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Introduction

There is a rich tradition in the visualization of scientific developments and historical 

events, accelerated recently by the growth and availability of large-scale datasets, soft-

ware, and computational approaches (see Börner’s [2010] Atlas of Science for a visual 

chronicling of this history and Börner, Chen, & Boyack, 2003, for a review). Science 

visualizations are often predicated on a map metaphor, so much so that the term sci-

ence visualization has become interchangeable with mapping science. However, unlike 

the geographic map, science has no natural baselines (see Day, chapter 4, this volume). 

Scientific domains are not bounded like nations or states, particularly in interdisciplin-

ary areas (Small & Garfield, 1985). Given the complexity of knowledge organization 

and interaction, there is always some degree of reductionism that must occur in order 

to project the knowledge space onto a two- or three-dimensional landscape. Further-

more, if the variable of time is included (e.g., if a scholar wishes to animate evolving 

dynamics), additional care must be taken to stabilize the representation so that the 

results can be captured as a mental map (Liu & Stasko, 2010; Misue, Eades, Lai, & Sugi-

yama, 1995).

The intellectual space of science can be mapped in terms of words (e.g., title words) 

and authors, and co-occurrences of these variables (Callon, Courtial, Turner, & Bauin, 

1983; White & Griffith, 1982; White & McCain, 1998). At a higher level of aggregation, 

journal-journal citation relations—available from the Science Citation Index—have been 

used since the mid-1980s for mapping developments in and among disciplines (Dore-

ian & Fararo, 1985; Leydesdorff, 1986; Tijssen, De Leeuw, & Van Raan, 1987). Small 

and others further developed the mapping of cocitations (e.g., Garfield, 1978; Small & 

Sweeney, 1985).

In this chapter, I argue that observable network relations organize the sciences under 

study into historical instantiations that can be statically visualized. The development 
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of scholarly discourse, however, can be considered self-organizing in terms of fluxes 

of communication along the various dimensions that operate within different (e.g., 

disciplinary) codes. Over time, this adds evolutionary differentiation to the historical 

integration; a richer structure can process more complexity. Latent Semantic Analysis 

(LSA) focuses on these latent dimensions in textual data, and social network analysis 

(SNA) on the networks of observable relations. However, the two coupled topographies 

of information processing in the network space and meaning processing in the vector 

space operate with different (nonlinear) dynamics.

Multidimensional Scaling

Computer-aided visualization of multivariate data predated the advent of the personal 

computer and the Internet. Based on Kruskal (1964), scholars in psychometrics devel-

oped spatial representations of sets of variables by multidimensional scaling (MDS) 

(e.g., Kruskal & Wish, 1978; Schiffman, Reynolds, & Young, 1981). Among other forms 

of output, MDS can generate a two-dimensional map. The first large-scale MDS pro-

gram ALSCAL (“alternating least square analysis”) is still available in current versions 

of statistical packages such as SPSS.

Table 9.1 provides distances in terms of flying mileages among 10 American cities 

(SPSS, 1993; Leydesdorff & Vaughan, 2006). MDS enables us to regenerate the map 

from which these distances were obtained by minimizing the stress (S) in the projec-

tion (figure 9.1). Feeding this data into ALSCAL, for example, leads not surprisingly to 

an almost perfect fit (S = 0.003).

These data measure dissimilarity, because the larger the numbers, the further apart 

the cities are—that is, the more “dissimilar” they are in location. One can also use 

similarity measures for mapping, such as correlation coefficients. Options that might 

be added to a next generation of such maps include:

1. The ability to visualize the network of connections among the cities

2. Measures of distance other than Euclidean ones—for example, correlations in a mul-

tidimensional (vector) space provide a different topology

3. Groupings of nodes using different colors based on attribute values

4. The ability to scale nodes and links with the values of attributes; etc.

A large number of current network visualization and analysis programs provide these 

features and can be downloaded from the Internet.
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Figure 9.1
MDS mapping (ALSCAL) of 10 American cities using the distance matrix in table 9.1 (normalized 

raw stress = 0.003).

Graph Theory and Network Analysis

During the 1980s, graph theory emerged as a theoretical basis for network analysis. In 

the original programs (such as GRADAP) the links had to be drawn by hand. UCINet 

2.0 (1984) provided the first network analysis program that integrated a version of 

MDS (MINISSA),1 but the number of variables was at the time limited to 52: 26 upper-

case and 26 lowercase characters could be indicated (Freeman, 2004). These programs 

allowed for the use of similarity measures other than Euclidean distances. For example, 

Leydesdorff (1986) used Pearson correlations to visualize factor structures in aggregated 

journal-journal citation matrices using UCINet 2.0.

Graphical interfaces became available during the 1990s with the further develop-

ment of Windows (Windows 95) and the Apple computer. Pajek followed as a visualiza-

tion and analysis tool for large networks in 1996 (De Nooy, Mrvar, & Batagelj, 2005). 

Pajek also allows for non-Western characters such as Chinese and Arabic (Leydesdorff 

& Jin, 2005).2
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Figure 9.2 provides an example of the current state of the art: the aggregated cita-

tion network of the Journal of the American Society for Information Science and Technology 

(JASIST) as mapped in 2010. (These 25 journals are cited in JASIST to the extent of more 

than 1% of its total citations.) The matrix is analyzed using both Pajek and Gephi;3 

links are indicators of cosine similarities between the citing patterns of these journals; 

the vertices are colored according to the modularity algorithm (Q = 0.328; Blondel, 

Guillaume, Lambiotte, & Lefebvre, 2008), and sized according to their degree centrality 

(De Nooy et al., 2005).

Research Policy, positioned between the three components in this map, has accord-

ingly the highest betweenness centrality (0.305). Although different in some details, 

both the factor analysis4 and the modular decomposition classify Research Policy 

as belonging to the information systems group of journals (within this context). The 

visualization adds a network of relations among the nodes. As noted, one is able to use 

attributes of nodes and links in order to further enrich the visual.

Figure 9.2
Twenty-five journals most cited by authors in JASIST during 2010; Kamada and Kawai (1989) used 

for the layout; node sizes proportional to degree centrality; node colors according to modularity 

(Q = 0.328); edge width proportional to cosine values (cosine > 0.2).
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Relational and Positional Maps of Science

Using MDS, one visualizes the variables as a system (e.g., a word-document matrix). 

In spatial terms, the words attributed to documents are considered as vectors that are 

vector-summed into a vector space (Salton & McGill, 1983). Given parameter choices 

(such as the similarity measure), the projection of the variables in MDS is determin-

istic. For example, the Euclidean distance between San Francisco and New York does 

not change depending on the intensity of the network relations (e.g., flights) between 

these two cities.

In network analysis, one is often as interested in a representation that uses the 

intensity of the relations as the distance on the map. For instance, two authors who 

frequently coauthor should be positioned next to each other in a coauthorship map. In 

this case, it is not the correlations among the distributions, but the relations among the 

nodes that are used for the mapping. Graph-analytic algorithms (e.g., Kamada & Kawai, 

1989) optimize the network in terms of relations. The choice of starting point can be 

random, and each run may lead to a somewhat different outcome.

Let us compare the two approaches to optimizing the vector space versus the net-

work topology. In figures 9.3 and 9.4, 43 title words are included that occurred more 

than 10 times among the 455 titles in the 2010 and 2011 volumes of JASIST. A five-

factor solution in the underlying data matrix is used for coloring the nodes in the vec-

tor space (figure 9.3) and the network space (figure 9.4), respectively.

Factor 1, for example, is composed of the words impact, factor, journal, citation, 

and source. These (green-colored) words are grouped in both figures: they not only 

entertain strong relations to one another (figure 9.4), but also co-occur in similar  

patterns among the other title words in the sample (figure 9.3). Factor 4, however, 

with primary factor loadings for the words effect, image, study, online, and behavior, 

can more easily be distinguished in figure 9.3 than in figure 9.4. These words co-

occur with other words in the set more diffusely, yet they form a latent dimension of  

the data.

In other words, there is no necessary relationship between co-occurrences in the 

observable network of relations, and correlations among co-occurrence patterns. 

The co-occurrence patterns can be mapped using the correlation coefficients among  

the distributions, whereas the values of co-occurrence relations provide us with a sym-

metrical (affiliations) matrix that can be visualized directly. In the latter case, one visu-

alizes the network of observable relations, whereas in the former, one visualizes the 

latent structure in these data. For example, two synonyms may have (statistically) simi-

lar positions in a semantic map, but they will rarely co-occur in a single title.
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Figure 9.3
Cosine-normalized map of 43 words occurring more than 10 times during 2010 and 2011 in titles 

of JASIST. (Cosine ≥ 0.1; Kamada & Kawai, 1989.) The nodes are colored according to the five-

factor solution of this network (Varimax rotated; SPSS), and scaled in accordance to their degree 

centrality.

These two perspectives on the data have led to two different research traditions in 

textual analysis and social network analysis, respectively. As noted, LSA focuses on the 

latent dimensions in the data, while SNA focuses on the observable relations in net-

works. In SNA, for example, eigenvector centrality—that is, factor loading on the first 

factor—can be used as an attribute of the nodes, whereas in LSA the factors (eigenvec-

tors) in different directions organize the semantic maps (Landauer, Foltz, & Laham, 

1998). The factor-analytic approach has been further developed using Singular Value 

Decomposition (SVD), whereas graph theory has provided an alternative paradigm for 

developing algorithms in SNA.

A star in a graph can be in the center of the multidimensional space, and therefore 

not load strongly on any of the dimensions. In figure 9.4, for example, the word infor-

mation, which occurs 94 times in this set (followed by citation, 44 times), did not load 

positively on any of the five factors distinguished; this variable is factor-neutral and 
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Figure 9.4
Co-occurrence map of 43 words occurring more than 10 times during 2010 and 2011 in titles of 

JASIST. (Co-occurrence values ≥ 2; Kamada & Kawai, 1989.) The nodes are colored according to 

the five-factor solution of this network (Varimax rotated; SPSS), and scaled in accordance to their 

degree centrality.)

therefore colored white. However, using the degree distribution for sizing the nodes 

in figure 9.4, information has the highest degree, co-occurring with 37 of the 43 title 

words, followed by analysis with a degree of 33. A core set of words surrounding infor-

mation (circled red in figure 9.4) belongs to the center of the field of the information 

sciences. Citation (Factor 1) and analysis (Factor 3) are part of a secondary grouping of 

the relations (gray circled).

Interpreting Science Visualizations

When a network is spanned in terms of relations, this process shapes an architecture in 

which all components have a position. The analysis of this architecture (that is, the set 



PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY

Pr

Cronin—Beyond Bibliometrics

Science Visualization and Discursive Knowledge  175

of relations) enables us to specify what the relations mean in the network as a system. 

For example, the word information was most central in this network (figure 9.4), but it 

was not colored in terms of having meaning in any of the relevant dimensions indi-

cated at the systems level. Yet the word as a variable carries Shannon-type information 

(uncertainty; Shannon, 1948).

The graph-analytic approach informs us, as analysts, about the network of relations, 

but not about what these relations mean in terms of the discourse(s) under study. How-

ever, graph-theoretic concepts such as centrality also have meaning in social network 

analysis. The analyst’s (meta) discourse can be distinguished from the communication 

among the words under study. The latter communication can represent scholarly dis-

courses, political discourses, and media information.

Within each of these discourses, codes of communication can span dimensions 

that provide the communicated words with meaning. Both the developments in the 

observable networks (vectors) and the hypothesized dimensions (eigenvectors) can be 

theorized. The relations among nodes can be considered attributes of the nodes, but 

the dimensions of the communication are attributes of the links. SNA focuses on the 

positions of nodes in terms of vectors, whereas LSA focuses on the positions of links in 

terms of these next-order structures. 

This scheme can be generalized: the relations among authors can also be consid-

ered as a system of links and therefore another semantic domain. Any system that 

can position its components as a system provides itself and its elements with meaning 

(Maturana, 1978). A discourse, for example, provides meaning to the words that are 

communicated.

The two perspectives of meaning processing and information processing can be con-

sidered feedback mechanisms operating on each other. The shaping of the networks 

of relations causes structures that can provide feedback evolutionarily as a next-order 

system on the networks of relations from which they emerge. Meaning is provided 

from the perspective of hindsight, but with reference to other possibilities (“horizons 

of meaning;” cf. Husserl, 1929/1973). The next-order meaning processing cannot con-

tinue without information processing; otherwise, the systems would no longer be his-

torical. The historical instantiation can from this perspective be considered a retention 

mechanism of the semantic systems that evolve over time (Leydesdorff, 2011a).

The Network and the Vector Space

The multidimensional (vector) space can be regarded as a system of relations includ-

ing interaction terms, and the network space as an aggregate of observable relations 
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among nodes. One can also call the network relations first-order (being observable) 

and the vector space second-order because the latent dimensions of the system are 

not given but hypothesized—for example, in a factor-analytic model. Whereas observ-

able variation is stochastic, latent structure is deterministic. The deterministic selection 

mechanism(s), however, can be expected to be further developed over time in parallel 

to the networks of relations because of the feedback mechanisms involved.

Accordingly, the systems view of MDS is deterministic, whereas the graph-analytic 

approach can also begin with a random or arbitrary choice of a starting point. Using 

MDS, the network is first conceptualized as a multidimensional space that is then 

reduced stepwise to lower dimensionality. At each step, the stress increases; Kruskall’s 

stress function is formulated as follows:

S
x x d

d

i j iji j

iji j

=
− −

≠

≠

∑
∑

( )2

2
 (1)

In this formula ||xi - xj|| is equal to the distance on the map, while the distance measure 

dij can be, for example, the Euclidean distance in the data under study. As noted, one 

can use MDS to illustrate factor-analytic results (in tables), and in this case the Pearson 

correlation obviously provides the best match.

Spring-embedded or force-based algorithms can be considered a generalization of 

MDS but were inspired by the above-mentioned developments in graph theory dur-

ing the 1980s. Kamada and Kawai (1989) were the first to reformulate the problem of 

achieving target distances in a network in terms of energy optimization. They formu-

lated the ensuing stress in the graphical representation as follows:

S sij
i j

=
≠
∑  with s

d
x x dij

ij
i j ij= − −1

2
2( )  (2)

Equation 2 differs from equation 1 by taking the square root in equation 1, and because 

of the weighting of each term in the numerator with 1/dij
2 in equation 2. This weight is 

crucial for the quality of the layout but defies normalization with ∑ dij
2 in the denomi-

nator of equation 1; hence the incomparability between the two stress values.

The ensuing difference at the conceptual level is that spring embedding is a graph-

theoretic concept developed for the topology of a network. The weighting is achieved 

for each individual link. MDS operates on the multivariate space as a system, and hence 

refers to a different topology. In the multivariate space, two points can be close to each 

other without entertaining a relationship (Granovetter, 1973). For example, they can 

be close or distant in terms of the correlation between their patterns of relationships 

(cf. Burt, 1992).
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In the network topology, Euclidean distances and geodesics (shortest distances) are 

conceptually more meaningful than correlation-based measures. In the vector space, 

correlation analysis (factor analysis, etc.) is appropriate for analyzing the main dimen-

sions of a system. The cosines of the angles among the vectors, for example, build on the 

notion of a multidimensional space. In bibliometrics, Ahlgren, Jarneving, and Rousseau 

(2003) have argued convincingly in favor of the cosine as a nonparametric similarity 

measure because of the skewedness of the citation distributions and the abundant zeros 

in citation matrices. Technically, one can also input a cosine-normalized matrix into a 

spring-embedded algorithm. The value of (1 – cosine) is then considered a distance in 

the vector space (Leydesdorff & Rafols, 2011). In sum, there are a wealth of possible 

combinations in a parameter space of clustering algorithms and similarity criteria.

The Visualization of Heterogeneous Networks

The two coupled topographies of information processing in the network space and 

meaning processing in the vector space operate with different (nonlinear) systems 

dynamics (Luhmann, 1995). The historical dynamics of information processing in 

instantiations organizes the system, and thus interfaces with and tends to integrate, 

the (analytically orthogonal) dynamics along each eigenvector. The systems dynam-

ics, however, can be considered self-organizing in terms of fluxes along the various 

dimensions—used as codifiers of the communication—and with potentially different 

speeds. This development over time adds evolutionary differentiation to the historical 

integration; a richer structure can process more complexity.

Integrating retention can be organized in dimensions other than differentiating 

expansion. For example, archives and reflexive authors historicize and thus stabilize 

the volatile networks of new ideas, metaphors, and concepts. Relations among words 

can be regarded as providing us with access to the variation, whereas cited references 

anchor new knowledge claims in older layers of texts (Lucio-Arias & Leydesdorff, 

2009). Authors and institutions may provide historical stability because differences are 

reflected and locally integrated in communicative actions.

The textual domain provides us with options to combine these different layers in 

visualizations and animations. The sciences evolve as heterogeneous networks of words, 

references, authors, and at different levels of aggregation. The composing subdynam-

ics, for example, of specialties and disciplines are not organized neatly in terms of spe-

cific variables, but in terms of configurations of variables, such as specific resonances 

among cognitive horizons (paradigms), social identities, and corpora of literature. The 

human beings involved (and their organizations) cannot be reduced to literature, and 
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cognitive development can be considered a latent dimension emerging in networks of 

texts and people (Leydesdorff, 1998). This thesis of the heterogeneity of the technosci-

ences was first proposed by authors in the semiotic tradition (Callon et al., 1983).

Because the different dynamics at interfaces within and between knowledge-based 

systems (such as science, technology, and innovation) are documented in texts, the 

texts can provide us with access to the different dimensions. In SNA, for example, 

these various dimensions of the data can be mapped as modalities. Another option for 

mapping hybrid networks was suggested by Leydesdorff (2010). All relevant variables 

can be attributed to (sets of) documents as units of analysis. The various asymmetrical 

matrices of n documents versus, for example, k words and m authors can be aggregated 

as visualized in figure 9.5.

The resulting matrix can be factor-analyzed or—using matrix algebra—transformed 

into a symmetrical affiliations matrix. In figure 9.6, 33 of the 36 coauthors of these 

same documents are positioned in a semantic map (as in figure 9.3). (Three other 

authors were not connected at cosine > 0.1.) I added a dashed circle around the coau-

thorship network of Mike Thelwall as an example. Other variables (e.g., cited refer-

ences, institutional addresses, country names) can be made equally visible, and colored 

or sized accordingly.

Animation of the Visualizations

Can the maps for different years (or other time intervals) also be animated? Several 

network visualization programs are available that enable the user to smooth the tran-

sitions based on interpolations among the solutions at different moments in time. 

The dynamic problem is then reduced to a comparatively static one: the differences 

among maps for different years are assumed to provide us with a representation of the 

Figure 9.5
Two matrices for n documents with m authors and k words can be combined to a third matrix of 

n documents vs. (m + k) variables.
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Figure 9.6
43 words (from figure 9.3) and 33 authors related at cosine > 0.1.

evolution of the system. However, the solution for each year is already an optimization 

of a higher-dimensional configuration into the two-dimensional plane. It can thus be 

difficult to distinguish between the development of the system and error.

An analytic solution of the system of partial differential equations provided by all 

the changing vectors and eigenvectors is impossible, and a numerical one computa-

tionally too intensive. Using MDS, however, Gansner, Koren, and North (2005) pro-

posed minimizing not the stress, but the majorant of the stress, as a computationally 

more effective and methodologically more promising optimization. Baur and Schank 

(2008) extended this algorithm to layout dynamic networks (cf. Erten, Harding, Kobou-

rov, Wampler, & Yee, 2004). The corresponding dynamic stress function is provided by 

the following equation:

S
d

x x d x x
ij t

i t j t ij ti jt i t i tit
= − −









 + −

≠ +≤∑∑ ∑1
2

2
1

2

1
,
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<<∑



T

 (3)
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In equation 3, the term on the left is equal to the static stress (in Equation 2), while 

the term on the right adds the dynamic component, namely the stress over subsequent 

years. This dynamic extension penalizes drastic movements of the position of node i at 

time t (
�
xi t, ) toward its next position (

�
xi t, +1) by increasing the stress value. Thus, stability 

is provided in order to preserve the mental map between consecutive layouts (Liu & 

Stasko, 2010).

In other words, the configuration for each year can be optimized in terms of the 

stress in relation to the solutions for previous years and in anticipation of the solutions 

for following years. In principle, the algorithm allows us (and the dynamic version 

of Visone—available at http://www.leydesdorff.net/visone—enables us) to extend this 

method to more than a single time step. Using a single year in both directions, Leydes-

dorff and Schank (2008) animated, for example, the aggregated journal-journal cita-

tions in “nanotechnology” during the transition of this field at the end of the 1990s.5

Note that this approach is different from taking the solution for the previous 

moment in time as a starting position for a relative optimization. The nodes are not 

repositioned given a previous configuration, but the previous and the next configura-

tions are included in the algorithmic analysis for each year. More recently, Leydesdorff 

(2011b) further elaborated this approach by projecting the eigenvectors as constructs 

among the variables into the animations.6 Thus, one can make visible not only the 

evolution of observable variables, but also the evolution of latent structures. In prin-

ciple, it would be possible to decompose the resulting stress into dynamic and static 

components.

Conclusion and Future Directions

The relations between semantic maps and social networks have been central to my 

argument because when visualizing the sciences as bodies of knowledge, the multi-

modal network of words, authors, etc., has to be specified. Discursive knowledge is 

communicated, and thus a network visualization is possible in different dimensions. 

However, knowledge can be considered a latent dimension of meaning processing in 

a network: discursive knowledge emerges in configurations of words, authors, refer-

ences, etc., and can then be codified and institutionalized, for example, in journals, 

specialties, departments, and disciplines. The self-organization of the sciences in latent 

dimensions conditions and enables the observable relations in networks of authors, 

words, and citation relations.

The sciences are first shaped by the communicating agents, but textual communi-

cations can then develop a dynamic of their own as the communications are further 
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codified by theorizing. The sciences develop as systems of rationalized expectations in 

this codified dimension. However, the development of ideas leaves footprints in the 

texts (Fujigaki, 1998). The dynamics of texts and authors are different, and the dynam-

ics of communication are (co)determined by the feedback from emerging knowledge 

dimensions. In figure 9.2, for example, the knowledge dimension was operationalized 

as three groups of journals belonging to different specialties.

The visualization of the sciences as a research program thus requires distinguish-

ing among semantic maps, social networks, and the latent sociocognitive structures 

that can emerge on the basis of the interactions among people and texts. Three layers 

(people, texts, cognitions) coevolve in terms of observable variables and latent eigen-

vectors. Because of the next-order organization, the variables can be expected to inter-

act among themselves and to shape and reproduce structures that can both recur on 

previous states and anticipate further developments of the system(s) (Luhmann, 1995; 

Maturana, 1978).

Visualization and animation of the sciences constitute an active research front in  

the development of the information sciences and bibliometrics. In the future, anima-

tions using multiple perspectives can be expected to replace models of multivariate 

analysis in which independent factors explain the data. Configurations of variables 

generate different synergies (Leydesdorff, Rotolo, & De Nooy, 2013). These implica-

tions follow from considering not only the communication of information, but also 

its meaning (Krippendorff, 2009; Leydesdorff, 2010). Horizons of meaning can be 

expected to generate redundancy—that is, new and more possibilities that change the 

value of existing ones.7

Animations enable us to capture different perspectives analogously as visualizations 

capture different arrangements of variables. The development of animations in the 

coupled layers of information and meaning processing can be expected to raise new 

questions for the further development of bibliometrics, network analysis, statistics, and 

relevant neighboring specialties.
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Notes

1. MINISSA is an acronym for “Michigan-Israel-Nijmegen Integrated Smallest Space Analysis”; it 

became available around 1980 (Schiffman, Reynolds, & Young, 1981).
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2. Pajek is a freeware program for network visualization and analysis available at http://vlado 

.fmf.uni-lj.si/pub/networks/pajek.

3. Gephi is an open-source program for network analysis and visualization, available at https://

gephi.org.

4. Three factors explain 49.2% of the variance in this matrix.

5. Available at http://www.leydesdorff.net/journals/nanotech.

6. See http://www.leydesdorff.net/eigenvectors/commstudies.

7. The mutual information in three dimensions (μ*; cf. Yeung, 2008, pp. 59–60) among the three 

main factors structuring the coword network (figure 9.3) is −122.2 mbits, whereas this redun-

dancy virtually disappears when the 33 coauthors are added to the network: μ* = −7.0 mbit (figure 

9.6). For the social network among the 36 coauthors, this value of μ is positive. In other words, 

the coauthor network itself does not communicate meaning in this case (Leydesdorff, 2010, 

2011b; Leydesdorff & Ivanova, in press).
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