
A Guide to Creating a Raspberry Pi
Docker Cluster using Clusterhat.
This guide will allow you to utilize several open source technologies in Docker, Raspbian, and others to

learn and implement container technologies. The low cost and ease of learning that Raspberry Pi SoC

(system on a chip) boards represent, along with their widespread use in I.o.T., robotics, Data Center, and

D.I.Y. maker spaces create an additional means to acquire enterprise grade knowledge without the high

cost that traditional server and switches represent.

This General Overview will give the user the basic setup as I created the cluster in my office and home

labs. Let’s Get started!

Steps needed:

What is needed to run a clusterhat (at a minimum)?

1. 1x Controller Raspberry Pi (A+/B+/B2/B3)

2. 1-4x Raspberry Pi Zero (1.2/1.3/W)

3. 2-5x Micro SD memory card (8GB min)

4. Pi Power Supply (2-2.5A capable)

5. Network Cable / WiFi dongle / etc.

The ClusterHAT will work with most models of Raspberry Pi but please be aware the Raspberry Pi 3 may

reduce the CPU speed when hot which may happen with high CPU usage with or without a HAT. A 20cm

(or longer) USB cable (Type A plug to Micro-B plug) is required to connect the ClusterHAT to the

Controller Pi USB port. The Controller and each Zero requires a Micro SD card (8GB or bigger

recommended). A power supply capable of supplying 2 Amps is recommended (2.5A when using a Pi 3B

or 3B+).

6. Purchase the hardware. I used a 3B+.

Qty 1 3B+

7. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

8. Qty 1 clusterhat

a. https://clusterhat.com/buy

i. Each clusterhat package contains the following:

1. 1x ClusterHAT PCB*
2. 4x 12mm M2.5 standoff
3. 8x 6mm M2.5 screw
4. 4x stick-on plastic feet
5. USB Cable*

9. Qty 4 Raspberry Pi Zeros

i. https://www.raspberrypi.org/products/raspberry-pi-zero/

10. Clusterhat case (optional)

i. https://www.pishop.us/product/cluster-hat-case/

11. Assemble the hardware together.

a. A general warning: Disconnect the Pi from all sources of power (USB

Power/HDMI/USB Peripherals/etc.) before connecting the ClusterHAT.

i. Qty 1 3b+ (or any approved controller)

ii. Qty 1 clusterhat

iii. Qty 4 Raspberry Pi Zeros

iv. Case (if needed)

12. Download and install the Raspbian Operating Systems provided by the Clusterhat creator and

developer.

a. https://clusterctrl.com/setup-software

b. After you’ve downloaded follow these next steps:

i. Format SD Cards to Fat32 using whatever your comfortable with

ii. use Etcher (https://etcher.io) and flash the controller to the Pi 3B or 4B or

whatever you’re using as a controller)

iii. Official from Clusterhat says this:

1. Follow the standard instructions to unzip and write each of the above
images to the corresponding SD Card.

2. Username: pi
Password: clusterctrl

We strongly advise changing the pi users password and resizing the
filesystem using the raspi-config tool on your first login.

3. SSH is no longer enabled by default on any of the images, to enable
SSH you will need to create a file named "ssh" in the boot partition -
see the Raspberry Pi blog entry for more details, this needs to be
done on both Controller and Pi Zero images (from the Controller Pi
the Pi Zeros can be accessed via the serial console when SSH is
disabled)

13. Load Docker

a. Connect via SSH to the controller or via command line of the controller to each of zero

nodes and controller.

i. Details to do this if you don’t know how can be found here:

b. Issue the following commands on *all Pi’s* in this order:

a. curl -sSL https://get.docker.com | sh

b. sudo usermod -a -G docker pi

c. curl -s https://packagecloud.io/install/repositories/Hypri
ot/rpi/script.deb.sh | sudo bash

d. sudo apt-get install containerd.io=1.2.6-1

e. iptables -A FORWARD -i br0 -o br0 -j ACCEPT

i. This command will need to be entered after every boot

or reboot

ii. I’m attempting to automate this in a script

1. Edit: Add the following lines to crontab -e via

CLI:

a. @reboot sudo iptables -A FORWARD -i

br0 -o br0 -j ACCEPT

b. @reboot /sbin/clusterhat on

c. @reboot /sbin/clusterhat fan on 20

d. @reboot /sbin/clusterhat fan on 21

14. Configure Docker

a. These commands are next:

a. docker swarm init

2. It should come back with a message similar to:

a. docker swarm join \ --token <random token docker generated
> \ <controller ip>:<port>

Installing portainer for web based cluster management:

You may need to run this as a super user (IE sudo):

1. docker pull portainer/portainer
2. docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock --

restart always --name portainer portainer/portainer -H unix:///var/run/doc
ker.sock

Playing with Docker
I followed a guide online from a Dutch developer. His instructions worked well except for the

“counter” commands. His guide can be found here. I’ve recreated it here as well.

Deploying containers

I’m going to deploy the last example on this page on my setup. It shows a 'real' application with a
database (Redis) that is shared by two simple web applications. In that example we first need to create
a network overlay that is used between the web app and the Redis database. We can then create the
Redis and web app services.

These will take quite a long time to start so don’t get worried if they seem 'stuck' for a while. Especially
the first time you deploy something it will take quite a bit of time to download and unpack the Docker
image. So we need to issue 3 commands:

$ sudo docker network create --driver overlay --subnet 20.0.14.0/24 armnet

$ sudo docker service create --name redis --replicas=1 --network=armnet alexellis2/redis-arm
:v6

$ sudo docker service create --name counter --replicas=2 --network=armnet --publish 3000:3000
alexellis2/arm_redis_counter

In the counter service we use two replicas for now.

WARNING
You need ARM specific images to deploy on your Raspberry. Deploying official non-ARM Docker images

on your raspberry won’t work!

After a while both services should be up and running:

$ docker service ls

ID NAME MODE REPLICAS IMAGE

3k3rcebdxpxp counter replicated 2/2 alexellis2/arm_redis_counter:latest

melg4lzwro15 redis replicated 1/1 alexellis2/redis-arm:v6

Docker has, as we instructed, created two instances of the 'counter' service (a Node.js web application)
and one Redis instance. We can check which nodes a service is running on:

$ docker service ps counter

ID NAME IMAGE NODE DESIRED STATE CURRENT ST
ATE ERROR PORTS

dmnw6re5h31v counter.1 alexellis2/arm_redis_counter:latest mikey Running Running 15
seconds ago

s7b7h12uruzy counter.2 alexellis2/arm_redis_counter:latest donny Running Running 12
seconds ago

We can now curl the web application and they both should increment and report the counter:

$ curl -4 localhost:3000/incr {"count":13}

$ curl -4 localhost:3000/incr {"count":14}

We can also scale the service to more workers if we want:

$ docker service scale counter=4

counter scaled to 4

$ docker service ls

ID NAME MODE REPLICAS IMAGE

3k3rcebdxpxp counter replicated 4/4 alexellis2/arm_redis_counter:latest

melg4lzwro15 redis replicated 1/1 alexellis2/redis-arm:v6

We can also check on which nodes the counter service runs:

$ docker service ps counter

ID NAME IMAGE NODE DESIRED STATE CURRENT ST
ATE ERROR PORTS

dmnw6re5h31v counter.1 alexellis2/arm_redis_counter:latest mikey Running Running 2
minutes ago

s7b7h12uruzy counter.2 alexellis2/arm_redis_counter:latest donny Running Running 2
minutes ago

pap6i8ufk5dm counter.3 alexellis2/arm_redis_counter:latest leo Running Running 17
seconds ago

8x89pmd5epty counter.4 alexellis2/arm_redis_counter:latest raph Running Running 18
seconds ago

Nice! That they all happen to run on the four zero’s (leo, donny, mickey and raph) is simply because of
the order they were started in; docker swarm will by default pick the service with the least number of
processes on it. If you want to control on which node a service gets started you can do so using for
example labels.

TIP
An easy way to restart all instances of a service is by scaling them to 0 and then back to the desired

number of instances again.

Of course we can also completely delete a service:

$ docker service rm counter

counter

$ docker service ls

ID NAME MODE REPLICAS IMAGE

tw57a8c0ixk4 redis replicated 1/1 alexellis2/redis-arm:v6

So this is all you need to be able to deploy a database backed web application on your Raspberry Pi! If
you want to deploy a Java application you can use this image as a base and you can use this one for
Python applications.

Bonus: Failover

So what happens when a node crashes? With a ClusterHat this is really easy and fun to demonstrate.
Instead of yanking out a network cable I can just power down a zero on the command line. So to demo
this I created the counter service on three nodes:

$ docker service ps counter

ID NAME IMAGE NODE DESIRED STATE CURRENT ST
ATE ERROR PORTS

0aaom01ttl0l counter.1 alexellis2/arm_redis_counter:latest raph Running Running 4
seconds ago

gjgnm04mcewg counter.2 alexellis2/arm_redis_counter:latest leo Running Running 1
second ago

q5dbgcc6x0c7 counter.3 alexellis2/arm_redis_counter:latest mikey Running Running 6
seconds ago

It’s active on three of the four zero’s; Leo, Raph and Mikey. What happens if I kill Leo?

$ clusterhat off p1

Turning off P1

$ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

08iueg6qv6h4964wf7ahvc4ov donny Ready Active

4ktue0dbx9quqjpb7sucskg1f raph Ready Active

6xb470pw6slr6maxzcusbsx7d * splinter Ready Active Leader

f4n5p4b5omih0wvlm5qiuswrs leo Down Active

pvwt9odee16ctl2ui4fhiribo mikey Ready Active

$ docker service ps counter

ID NAME IMAGE NODE DESIRED STATE CURREN
T STATE ERROR PORTS

0aaom01ttl0l counter.1 alexellis2/arm_redis_counter:latest raph Running Runnin
g about a minute ago

5e52pnlmlygg counter.2 alexellis2/arm_redis_counter:latest donny Running Runnin
g 15 seconds ago

gjgnm04mcewg _ counter.2 alexellis2/arm_redis_counter:latest leo Shutdown Runnin
g about a minute ago

q5dbgcc6x0c7 counter.3 alexellis2/arm_redis_counter:latest mikey Running Runnin
g about a minute ago

So Leo goes down (as shown in the node list) and the counter.2 process gets moved from Leo to Donny
automatically! Now let’s turn it back on:

$ clusterhat on p1

Turning on P1

docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

08iueg6qv6h4964wf7ahvc4ov donny Ready Active

4ktue0dbx9quqjpb7sucskg1f raph Ready Active

6xb470pw6slr6maxzcusbsx7d * splinter Ready Active Leader

f4n5p4b5omih0wvlm5qiuswrs leo Ready Active

pvwt9odee16ctl2ui4fhiribo mikey Ready Active

After a while Leo is back to Ready / Active again; fully automatically. The Docker daemon starts back up
on boot, remembers the Swarm it was part of and reports itself as active (assuming it can find a master).

