonal d1 is given is depicted in Fig. 4. �

In the next section we introduce Escape, an adaptation of the classical diagonal fault attack
[15] on AES.

Fig. 4: 3-round fault di�usion with source fault at diagonal d1

4 Escape : An e�cient Diagonal attack on APE

The Escape attack proceeds in two phases namely, the Inbound and Outbound phase. Both
phases result in large-scale reduction in target key-search space. We �rst describe the Inbound
phase.

4.1 The Inbound Phase

The �rst task in the Inbound phase is to invert the di�erential output of APE up to β12. While
doing so we exploit the following property of APE.

Property 2 If an attacker knows the correct and the faulty outputs4 from the last iteration of
APE, he can use the di�erence between them to �nd the di�erential state after βr, r being the last
round of PRIMATE permutation.

Analysis: This property holds because the transformations α, µ and ρ are linear and so is their
composition. Let us denote the linear map as Lr = αr ◦µr ◦ρr. Lr is bijective and hence invertible.
Let the correct and the faulty outputs of the last iteration of APE be x and x′ respectively. Also
let the outputs of the (r−1)th round in the respective cases be y and y′. We now have the following
derivation:

L−1r (x⊕ x′) = L−1r ((x⊕ k)⊕ (x′ ⊕ k))
= L−1r (x⊕ k)⊕ L−1r (x⊕ k)
= βr(y)⊕ βr(y′)[∵ βr ◦ Lr(y) = x⊕ k]

The above derivation shows that knowledge of the output di�erential state leads an attacker to the
di�erential state after the last round SubBytes operation. However, as β is non-linear, the attacker
can no longer deterministically penetrate further inside the last round. �

In case of p1, r = 12. So using property (2) the attacker reaches the di�erential state at the
end of β12. From this knowledge he tries to guess the source of the fault i.e., the faulty diagonal
at the start of R10. For this he exploits a very important property of PRIMATE which surfaces
because of the non-square nature of the state matrix.

Property 3 There exists a bijection between the position of faulty diagonal before Rr−2 and the
position of pure columns of the state at the end of βr

Analysis: This is evident from (10). Since {(k− σ(i)) mod 8, 0 ≤ i <
∣∣σ∣∣} is unique for each k, so

the position of a faulty diagonal will correspond to a unique set of �ve faulty (respectively three
pure) columns and vice-versa. This property is important for Escape, since it aids in detecting
the source of the fault just by observing the di�erential state at the output of APE. As there are a
total of 8 diagonals, the diagonal detection reduces the attacking complexity by a factor of 8 and
also implies the location independence of the induced fault. �

In case of APE this implies that based on the diagonal which is faulty at the start of R10,
one can predict the word inter-relations at the end of R11. Moreover, the diagonal principle as
mentioned in [15] states that multi-word faults which are con�ned to one diagonal before R10 are
equivalent and result in the same word inter-relations at the end of R11. For example, if the faulty
diagonal is d0, then the corresponding relation matrix is given in Fig. 5. The relation matrix
shows how words of the di�erential state are related at the end of R11. The empty columns in the
relation matrix represent the columns which have been una�ected by the fault injected before R10.
As shown in Fig. 5, by virtue of the diagonal principle all the faults in d0 are equivalent in terms
of the resulting word inter-relations. The relation matrices for other diagonals are depicted in Fig
6. We now exploit these relations to reduce the state search-space.

Let the di�erential state after β12 computed using property (2) be δ = [δi,j] and the corre-
sponding correct and faulty states be s and s′ respectively. Let the relation matrix be denoted by

4 This refers to the entire state where the rate part forms the last ciphertext block and the capacity part
forms the tag (Refer Fig. 1).

Fig. 5: Equivalence of di�erent kinds of faults con�ned to diagonal d0 at the input of 10th round
of p1

η = [ηi,j]. The attacker now guesses the actual values of s and uses δ to get the values of s′. He
can guess any two words (si,j , sk,j) from the same column s∗,j and use the corresponding entries
(ηi,j , ηk,j) from the relation matrix to form an equation of the form given in (11).

η−1i,j × (β−1(si,j)⊕ β−1(si,j ⊕ δi,j)) = η−1k,j × (β−1(sk,j)⊕ β−1(sk,j ⊕ δk,j)) (11)

For the case of diagonal d0, if the attacker chooses (s1,0, s2,0), he gets equation (12). It must be
recalled that all multiplications and inverse operations are carried out in the �nite �eld T. Using
these equations, the attacker veri�es if the guessed words of s are correct. The guessed words for
each si,j that satisfy the equations form the candidate-vector for that word. All these candidate-
vectors constitute the hyper-state, sh (De�nition 5) of the correct state s. The pseudo-code for the
hyper-state generation in given below:

18−1 × (β−1(s1,0)⊕ β−1(s1,0 ⊕ δ1,0)) = 11−1 × (β−1(s2,0)⊕ β−1(s2,0 ⊕ δ2,0)) (12)

1: procedure GenHyperState(δ, η) . δ → Di�erential State after β12
2: Denote correct state after β12 as s = [si,j].
3: for all (i, j) do . Initialize hyper-state
4: shi,j = {0, 1, · · · , 31}
5: end for

6: for all δ∗,j ∈ δ : η∗,j 6= ∅ do . Process only faulty columns
7: for all (δi,j , δk,j) ∈ δ∗,j do
8: for all (a, b) ∈ shi,j × shk,j do
9: Set (si,j , sk,j) = (a, b)
10: if η−1i,j × (β−1(si,j)⊕ β−1(si,j ⊕ δi,j)) 6= . Verify Equation (11)

11: η−1k,j × (β−1(sk,j)⊕ β−1(sk,j ⊕ δk,j)) then
12: shi,j = shi,j − {a}
13: shk,j = shk,j − {b}
14: end if

15: end for

16: end for

Fig. 6: Word inter-relations at the start of Rr due to corresponding faulty diagonal at the start of
Rr−2 (Empty relations refer to the pure columns)

17: end for

18: return sh

19: end procedure

The formation of the hyper-state completes the Inbound phase. It must be noted that the attacker
has no clue about the pure columns of the state as he cannot get any relation to verify them. So
for the pure columns the attacker search space is exhaustive. This gives the following lower bound
on the size of the state-space.

Lemma 1. At the end of the Inbound phase, the size (De�nition 7) of the hyper-state sh is at
least 275. ∣∣sh∣∣ ≥ 275

Proof. This follows from property (1) which states that there will be exactly three pure-columns
at the end of R11. For each s

h
i,j ∈ sh such that sh∗,j is a pure column |shi,j | = 25. Each pure-column

contributes �ve such vectors to sh and there are three such columns. Thus we have 15 such shi,j 's

each contributing a factor of 25 to the size of the hyper-state.∣∣sh∣∣ = 4,7∏
i,j=0

|shi,j |

=

4∏
i=0
∀j∈P

|shi,j | ×
4∏
i=0
∀j /∈P

|shi,j |

≥
4∏
i=0
∀j∈P

|shi,j | = (25)15 = 275

where P is the set of all pure-columns at the end of R11. �

In the next subsection, we show that during the Outbound phase the attacker can further
reduce

∣∣sh∣∣ by reducing each |shi,j |, j ∈ P, thereby reducing the search space for the correct state
(correspondingly, for the key). The following algorithm gives an overview of the Inbound phase.

1: procedure Inbound(δ) . δ → Di�erential State
2: δ′ = ρ−112 (µ

−1
12 (δ)) . Applying Property (2)

3: df
Property (3)←−−−−−−−− δ′ . Trace back faulty diagonal

4: η = [ηi,j]
Load relation matrix←−−−−−−−−−−−−− df . . Refer Fig. 6

5: sh ← GenHyperState(δ′, η)
6: return sh

7: end procedure

4.2 The Outbound Phase

This phase exploits the mode of operation of APE. Particularly, it exploits the knowledge of the
last cipher-text block that forms the rate-part of the internal state of PRIMATE. The following
property plays a pivotal role in this phase.

Property 4 If the state before α12 be t = [ti,j], then the attacker knows the actual value of t0,∗

Analysis: This property is attributed to the APE mode of operation. According to APE, after
processing the last message block the rate part (�rst row) of the internal state after R12 of PRI-
MATE is output in the clear as the last cipher-text block while the capacity part is xored with the
key to form the tag. Also one can recall that in α the round constant is xored with word (1, 1) only
while the rest of the state is unchanged. Now, let us denote the last output of APE by a = [ai,j]
also let k = [ki,j] denote the key-state. Then we have:

ai,j =

ti,j if (i = 0) =⇒ (k0,∗ = 0)

ai,j ⊕ C12 ⊕ ki,j , if (i, j) = (1, 1)

ai,j ⊕ ki,j , otherwise

(13)

where c12 is the round constant for R12 in p1. Since α12 has no e�ect on t0,∗ and since by Equation
(13) a0,∗ = t0,∗, so the last cipher-text block gives the attacker the actual value of t0,∗. This
property plays a central role in the Outbound phase and its use results in signi�cant reduction
of the key search space. �

The steps of the Outbound phase are enlisted below. It can be recalled that the Inbound
phase gives us the hyper-state (sh) of the state s after the SubBytes operation in R12.

1. The attacker starts the Outbound phase by applying Hyper-state ShiftRow transformation
(De�nition 6) on the hyper-state obtained from the Inbound phase.

sh
ρ′−→ (ρ(s))h

2. The next step is to compute the Kernel for (ρ(s))h : K(ρ(s))h . The concept of Kernel was
introduced in De�nition 8.

(ρ(s))h
Compute Kernel−−−−−−−−−−→ K(ρ(s))h

3. Then the attacker applies the Kernel-MixColumn transformation on the Kernel computed in
the last step.

K(ρ(s))h µ′−→ K(µ(ρ(s)))h

4. Next comes the reduction step. In this step the attacker applies property (4). It can be noted

that Kµ(ρ(s))h represents the kernel for the hyper-state of µ(ρ(s)). i.e., the state just before
the application of α12. Now let t = µ(ρ(s)). Then by property (4) the actual value of t0,∗ is

known. This knowledge is used to reduce the size of each Kt
h
∗,j ∈ Kth . The following pseudocode

illustrates the reduction procedure.

1: procedure ReduceKernel(Kth , t)
2: for j = 0 : 7 do

3: for all {e0, e1, e2, e3, e4}T ∈ Kt
h
∗,j do

4: if e0 6= t0,j then

5: Kt
h
∗,j = Kt

h
∗,j − {e0, e1, e2, e3, e4}T

6: end if

7: end for

8: end for

9: Kthred = Kt
h

10: return Kthred
11: end procedure

The cross-product of Kthred gives the �nal reduced state-space for t. The �nal key-space is given
by the following expression:

K =

{
k : k = a⊕ α12(w), ∀w ∈

7×
j=0

Kt
h
∗,j
red

}

The following algorithm summarizes the Outbound phase. In the next sub-section we outline the
complete attack.

1: procedure Outbound(sh, t)
2: (ρ(s))h ← ρ′(sh)

3: K(ρ(s))h ← (ρ(s))h

4: Kth ← µ′(Kρ(s)h)
5: Kthred ← ReduceKernel(Kth , t)
6: return Kthred
7: end procedure

4.3 The Complete Attack

The Escape attack in its complete form takes into account multiple faults and further reduces the
key-space. When dealing with multiple faulty cipher-texts, the Inbound phase is repeated to get a
hyper-state for each faulty cipher-text and �nally an element-wise intersection is taken over all the
hyper-states. This intersection largely reduces the size of the �nal hyper-state. This reduced-size
hyper-state is given as output of the Inbound phase. The Outbound phase proceeds as described
above. The following algorithm presents the complete Escape attack while the pictorial description
is given in Fig. 7. It is implied that the number of faults is inversely proportional to the size of
the �nal key-search space. Extensive computer simulations using randomized diagonal faults have
revealed that while a single fault can lead to a average reduced key-space of 280, using 2 faults the
key-space can be reduced to as low as 225 on an average. Increasing the number of faults to 4 helps
to extract the exact key with a high probability.

1: procedure Escape(c, {c′1, c′2, · · · , c′n}) . n→ # of faulty outputs
2: for f = 1 : n do
3: shf ←Inbound(c⊕ c′f) . Compute hyper-state
4: end for

5: sh =
n⋂
f=1

shf . Intersect all hyper-states

6: Kthred ←Outbound(sh, c)
7: K = ∅

8: for all w ∈

(
7

×
j=0

Kt
h
∗,j
red

)
do

9: k = α12(w)⊕ c
10: K = K ∪ {k}
11: end for

12: return K
13: end procedure

Fig. 7: The Escape attack using a diagonal fault in d1

5 Conclusion

We present arguments stating that the otherwise desirable feature of misuse-resistance can become
the gateway for mounting di�erential faults attacks. Building upon this idea we develop an e�cient
diagonal fault attack on the APE authenticated cipher. APE is the �rst permutation based AE
scheme which uses the Sponge based mode of operation. Hence the result presented here can
be interpreted as the �rst fault analysis of Sponge when used in the context of authenticated
encryption. The number of faulty cipher-texts required to reduce the key-search space to a practical
limit is only 2 while it has been found that 4 faulty outputs can uniquely identify the key with a
very high probability.

References

1. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Wang, Q., Yasuda, K.:
PRIMATEs v1 (2014), http://competitions.cr.yp.to/round1/primatesv1.pdf

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Wang, Q., Yasuda, K.:
PRIMATEs v1.01 (2014), http://primates.ae/wp-content/uploads/primatesv1.01.pdf

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: APE: Authen-
ticated Permutation-Based Encryption for Lightweight Cryptography. In: Lecture Notes in Computer
Science, FSE. Springer-Verlag (2014), https://lirias.kuleuven.be/handle/123456789/450105

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and
Authenticated Online Ciphers. In: ASIACRYPT (1). pp. 424�443 (2013)

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions, Available at
http://sponge.noekeon.org/CSF-0.1.pdf

6. Biham, E., Shamir, A.: Di�erential Fault Analysis of Secret Key Cryptosystems. In: CRYPTO. pp.
513�525 (1997)

7. Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: Fides: Lightweight Authenticated
Cipher with Side-Channel Resistance for Constrained Hardware. In: CHES. pp. 142�158 (2013)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for
faults (extended abstract). In: EUROCRYPT. pp. 37�51 (1997)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Eliminating Errors in Cryptographic
Computations. J. Cryptology 14(2), 101�119 (2001)

10. Coron, J.S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault Attacks on RSA Signatures with
Partially Unknown Messages. In: Clavier, C., Gaj, K. (eds.) CHES. Lecture Notes in Computer Science,
vol. 5747, pp. 444�456. Springer (2009)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Infor-
mation Security and Cryptography, Springer (2002)

12. Joye, M., Lenstra, A.K., jacques Quisquater, J.: Chinese Remaindering Based Cryptosystems in the
Presence of Faults. Journal of Cryptology 12, 241�245 (1999)

13. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security and Cryptography,
Springer (2012), http://dblp.uni-trier.de/db/series/isc/isc364229655.html

14. Rogaway, P.: Nonce-Based Symmetric Encryption. In: FSE. pp. 348�359 (2004)
15. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A Diagonal Fault Attack on the Advanced Encryp-

tion Standard. Cryptology ePrint Archive, Report 2009/581 (2009), http://eprint.iacr.org/

