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1 Overview

We assume some familiarity with lattice based cryptography over the ring, in
particular R-LWE [9] and NTRU [8]. In some of those ideal lattice-based cryp-
tosystems, one usually uses a polynomial ring of Rq = Zq/F over F = xN + 1
with N a power of 2. For fast implementation purposes, the modulus q is usually

1. either one plus a multiple of 2N , i.e, q = 12289 (such as BLISS [7] and
NewHope [2]);

2. or a power of 2, i.e., 232 (such as FHEW [6] and YaSHE [4]).

In the first case there exist structured subrings. In the second case, it is pos-
sible to convert the original rings into those that admit subrings using modulus
switching techniques [5]. This is perhaps the first time modulus switching is used
in a destructive way to the best knowledge of the author.

The purpose of this report is to study the interesting property of those sub-
rings using lattices. The results in this report are mainly negative: “we have
tried this and that methods and we failed.” It does not suggest any of the param-
eters/schemes are broken, nor does it suggest that the existence of subrings is a
potential weakness by design (and hence suggests non-subring designs shall be
in favor). In fact it shows that all lattice attacks (if possible) considered in this
report are less efficient than the attacks over the original rings. And the result
also implies that if parameters are derived from the provable secure R-LWE the-
orem [9], the shortest vector is totally lost during the mapping into the subring
and therefore makes the subring attack impossible.

An interesting observation, though, is that for some parameters/schemes (not
driven from the provable secure theorem), by moving into a subring, one can still
preserve the uniqueness of the shortest non-zero vector. Those unique vectors
in the new lattices are unfortunately too close to Gaussian heuristic length to
be recovered via any lattice reduction technique. To this extend the results in
this report is similar to those of the subfield attacks on NTRU [1] where the
uniqueness of the shortest vectors is preserved, however the root Hermite factor
is reduced more significantly (in some cases, beyond the reach of known lattice
reduction techniques).



We have also considered a few ad-hoc non-lattice method, such as combi-
natorial searching for short vectors in the lattice over the subring, but none of
those seems to be able to exploit the sub-ring better than a lattice attack. We
did not include those analysis in this report. At the moment we are unable to
improve the results in the report. We wrote this report in the hope of inspiring
new and improved cryptanalysis using subrings.

Another interesting observation is on the constructive side of subrings: the
analysis of subrings allows for a possible connection between an R-LWE instance
with binary secrets in the original ring (with a larger dimension) and an R-LWE
instance with integer secrets in the subring (with a smaller dimension).

2 Modulus switching

For the rest of the report, we use the letter q to denote modulus that is “one plus
a multiple of 2N”, and Q to denote modulus that is “a power of 2”. Those are
two common choices for lattice-based cryptography. They are interchangeable
via the modulus switching technique. For example, when Q is sufficiently large,
i.e., Q = 232, one is able to move from RQ = ZQ[x]/F (x) into Rq = Zq[x]/F (x)
as follows1:

Let s be an R-LWE secret, and (A,B) ∈ R2
Q be an R-LWE instance, where

As+ e = B mod xN + 1 mod Q (1)

for some error vector e. Then,

As+ e = B +Qc mod xN + 1

for some unknown c. Since both s and e are small, c is also small (see Section 5.1
for the analysis of the smallness of c). Let q ≡ 1 mod 2N be the target modulus
that is smaller than Q, and r ≡ Q mod q, then we have

as+ e = b+ rc mod xN + 1 mod q

where (a, b) = (A,B) mod q. Note that s, e and c are unchanged, so long as
‖s‖∞, ‖e‖∞ and ‖rc‖∞ are smaller than q. Hence, we obtain a new equation

as+ (e− rc) = b mod xN + 1 mod q (2)

where the attacker knows (a, b) ∈ R2
q and is asked to find s. It is again an R-

LWE instance, over the new ring Rq now. Compared to the original one, the
noise term is increased by rc.

Example: let Q = 232, q = 216 + 1 = 65537, then r = 1. Other candidate
(q, r) couples are (1689601, 1554), (429496321, 4086). Those candidates allow for
a larger q but they increase the noise too much.

1 It is also feasible to move from the other direction when q > Q. It is irrelevant to
the cryptanalysis in this report.



In the rest we have two typical qs, namely q = 12289 used in BLISS and
NewHope, which is the smallest possible 2kN + 1 for N = 512 or 1024; and
q = 65537 for FHEW and YaSHE where Q = 232. Moving towards this modulus
has minimum impact on rc, and q = 65537 has some very nice roots (power of
2s).

3 Move into the subrings

We analyze the following ring Rq = Zq[x]/F (x) for F (x) = xN +1, N a power of
2, and q one plus a multiple of 2N . Note that q ≡ 1 mod 2N enables fast NTT.
A special feature of this choice of F (x) is that F (x) has exactly N roots modulo
q. I.e.,

F (x) = xN + 1 =

N∏
i=1

(x− ri) mod q (3)

In addition, F (x) has many binomial factors, such as

xN + 1 ≡(xN/2 − 1479)(xN/2 − 10810)

≡(xN/4 − 4043)(xN/4 − 5146)(xN/4 − 7143)(xN/4 − 8246) mod12289

where each of the factors defines a subring. For example, R1 = Zq[x]/F1(x)
where F1 = (xN/2 − q1) with q1 = 1479.

More generally speaking, let F1 = (xM − q1) be a factor of F where M =
N/k is a power of 2. (The above example is the case where k = 2.) Then
{xM − q2i+1

1 }ki=1 are all factors of F , and

q1 ≥ (q − 1)1/k (4)

There are some cases where the equality holds, for example, when q = 216 + 1,
we have q1 = ±28 for k = 2, and q1 = ±24 for k = 4.

Operations over the original ring are homomorphic in the subrings. For ex-
ample, let h be an NTRU public polynomial such that

fh = g mod F mod q,

for some short f and g, then

f̄ h̄ = ḡ mod F1 mod q,

where f̄ ≡ f mod F1 is the image of f in R1.
Example: Let f2 = f mod xN/2 and f1 = (f − f2)/xN/2 be the lower/higher

parts of f , i.e.,
f = xN/2f1 + f2

Also denote g1 and g2 for higher/lower parts of g. Then we know:

f ≡q1f1 + f2 mod F1



g ≡q1g1 + g2 mod F1

therefore
(q1f1 + f2)h̄ = (q1g1 + g2) mod F1 mod q (5)

This is another NTRU lattice with half of the dimension but much larger
‖f̄‖ and ‖ḡ‖.

In the more general case where F1 = (xM − q1) for M = N/k, let f be a
polynomial in R that can be segmented into k polynomials of degree less than
M :

f = f0 + f1x
M + f2x

2M + · · ·+ fk−1x
(k−1)M ,

then,
f̄ ≡ f0 + q1f1 + q21f2 + · · ·+ qk−11 fk−1 mod F1

For all possible ks, k = 2 gives the minimum l∞ norm for f̄ , in which case

‖f̄‖∞ ≈ (q1 + 1)‖f‖∞ = q1 + 1 ≥
√
q − 1,

assuming f is a trinary polynomial and ‖f‖∞ = 1.
As an example, with q = 216 + 1 = 65537 we have q1 = 28 =

√
q − 1. We

have “≈” rather than “=” because it is possible that f1 and f2 do not overlap
each other at all when they are extremely sparse.

However, for an R-LWE lattice or an NTRU lattice, over the subring R1 =
Zq[x]/(xM − q1), i.e.,

L =

[
qI 0
? I

]
the determinant of the lattice is qM , and the dimension is 2M , hence the Gaus-
sian heuristic length in this lattice is estimated by

GH ≈
√
dim

2πe
det

1
dim =

√
Mq

πe
, (6)

while the l2 norm of the target vector ‖(f̄ , ḡ)‖2 is around
√

2Mq1 ≥
√

2Mq,
if (f̄ , ḡ) has uniform coefficients less than q1. In this case the classical lattice
attack is strictly impossible.

Nevertheless, in some of the settings, f and g are fairly sparse, making the
l2 norm a little smaller. With a few tricks we can preserve the uniqueness of the
shortest vector.

4 The q = 12289 case

We analyze the following ring Rq = Zq[x]/F (x) for F (x) = x512 + 1 and q =
12289 with a subring R1 = Zq[x]/F1(x) with q1 = 1479 and F1 = x256−q1. This
is the setting for BLISS-II. BLISS uses NTRU type of (f, g) that are trinary
with pre-fixed number of ±1s. For NewHope a different N = 1024 is used.
NewHope also has Gaussian like “(s, e)” which makes the shortest non-zero



vector disappear after mapping to the subring. Compared to NewHope, BLISS
is an easier example to analysis.

Let h be an NTRU public polynomial such that

fh = g mod F mod q,

for some short f and g, also denote

h̄ = h mod F1,

and H̄ the matrix formed by the “cyclic rotation” of h̄ over R1, then from
previous section we have

(q1f1 + f2)h̄ = (q1g1 + g2) mod F1 mod q

One can define two lattices:

L1 =

[
qI 0
H̄ I

]
where one can look for

(q1g1 + g2, q1f1 + f2) ∈ L1

Alternatively,

L2 =

 qI 0 0
q1H̄ I 0
H̄ 0 I


where one can look for

(q1g1 + g2, f1, f2) ∈ L2.

4.1 Analyzing second lattice

The second lattice is not well balanced because

– (q1g1 + g2) itself is not well balanced; and
– ‖(f1, f2)‖∞ is significantly smaller than ‖(q1g1 + g2)‖∞.

Balance (q1g1 + g2): Let r1 be an integer such that |r1q1 mod q| ≈ |r1|.
Denote r2 = r1q1 mod q. Example, for r1 = 740 we have r2 = 740 × 1479 ≡
739 mod 12289. Let

v = x− q1 = x− 1479 mod 12289

be an example vector, then

740v = 740x− 739 mod 12289.

This effectively reduces the l2-norm by approximately
√

2. I.e,

‖v‖ =
√

14792 + 1 ≈ 1479,



‖740v‖ =
√

7402 + 7392 ≈ 1039.5 ≈ 1479/
√

2

Therefore from

(q1f1 + f2)h̄ = (q1g1 + g2) mod F1 mod q

we know
f1(r2h̄) + f2(r1h̄) = (r2g1 + r1g2) mod F1 mod q (7)

Balance (f1, f2): Let a be a balance integer whose value is to be determined
later. From Eq. (7) we already construct a lattice

L′2 =

 qI 0 0
r2H̄ I 0
r1H̄ 0 I


To balance the weight for (f1, f2), we look at a lattice

L3 =

 qI 0 0
r2H̄ aI 0
r1H̄ 0 aI


which contains (r2g1 + r1g2, af1, af2) for some balance integer a.

L3 has a larger dimension = 3N/2 than L1 (with dimension = N). But for
L3 with certain parameter a, it is still possible to maintain the shortness of
(r2g1 + r1g2, af1, af2).

Parameters In BLISS-I/II, f and g are both trinary polynomials with 70% of
0s, 15% of ±1s each. That means within r2g1 + r1g2,

– 49% of coefficients are 0;
– 42% of coefficients are ±r1 or ±r2;
– 4.5% of coefficients are ±|r1 − r2|;
– 4.5% of coefficients are ±|r1 + r2|.

Also, we know r1 = 740 and r2 = 739. So the norm of (r1g1 + r2g2) is
expected:

‖r1g1 + r2g2‖ ≈(256× 0.42× 7402 + 256× 0.045× 12 + 256× 0.045× 14792)1/2

≈9196.4

On the other hand the norm of (af1, af2) is expected as a
√

512× 0.3. The
norm of the target vector is therefore

(9196.42 + 153.6a2)1/2

The Gaussian expected length in L3 is:√
3N/4πe(qN/2aN )2/3N ≈ 154.7a2/3



For the attack to be optimal, we need to maximize

154.7a2/3 − (9196.42 + 153.6a2)1/2.

When a = 1053 this value is maximized, resulting a shortest vector of length
15951 within lattice L3, with a Gaussian expected length of 16017; although
there is no known method that is capable of recovering this shortest vector due
to the extremely small root Hermite factor

(16017/15951)2/(3N) ≈ 1.0041/768 ≈ 1.000005.

This is way smaller than the root Hermite factor for the original lattice (1.006).
It is very likely that even though the dimension is smaller than the original
lattice, the attack over the subring lattice is much less efficient.

4.2 Analyzing first lattice

Recall that

L1 =

[
qI 0
H̄ I

]
L1 has a smaller dimension, N , compared to 2N for original lattice, and 3N/2

for L3. But the expected short vector in L1 is
√

Nq
2πe that is significantly less than

q1. So a direct lattice attack is not feasible. Some potential way to exploit this
subring is via meet-in-the-middle/combinatorial attacks when f and/or g are
very sparse trinary polynomials; or when r2f1 and r1f2 has some overlapping
that reduces the search spaces.

5 The q = 65537 cases

There are some schemes that use very large modulus rather than 2kN + 1 cases.
For example, FHEW (fully homomorphic encryption in the west) and YASHE
(yet another somewhat homomorphic encryption) use Q = 232 and N = 1024.
This choice of Q makes modular operation is implicit in implementation. As we
have shown in Section 2, we can simplify the equation by

as+ d = b mod xN + 1 mod q (8)

where d = e− rc.
To recover s and d from a and b one tries to find the shortest vector in the

lattice qI 0 0
a I 0
b 0 1


which will be (d,−s, 1). Following same notation for d1, d2, s1, s2 and ā, b̄. Let
F1 = (xN/2 − q1) then,

ā(q1s1 + s2) + (q1d1 + d2) = b̄ mod F1 mod q (9)



Applying the same technique in section 4 we obtain two new lattices, namely

L4 =

qI 0 0
Ā I 0
b̄ 0 1


where (q1d1 + d2,−q1s1 − s2, 1) ∈ L4; and

L5 =


qI 0 0 0
q1Ā q1I 0 0
−Ā 0 q1I 0
b̄ 0 0 1


where (q1d1 + d2, q1s1, q1s2, 1) ∈ L5. As per previous analysis, L5 is easier to
attack than L4.

Note that q1 ≈ q1/2. The Gaussian expected length of L5 is approximately√
(3N/2 + 1)/(2πe)(qN/2qN1 )1/(3N/2+1) ≈

√
3N/(4πe)q2/3 (10)

≈
√

90q2/3, (11)

while the shortest vector is close to a small multiple of q1 ≈ q1/2, where the
“small multiple” depends on the distribution of s, e and c.

Asymptotically, this is very nice, as the Gaussian heuristic length is on the
order of q2/3 while the target vector is on the order of q1/2, which creates a gap
of q1/6, asymptotically. However, as we shall see in next subsection, the hidden
constant for q1/2 is a polynomial in N , which is too large to break any practical
parameters. The only possible scenarios that (q1d1 + d2, q1s1, q1s2, 1) remains
the shortest vector in L5 are that

– either both s and e are very sparse trinary polynomials as in BLISS-I/II;
– or q is very large, potentially (sub-)exponential in N .

Even so, it is not likely that this vector is recoverable from lattice reductions, as
we saw in the BLISS example. In addition, it is not likely such q even exists for
a given Q that allows for both small r in modulus switching and smallish q1 in
subrings. Lastly, when such large q does exist, it is likely the the original lattice
has already have a huge gap so one does not gain anything (other than reduced
dimension) by moving to the sub-ring.

5.1 Asymptotic parameters

Let s and e be sampled from N dimensional discrete Gaussian distribution χNσ
with mean 0 and deviation σ. Then we have ‖s‖2 ≈ ‖e‖2 ≈

√
Nσ.

To approximate the length of c is trickier. Since each coefficient of c is “the
number of wraparounds over q” of an accumulation of N different aisj terms,
where ai is random in Zq and sj follows χσ, the distribution of c is also a Gaussian



χN√
Nσ/2

. Therefore we approximate the norm ‖rc‖2 ≈ rNσ/2. Then, d follows

χN
(r
√
N/2+1)σ

and ‖d‖2 ≈ (rN/2 +
√
N)σ. Therefore we estimate that

‖(q1d1 + d2, q1s1, q1s2, 1)‖2 ≈ ((q1 + 1)2(rN/4 +
√
N/2)2σ2 + q21Nσ

2 + 1)1/2

(12)

≈ q1σ

4

(
r2N2 + 4

√
2rN

3
2 + 8N

)1/2
(13)

Combining Eq. (10) and (13), the uniqueness of the shortest vector is pre-
served, if only

q1σ

4

(
r2N2 + 4

√
2rN

3
2 + 8N

)1/2
<
√

3N/(4πe)q2/3 (14)

Ignoring all constants we require

q > N3r6σ6

5.2 Practical parameters

For N = 1024, q = 65537, we have r = 1. The norm of shortest vector is
estimated by:

‖(q1d1 + d2, q1s1, q1s2, 1)‖2 ≈ 280q1σ

For σ = 8 as in YASHE, we have

‖(q1d1 + d2, q1s1, q1s2, 1)‖2 ≈ 573440

This is a lot greater than Gaussian Heuristic
√

90q2/3 ≈ 15421, which implies
that the attack is no longer feasible.

In order for the attack to be successful, we require
√

90q2/3 > 280q1/2σ

That is
q > (29.5σ)6

6 R-LWE with Binary secret

For now let us assume that f is a binary polynomial over a ring Rq = Zq/F
with q one plus a power of 2. Also F1 = xM − q1 be a binomial factor of F , with
M = N/k for some k. Then, there exist a mapping from Rq to R1 that maps a
binary polynomial f into a degree M − 1 polynomial with integers coefficients
of t-bits.

Example: let

f =(f0 + f1x+ f2x
2 + · · ·+ f15x

15)



+(f16 + f17x+ f18x
2 + · · ·+ f31x

15)x16

...

+(f112 + f113x+ f114x
2 + · · ·+ f127x

15)x112

be a binary polynomial over the ring with F = x128 + 1 and q = 216 + 1. Then

F1 = x16 − 2

defines a subring, and

f̄ = f mod F1 =(f0 + 2f16 + 22f32 + · · ·+ 27f112)

+(f1 + 2f17 + 22f33 + · · ·+ 27f113)x

...

+(f15 + 2f31 + 22f47 + · · ·+ 27f127)x15

Interestingly, when each of fi is randomly chosen from {0, 1}, f̄ becomes a ran-
dom degree 15 polynomial with integer coefficients uniformly randomly in [0, 28).

In general, let
as+ e = b mod F mod q (15)

be an R-LWE instance in Rq where both s and e are random binary vectors,
then, one can convert this instance into a new R-LWE instance

ās̄+ ē = b̄ mod F1 mod q, (16)

where s̄ and ē are small integer vector uniformly distributed over Z2k . Hence,

1. if one can solve R-LWE w.r.t. (15) then he can also solve the R-LWE w.r.t
(16);

2. if one can solve R-LWE w.r.t. (16), in addition, if he can also recover a from
ā. then he can also solve the R-LWE w.r.t (15);

The first point is straightforward, as given a, b and F , one can compute ā, b̄ and
F1. In fact, the map from a to ā is surjective; the map from f to f̄ was supposed
to be surjective too, but the restriction of binary coefficients reduces the space,
and indeed makes it bijective. Hence, one is not able to reserve the reduction,
as from ā and b̄ there exists many potential as and bs.

This result does not suggest the existence of “provable secure” instances of
R-LWE with binary coefficients.

7 Conclusion and further thoughts

In this report we have looked at some of possible ways to attack the rings that
contain very nice subrings. In section 2 we have shown that even if present ring
does not admit those nice subrings, one can still using modulus switching to
obtain nice sub-rings.

We then show in Section 3 that, in general, those attacks does not break any
existing schemes. However, it is still interesting to see that



– for some schemes (such as BLISS-II) one can still preserve the uniqueness of
the shortest non-zero vector, although this vectors are too close to Gaussian
heuristic length to be recovered by any known algorithm;

– for some other settings, one can expect a unique shortest vector asymptoti-
cally.

We then show that in both cases those lattice attacks are no better than lattice
attack over original rings due to the extremely small root Hermite factors.

We believe that it is safe to conclude that subring lattice attacks are in general
less efficient than lattice attacks over the original ring. However, this report does
not rule out the possibility that there exist other types of attacks that exploit
the subring structure better than lattice attacks.

There are some ideas to which the author do not have the knowledge to
explore further at the moment. For example, in the case of q = 216 + 1, there
are many different subrings xM − q1 with q1 = 2t a power of 2. This is a highly
structured q1 and it is not too optimistic to assume that it is exploitable.
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