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Abstract  

Introduced as a new protocol implemented in  

“Chrome Canary” for the Google Inc. 

Chrome browser, “New Hope” is engineered 

as a post-quantum key exchange for the TLS 

1.2 protocol.  The structure of the exchange 

is a combination of elliptic curve 

enhancements along with revised lattice-

based cryptography.  New Hope incorporates 

the key-encapsulation mechanism of Peikert 

which itself is a modified Ring-LWE 

scheme.  The search space used to introduce 

the closest-vector problem is generated by an 

intersection of a tesseract and 

hexadecachoron, or the ℓ∞-ball and ℓ1-ball 

respectively.  This intersection results in the 

24-cell 𝒱 of lattice 𝒟̃ 4.  With respect to the 

density of the Voronoi cell 𝒱, the proposed 

mitigation against backdoor attacks proposed 

by the authors of New Hope may not provide 

complete security against such attacks.  
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1  Introduction  

“New Hope” is a novel encryption scheme 

based on lattice cryptography and offers post-

quantum security within the key exchange.  

New Hope uses a Montgomery form to 

reduce cost of implementation in terms of 

computational speed.  As a modification to 

elliptic curve cryptography New Hope 

instead reduces cost by sending an x-

coordinate to compute the relative x-

coordinate of any scalar [1].  Alkim, et al. 

implement a rounding function ⌊𝑥⌉ derived 

from the work of Peikert [2] to achieve 

equality with the floor function ⌊𝑥 + 1/2⌋.  
This floor function is an element of integers.  

New Hope employs 𝑞 = 12289 and 𝑛 = 1024 as 

constraints of lattice 𝐷4, which results in a 

reduction of the modulus to 𝑞 = 12289 < 214 

[1].  Peikert defines both the rounding and floor 

function of New Hope, using 𝛿 sub-Gaussian and 

zeta functions [2].  Peikert’s “canonical 

embedding” necessarily incorporates a 

homomorphic injective ring that maps (𝐾) to (ℂ) 
which fixes pointwise(ℚ) [2].  

The critical nature of an unbiased modular 

operation presents key values which are assumed 

to mitigate cryptanalysis.  Peikert recommends 

the use of small noise values to achieve this 

result while cautioning against cross-rounding 

given the determinacy that may result [2]. Any 

such determinacy negates an otherwise unbiased 

result.  It is here that New Hope diverges from its 

basis on Peikert’s work.  

The creators of New Hope outline a sketch to 

create a backdoor in implementations of NTRU 

lattice-based cryptography.  Concerns of a 

backdoor capability extended to New Hope will 

now be addressed in detail.  

2  Parameters  

The fixed parameter of (𝑎) may potentially 

facilitate constructing a backdoor, using methods 

similar to NTRU trapdoors [1].  For mildly small 

values of (𝑓, 𝑔) such that 𝑓 = 𝑔, 𝑓 = 1 mod 𝑝 

for some prime, (𝑝 ≥ 4 ∗ 16 + 1) there is a point 
of weakness within the set 

𝑎 = 𝑔
1

𝑓
mod 𝑞 

 

With respect to (𝑎, 𝑏 = 𝑎𝑠 + 𝑒), it is possible to 

compute:  

𝑏𝑓 = 𝑎𝑓𝑠 + 𝑓𝑒 = 𝑔𝑠 + 𝑓𝑒 mod 𝑞 



such that:  

𝑏𝑓 = 𝑔𝑠 + 𝑓𝑒 mod 𝑞  

With small enough (𝑔, 𝑠, 𝑓, 𝑒), computing 

𝑔𝑠 + 𝑓𝑒 ∈ ℤ once (𝑠 mod 𝑞) is obtained 

proves the scheme is then corrupted.  After 

establishing 𝑡 = 𝑠 + 𝑒 mod 𝑝, with the 

coefficient of (𝑠) and  

(𝑒) smaller than(16), the values of (𝑠, 𝑒) have 

sums within the range (−2 ∗ 16, 2 ∗ 16).   
Knowing the values of (𝑠, 𝑒) within the range 

of (−2 ∗ 16, 2 ∗ 16) in terms of:  

mod 𝑝 ≥ 4 ∗ 16 + 1 

is knowing them in ℤ.  The manipulation to 

create a backdoor relies on the pseudo-

inverse of a polynomial (𝑝) as the 

polynomial (𝑃 ∈ 𝒫) such that (𝑃 ∗ 𝑝 ∗ 𝑠 ≡ 𝑠 
mod 𝑞) for any polynomial (𝑠 ∈ 𝒫) such 

that  

𝑠(1) ≡ 0mod 𝑞 

If the secret key equation can be modified to 

equal  

𝑡 ≡ ℎ ∗ 𝑣 + 𝑤 mod 𝑞 

it is feasible to apply a pseudo-inversion.  

For a detailed analysis of inversion oracles 

refer to the primary source of Mol and Yung 

[3].  Through implementing the attack 

developed by Mol and Yung it is possible to 

show that an attacker possessing both a 

classical and quantum computer is capable 

of a backdoor attack against New Hope.  

3  Inversion  

Given the new secret key equation derived 

from [3], let the following hold:  

(𝑤 = 𝑢 − 𝑔), (𝑣 = 𝐹) for 

 𝑡 ≡ 𝑢 − 𝑝𝑞 ∗ ℎ(mod 𝑞) 

  

(𝑣 = 𝑢 − 𝐹), (𝑤 = 𝑔) for 

 𝑡 ≡ 𝑝𝑞ℎ + ℎ𝑢(mod 𝑞) 

In both cases, (𝑤, 𝑣) are binary.  An oracle will  

output the correct key pair only when   

[3].  To apply this inversion the anti-derivative of 

the Peikert scheme used by New Hope must be 

established.  Per the authors of New Hope, the 

implementation of the key encapsulation method 

(KEM) relies on pseudorandom ring elements 

exchanged between Alice and Bob which are 

then used to derive the session key [1].  Alice 

then employs the ring element (𝑢𝑠 = 𝑎𝑠𝑠′ + 𝑒′𝑠) 

and Bob uses (𝑣 = 𝑏𝑠′ + 𝑒′′ = 𝑎𝑠𝑠′ + 𝑒𝑠′ + 𝑒′′).  

The reconciliation function is rec(𝑤, 𝑏) such that  
 

rec(𝑤, 𝑏) = {
0, if  𝑤 ∈ 𝐼𝑏 + 𝐸(mod 𝑞)

1, otherwise
 

 

The authors of New Hope set as parameters 

of the polynomial ring, 

 

ℛ𝑞 =
ℤ𝑞[𝑋]

𝑋𝑛 + 1
 

  

The message sent by Alice is denoted as(𝑏), 

while Bob’s response is(𝑢, 𝑟) and an element of 

the ring (𝑅𝑞).  The polynomial (𝑎 ∈ ℛ𝑞) is public 

and constant in NTRU schemes.  To generate the 

function which results in(𝑠 mod 𝑞), the algebraic 

manipulation itself is straightforward.  To begin 

deriving the necessary function to generate the 

secret key for an NTRU scheme, a pre-

established value equal to 𝑠 mod 𝑞 is introduced:  

𝑎𝑠 − 𝑠 ∗ (
1

𝑎
− 1) = 𝑠 mod 𝑞 

 

Via substitution, values of the variables (𝑎, 𝑏) 
already provided are used to calculate values of 

𝑡. 
(𝑎, 𝑏) = 𝑎𝑠 + 𝑒 

𝑎𝑠 − 𝑠 = 𝑏 − 𝑡 
After trivial algebraic manipulations, the values 

of 𝑡 can be equated to a set of equations, wherein 

the value of the constant (𝑎) can be substituted 

with previously afforded values given in [1]. 

𝑡 = {
−𝑎𝑠 + 𝑠 + 𝑏
𝑠 + 𝑒 mod 𝑝

 

Returning to the equations used to calculate 𝑡, 
new values of 𝑡 are now substituted and the two 
previous equations are calculated as equal. 

((𝑎𝑠 − 𝑠) ∗ (
1

𝑎
− 1) = (𝑏 − 𝑡) ∗ (

1

𝑎
− 1)) 



Where (𝑎 = 𝑓𝑔−1 mod 𝑞) it is then possible to 

assert (𝑎𝑠 − 𝑠 + 𝑡 = 𝑏), which in turn produces 

the primary equation for solving the value of 

𝑠 mod 𝑞.  
By producing an equation that results in a 

required value for a backdoor attack against 

some NTRU lattice-based cryptography, the 

equation of ((𝑎𝑠 − 𝑠) ∗ (
1

𝑎−1
) = 𝑠 mod 𝑞) 

generates the final steps to calculating the secret 

(𝑠).  Using substitution yet again, but this time 

of the variable 𝑎, one derives: 

((𝑓𝑔−1 mod 𝑞)𝑠 − 𝑠) ∗ (
1

𝑓𝑔−1mod 𝑞 − 1
)

= 𝑠 mod 𝑞 

By simplifying the equation, we then produce: 

(𝑓𝑔−1 mod 𝑞)𝑠 − 𝑠

(𝑓𝑔−1 mod 𝑞) − 1
= 𝑠 mod 𝑞 

By stating the division in an alternate form, one 
then has: 

𝑠 = 𝑠 mod 𝑞 

The value of the variable (𝑞) is itself equivalent 

to 1 mod 2𝑛.  Bearing in mind that 𝑛 = 1024, it 

is known that 𝑞 ≡ 1 mod 2048.  An abbreviated 

integer table of equivalent values to 1 mod 𝑞 is 

provided in Table 1. 

 

2049  4097  6145  

8193  10241  12289  

14337  16385  18433  

Table 1  

The anti-derivative, or indefinite integral 

pertinent to this analysis is defined by the 

variable 𝑎 which is equal to 𝑓𝑔−1 mod 𝑞, which 

produces the equation: 

∫
(𝑓 (

1
𝑔)mod 𝑞) 𝑠 − 𝑠

(𝑓 (
1
𝑔
)mod 𝑞) − 1

d𝑔 = 𝑔𝑠 + constant 

Returning to the exchange between Alice and 

Bob, Alice uses the equation (𝑢𝑠 = 𝑎𝑠𝑠′ + 𝑒′𝑠) 
to send Bob a message, which Bob then uses the 

equation (𝑣 = 𝑏𝑠′ + 𝑒′′ = 𝑎𝑠𝑠′ + 𝑒𝑠′ + 𝑒′′) to 
reconcile the pair with.  If the equation of  

(𝑠 = 𝑠 mod 𝑞) 

can be shown to equal (𝑡 ≡ ℎ ∗ 𝑣 + 𝑤(mod 𝑞)), 
then an oracle output to break the encryption is 

feasible.  The further constraint of (𝑒 ∈ 𝐸𝑞,ℎ
𝑑𝑟 ) is 

also required.  Returning to the values produced 

by(𝑡), let (𝑡) be equal to the following 

𝑡 = {
−𝑎𝑠 + 𝑠 + 𝑏
𝑠 + 𝑒 mod 𝑝

 

To satisfy the constraint of the variable (𝑒) as a 

member of (𝐸𝑞,ℎ
𝑑𝑟 ) and with the value of (𝑞) 

known, one can substitute for (𝑒) accordingly.  

Where (𝑑𝑟) corresponds to the Hamming 

weights to produce an inversion oracle against 

NTRU [2], New Hope employs a weight value of 

(exp (
−𝑥2

2𝜎2
)) to all integers (𝑥) such that there is 

no fixed value for (𝑎) [1], but rather each 

coefficient of (𝑎) is chosen uniformly at random 

from ℤ𝑞.  The discrete Gaussian distribution 

(𝐷ℤ,𝜎) is parametrized by the Gaussian 

parameter (𝜎 ∈ ℝ) defined by the previously 

mentioned weight of all (𝑥).  The values of (ℤ𝑞) 

for an integer (𝑞 > 1) must be within the 

quotient ring (
ℤ

𝑞ℤ
) such that ℛ =

ℤ[𝑋]

𝑋𝑛+1
 is the ring 

of integer polynomials modulo 𝑋𝑛 + 1 where 

each coefficient is reduced modulo (𝑞). 
 

4 Algebraic Analysis 

With the intersection Voronoi 𝒱 24-cell treated 

as a convex polytope, the 16-cell ℓ1-ball is a 

simplicial polytope while the ℓ∞-ball together 

with the 16-cell are the only regular Euclidean 4-

space tessellations.  Given these parameters, the 

24-cell constructed as a Voronoi tessellation 

having center at 𝐷4 for any point 𝑥 is expressed 
as: 

𝑥𝑖 ∈ ℤ4:∑𝑥𝑖
𝑖

≡ 0 mod 2 

If, for any 𝑥𝑖 = 𝑠  there is some point where 

𝑠(1) ≡ 0mod 𝑞, the introduction of an inversion 
oracle is then verified. 

 

Treating the lattice 𝐷2̃ as a binary field extension 

of the approximate x-coordinates, the binary field 

characteristic is thus two given the use of a 

Montgomery form for optimization of [1].  This 

characteristic of two implies that the binary field 

extension thus has order 2𝑛 for 𝑛.  Given that 

𝑞 = 12289 is equivalent to 𝑞 ≡ 1 mod 2𝑛, any 

treatment of the Voronoi cell in terms of the 

reduced lattice 𝐷2̃ must be shown to commute to 

the lattice in 4 dimensions. 

 



Bearing in mind that once an attacker can 
compute: 

[(𝑏 − 𝑡) ∗ (𝑎 − 1)−1 = (𝑎𝑠 − 𝑠) ∗ (𝑎 − 1)−1] 
= 

𝑠 mod 𝑞 

the attacker can then recover the secret key.  We 

believe we have demonstrated such a calculation 

of 𝑠 mod 𝑞, leaving only the treatment of e to be 
demonstrated. 

 

We begin by treating e over the range of x-

coordinates.  For 𝑏 = 𝑎𝑠 + 𝑒, we easily derive 

−𝑒 =
𝑎𝑠

𝑏
.  For the characteristic two, any element 

is also its additive inverse, thus 𝑒 =
𝑎𝑠

𝑏
.  

Substituting the value of e for Voronoi 

coordinates x, we then find 𝑥 =
𝑎𝑠

𝑏
 is equivalent 

to 𝑥 =
(𝑎𝑠+𝑒)𝑠

𝑎𝑠+𝑒
 as previously demonstrated.  This 

trivially reduces to 𝑥 = 𝑠, but more importantly 

results in 𝑥 − 𝑠 = 0.  Using the property of 

additive inverse again, we then rephrase the 

equation as −𝑠 − 𝑠 = 0.  Thus, −2𝑠 = 0. 

 

Returning to mod 𝑞, as derived, we may reduce 

the equation −2𝑠 = 0 with respect to modulo q.  

The inversion constraints of (𝑣 = 𝑢 − 𝑓) and 

(𝑤 = 𝑔) with respect to: 

𝑡 ≡ ℎ𝑣 + 𝑤 mod(𝑞) 
are adjusted via substitutions of w for g, and v 

with 𝑢 − 𝑓, we return to the equivalent form of 

𝑠 mod 𝑞 and derive: 

(𝑓𝑤−1 mod 𝑞)𝑠 − 𝑠

(𝑓𝑤−1 mod 𝑞) − 1
 

To continue we replace 𝑢 − 𝑓 with  

𝑢 − 𝑓 = 𝑢 − 𝑓 and then simply subtract u from 

each side, leaving −𝑓 = −𝑓.  By additive 

inverse, we then have 𝑓 = 𝑓 and may proceed as 

before.  Using the pseudo-inverse polynomial 

(𝑃, 𝑝) we proceed by using the expression 

𝑠 mod 𝑞 congruent to 𝑃 ∗ 𝑝 ∗ 𝑠.  Allowing the 

polynomial 𝑝 as an element of the ring 𝑅𝑞, and 

deriving 𝑢 via substitution of 𝑣 = 𝑢 − 𝑓 as done 

for 𝑓 we may begin constructing the expression 

congruent to 𝑡 by adding 𝑝𝑞 and 𝑢. 

We now must demonstrate recovery (𝑠, 𝑒) with 
respect to the range: 

mod 𝑝 ≥ 4 ∗ 16 + 1 

Having isolated 𝑥 equal to 𝑠 and then showing 

−2𝑠 = 0, we apply the additive inverse to 

produce −𝑠 − 𝑠 = 𝑠 + 𝑠.  We now have  

𝑠 + 𝑠 = 0 = 𝑠(1 + 1) 
For a coefficient of x resulting in 𝑒 mod 𝑝, the 

weight of exp
𝑥2

2𝜎2
 then satisfies the constraint of 

𝑒 ∈ 𝐸𝑞,ℎ
𝑑𝑟  is satisfied.  Knowing 𝑡 = 𝑠 + 𝑒 mod 𝑝, 

and with knowledge of public key h, we then 

compute ℎ𝑣 + 𝑤 mod 𝑞.  Allowing 𝑞 = 2, per 

the constraint of values ℤ𝑞 for 𝑞 > 1 with 

respect to 𝑓 = 1 mod 𝑝 for 

𝑠 = 𝑠 mod 𝑞 ≡ 𝑠 mod 2 

Using rec(𝑤, 𝑏) as a function of s, such that: 

𝑠(𝑤): 𝐼𝑏 + 𝐸(mod 𝑞) and assuming a zero is 

returned.  This existence necessarily relies on 

𝑠(𝑤), for any instance in which the output is not 

zero, then the value of one is returned for 𝑠(𝑤) 
during reconciliation.  Having shown 𝑥 = 𝑠, and 

with knowledge of b as values of (a,s,e) we may 

substitute values as demonstrated in this work to 
isolate: 

𝑠(1) = 𝑠 = 𝑠 mod q ≡ 𝑠 mod 2 

= 

0 mod 2 

 

5 Conclusion  

The anti-derivative provided opens the possibility 

to manipulate the secret (𝑠) while simultaneously 

using the variable (𝑔) substituted for (𝑥) in 

addition to some constant.  This constant added 

to the variables (𝑠, 𝑔) based upon the 

traditionally fixed value of NTRU, though 

applied against New Hope facilitates an inversion 

of the scheme.  The vectors of (𝑥) and relative 

approximate coordinates are shown equivalent to 

𝑒 for known s.  
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7 Appendix – IBMQASM 1.1 Code  

h q[0]; h 

q[1]; x q[2]; s 

q[0]; cx q[1], 

q[2]; t q[3]; 

cx q[0], q[2]; 

s q[3]; x q[0]; 

z q[1]; s q[2]; 

tdg q[3]; cx 

q[0], q[2]; id 

q[3]; cx q[1], 

q[2]; h q[0]; 

h q[1]; h 

q[2]; x q[0]; x 

q[1]; x q[2]; 

cx q[0], q[2]; 

h q[0]; cx 

q[1], q[2]; s 

q[2]; h q[2]; 

tdg q[2]; h 

q[2]; 

measure 

q[0]; 

measure 

q[1]; 

measure 

q[2]; 

measure 

q[3]; 

measure 

q[4];  

  


