

Clojuresque explained!
apply plugin: ”clojure”

Meikel Brandmeyer

©2013 - 2014 Meikel Brandmeyer

Tweet This Book!
Please help Meikel Brandmeyer by spreading the word about this book on Twitter!

The suggested hashtag for this book is #clojuresque.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#clojuresque

http://twitter.com
https://twitter.com/search?q=%23clojuresque
https://twitter.com/search?q=%23clojuresque

Contents

Chapter 1: Getting Started . 1
A minimal build script . 1

Chapter 2: Source sets and options . 5
Source location . 5
Source filtering . 6
Clojure-specific options . 6

Chapter 3: Tasks . 9
Delayed options . 9
ClojureExec . 9
ClojureCompile . 10
ClojureTest . 14
ClojureDoc . 17
ClojureRepl . 21
Upload . 23
TaskWatcher . 23
Uberjar . 23
Deps . 23

Chapter 4: Tips’n’Tricks . 24

Chapter 5: The nitty gritty . 25
Plugin: common . 25
Plugin: base . 25
Plugin: nrepl . 25
Plugin: clojars . 25
Plugin: extras . 25

Chapter 6: Cheatsheet . 26

Chapter 1: Getting Started
In this first short chapter, we will go through an example build script, which makes the build ready
to use the plugin. However, this will be strictly limited to the Clojure plugin part! The presented
script is not fully usable for a full-fledged project build.

But before we start…

Note
This book is an introduction to get up and running with the Clojure plugin for the Gradle
build system. Although we will go slowly through the topics, this book is not intended as a
general introduction to Gradle. There are other books, in particular from the official Gradle
crew, which are more thorough than this book in this respect¹.

So there is a certain level of familiarity with Gradle itself assumed. However we will
point out and explain key concepts. For more details we will point the astute reader to
corresponding references in the official documentation of Gradle.

A minimal build script

Let’s dive right in with a minimal build script example. It contains only the necessary parts to make
the clojuresque plugin work. We will go through each step with a short explanation.

A minal build script

1 buildscript {

2 repositories {

3 mavenCentral()

4 maven { url "http://clojars.org/repo" }

5 }

6 dependencies {

7 classpath "clojuresque:clojuresque:1.6.0"

8 }

9 }

10

11 apply plugin: "clojure"

¹http://www.gradle.org/books

Chapter 1: Getting Started 2

12

13 repositories {

14 mavenCentral()

15 }

16

17 dependencies {

18 compile "org.clojure:clojure:1.5.1"

19 }

This build script consists of two main parts. The first part actually tells Gradle how to get the
clojuresque plugin. Since it is a third-party plugin, it is not distributed with gradle proper. So you
have to tell Gradle where to look for what to actually make the plugin available for the build.

The buildscript block

1 buildscript {

2 repositories {

3 mavenCentral()

4 maven { url "http://clojars.org/repo" }

5 }

6 dependencies {

7 classpath "clojuresque:clojuresque:1.6.0"

8 }

9 }

Doing so is done by using a so-called buildscript block². In this block we specify meta information
which relate not to the project but the build system itself. �

Here we specify in the repositories section³ that Gradle can find some of the dependencies of
clojuresque in the central maven repository. The plugin itself and other dependencies are hosted in
the Clojars repository⁴, which is in wide use in the Clojure world. It also uses the maven repository
structure. Hence it blends in quite smoothly into the Gradle infrastructure.

Finally, we add the actual plugin to the build script’s dependencies block. For this we use the special
classpath configuration⁵. This configuration handles all dependencies for the actual build script and
not the project itself. They will not interfere with the project’s dependencies.

²http://www.gradle.org/docs/current/userguide/organizing_build_logic.html#sec:external_dependencies
³http://www.gradle.org/docs/current/userguide/dependency_management.html#sec:repositories
⁴http://clojars.org
⁵http://www.gradle.org/docs/current/userguide/dependency_management.html#sec:how_to_declare_your_dependencies

Chapter 1: Getting Started 3

Note
The version number of the plugin might change. You can enquire the latest version number
on the Clojars page of the plugin⁶. There you’ll also get some cut’n’paste snippet to easily
transfer the dependency to your build script.

With the build script prepared we can dive into the actual project build and tell Gradle to actually
use the Clojure plugin.

Applying the plugin

11 apply plugin: "clojure"

This simple command sets everything up as you are used to it from the Java or Groovy plugins
which come with Gradle itself. In fact it also applies the Java plugin, since it provides certain parts
of the required infrastructure. Everything is set up expecting the standard Gradle project layout.
However, the source goes into the clojure subdirectory instead of, for example, java. main defines
the main source code for the projects as usual. The tests go to the test source set.

Example project layout

.

├── build.gradle

└── src

├── main

│ └── clojure

│ └── example

│ └── namespace.clj

└── test

└── clojure

└── example

└── test_namespace.clj

Finally, we specify the dependencies for the actual project. A Clojure project without a dependency
on it won’t make much sense. So we add it to the compile configuration.

Again we have to add the central maven repository since Clojure is hosted there.

⁶http://clojars.org/clojuresque

Chapter 1: Getting Started 4

The Clojure dependency

13 repositories {

14 mavenCentral()

15 }

16

17 dependencies {

18 compile "org.clojure:clojure:1.5.1"

19 }

And that’s it. That’s enough to compile your Clojure code into a jar file which you can distribute
further. Of course, there is more to it as will we see in the following chapters. And most likely you
will have to set up other things like additional dependencies, the project’s version and description,
&c &c. But the above is a walk-through through the minimal steps to make it work.

Chapter 2: Source sets and options
After getting the build script ready in the previous chapter, let’s now have a deeper look at the
various features added by the plugin. These are are extensions to Gradle’s source set concept to
handle Clojure source code.

Gradle’s source set concept is quite powerful⁷. A source set comprises several parts of the project
which belong together. Be it source code or additional resources. In the simple case this is just the
project source code in the main source set and its testing related parts in the test source set. But the
concept can be driven further as we will shortly see.

Source location

Usually the source code for the different languages go into correspondingly named subdirectories of
the source set directory structure. And the Clojure plugin also adheres to this convention. So Clojure
code is usually found under src/main/clojure.

However, this is only the default convention. You can change the location of the source at any time.
Say you want to change the source code layout to something more akin to a leiningen project layout,
you can simply override the preconfigured default.

Alternative source location

1 sourceSets {

2 main {

3 clojure {

4 srcDirs = ["src"]

5 }

6 }

7 test {

8 clojure {

9 srcDirs = ["test"]

10 }

11 }

12 }

⁷http://www.gradle.org/docs/current/userguide/java_plugin.html#N11E2A

Chapter 2: Source sets and options 6

Note
You specify the root of the Clojure code tree! Not the source files themselves.

Source filtering

A similar standard functionality which works as expected on Clojure source code is filtering in the
source sets. Let’s say you want to exclude every bar_baz.clj under the foo directory in the source
code, you could do so as follows:

Excluding files

1 sourceSets {

2 main {

3 clojure {

4 exclude "foo/**/bar_baz.clj"

5 }

6 }

7 }

Additionally the plugin provides some convenience functions to actually work with Clojure
namespaces. The same filter as in the previous listing can also be achieved by such a namespace
filter.

Excluding Namespaces

1 sourceSets {

2 main {

3 clojure {

4 excludeNamespace "foo.**.bar-baz"

5 }

6 }

7 }

Clojure-specific options

There are some Clojure specific options, which are added by the plugin. These mainly relate to
the compiler behaviour. The project wide configuration options are put into the so-called Clojure
extension of the project.

Chapter 2: Source sets and options 7

Normally, each source set inherits these settings from the extension. However the can be overriden
on source set basis (and ultimatively even on a per-task basis if desired).

AOT compilation

The aotCompile option determines whether the Clojure code should actually be compiled in ahead-
of-time mode. The default for this option is false.

Project-wide setting

1 clojure {

2 aotCompile = true

3 }

As described above this setting is inherited by all source sets. To set only a certain source set to be
AOT compiled simply set the option in the corresponding Clojure extension of the source set.

Source-set local setting

1 sourceSets {

2 main {

3 clojure {

4 aotCompile = true

5 }

6 }

7 }

Reflection warning

The warnOnReflection option determines whether the Clojure code should emit warnings during
compilation in case of non-resolved calls which lead to reflection at runtime. The default for this
option is false.

Project-wide setting

1 clojure {

2 warnOnReflection = true

3 }

As described above this setting is inherited by all source sets. To set only a certain source set to emit
reflection warnings simply set the option in the corresponding Clojure extension of the source set.

Chapter 2: Source sets and options 8

Source-set local setting

1 sourceSets {

2 main {

3 clojure {

4 warnOnReflection = true

5 }

6 }

7 }

Chapter 3: Tasks
The Clojure plugin provides several Clojure related tasks, which range from actual compilation to
documentation generation and testing. Some of the tasks are pure utilities and not really Clojure
specific.

Delayed options

Many options of the tasks are “delayed.” That means their value is only retrieved in case it is really
needed. Normally you don’t notice any difference from normal options. However if needed setting
the value can be delayed using a closure.

Delayed options work like this:

someTask {

someOption = project.someSetting

}

In this case the option is set immediately to the value of someSetting. Later changes to the setting
will not be honored!

someTask {

delayedSomeOption = { project.someSetting }

}

Now the computation of the value for the option is delayed until it is accessed the first time. Only
then the closure is executed to retrieve the actual value. Changes to the setting in between will be
honored!

Delayble options will be marked as such.

ClojureExec

The ClojureExec task is similar to JavaExec but executes a Clojure function instead of a class with
a main method. It accepts all options the JavaExec task⁸ accepts as well.

⁸http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.JavaExec.html

Chapter 3: Tasks 10

Options

main

The main option describes the fully qualified name of the Clojure function to invoke. The function
will be called with the command line arguments.

Execute a clojure function

1 task callClojure(type: ClojureExec) {

2 main = "my.name.space/call-me"

3 }

ClojureCompile

The ClojureCompile task is in charge of actually compiling the Clojure code. This might seem a bit
strange, since Clojure is usually compiled when loaded in the running program.

However, there is on the one hand the so called “ahead-of-time” compilation mode, which speeds up
loading time at the expense locking down the used Clojure version. On the other hand the compile
task can simply require all namespaces to trigger any compilation errors as well as reflection
warnings.

For each source set the plugin pre-configures a compile task with this source set as source. The task
also inherits any compile related option from the source set.

Inputs

This task is source directory based. That means you specify the source directories, not the source
files themselves. A single source directory can be added via the srcDirmethod. Multiple directories
can be added via the srcDirsmethod. A whole source set can be added via the frommethod. Setting
srcDirs overrides any previously added source directories.

Chapter 3: Tasks 11

Adding sources to the compile task

1 task compileClojure(type: ClojureCompile) {

2 srcDir "a-src-dir"

3 srcDirs "b-src-dir", "c-src-dir"

4 from project.sourceSets.main.clojure

5 srcDirs = ["nuke-any-of-the-above"]

6 }

Note
Source directories are subject to treatment through project.files.

Filtering

This task is filterable. That means you can filter source files with the usual Gradle include/exclude
machinery as well as via Clojure namespaces.

Filtering source for the compile task

1 compileClojure {

2 exclude "please/**/exclude_me.clj"

3 excludeNamespace "please.**.exclude-me"

4 }

Note
The filtering of a source set, which was added as a source, is honored.

Outputs

The compiled class files – if aotCompile is true – are written to the destination directory specified
by the destinationDir option. In the case of non-AOT compilation the source files are copied to
the destination directory.

This is a delayable option.

Chapter 3: Tasks 12

Set compile task output destination

1 compileClojure {

2 destinationDir = "out"

3 }

Note
For the pre-configured compile tasks the destination directory is set to the classes directory
of the source set. Changes to the classes directory setting will be honored.

Options

aotCompile

The aotCompile option switches on the AOT compilation mode for this task. The default for this
option is false. This is a delayable option.

Set AOT compile mode

1 compileClojure {

2 aotCompile = true

3 }

Note
For the pre-configured compile tasks the aotCompile option is inherited from the source
set. Changes to the source set setting will be honored.

warnOnReflection

The warnOnReflection option switches on the reflection warnings for this task which aid to track
down perfomance impacts be unresolved Java interop calls. The default for this option is false. This
is a delayable option.

Chapter 3: Tasks 13

Set reflection warnings

1 compileClojure {

2 warnOnReflection = true

3 }

Note
For the pre-configured compile tasks the warnOnReflection option is inherited from the
source set. Changes to the source set setting will be honored.

classpath

The classpath option controls the compilation classpath. It is subject to all the usual classpath
handling facilities provided by Gradle.

This is a delayable option.

Setting the classpath

1 compileClojure {

2 classpath = project.files(project.configurations.compile)

3 }

Note
For the pre-configured compile tasks the classpath refers to the compileClasspath of the
corresponding source set.

fileMode

The fileMode option is used to set the file mode when copying files in non-AOT compilation mode.
For some SCMs, which set files to read-only, setting this explicitly might be necessary to allow
recompilation of files. The default for this option is null. The option is identical to the fileMode

option of the official Copy task⁹.

⁹http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:dirMode

Chapter 3: Tasks 14

Set file mode in non-AOT mode

1 compileClojure {

2 fileMode = 0644

3 }

dirMode

The dirMode option is used to set the directory mode when copying files in non-AOT compilation
mode. For some SCMs, which set files to read-only, setting this explicitly might be necessary to allow
recompilation of files. The default for this option is null. The option is identical to the dirMode option
of the official Copy task[ˆcopy].

Set dir mode in non-AOT mode

1 compileClojure {

2 dirMode = 0755

3 }

jvmOptions

The jvmOptions option takes a closure, which is executed against the underlying ClojureExec task.
This way things like heap size etc. can be set.

This is a delayable option.

Set JVM exec options

1 compileClojure {

2 jvmOptions = {

3 maxHeapSize = "200m"

4 }

5 }

ClojureTest

The ClojureTest task is in charge of actually running the Clojure tests. Currently only clojure.test
is supported for testing.

Currently testing doesn’t blend in well with the rest of the Gradle ecosystem. There are first steps
done to integrate test runs with junit reporting. However this is far from being complete.

There is only one ClojureTest task pre-configured. Namely for the test source set of the project.

Chapter 3: Tasks 15

Inputs

This task is source directory based. That means you specify the source directories, not the source
files themselves. A single source directory can be added via the srcDirmethod. Multiple directories
can be added via the srcDirsmethod. A whole source set can be added via the frommethod. Setting
srcDirs overrides any previously added source directories.

Adding sources to the test task

1 task clojureTest(type: ClojureTest) {

2 srcDir "a-src-dir"

3 srcDirs "b-src-dir", "c-src-dir"

4 from project.sourceSets.test.clojure

5 srcDirs = ["nuke-any-of-the-above"]

6 }

Note
Source directories are subject to treatment through project.files.

Filtering

This task is filterable. That means you can filter source files with the usual Gradle include/exclude
machinery as well as via Clojure namespaces.

Filtering source for the test task

1 clojureTest {

2 exclude "please/**/exclude_me.clj"

3 excludeNamespace "please.**.exclude-me"

4 }

Note
The filtering of a source set, which was added as a source, is honored.

Chapter 3: Tasks 16

Outputs

FIXME: junit output

Options

junit

junitOutputDir

classpath

The classpath option controls the test classpath. It is subject to all the usual classpath handling
facilities provided by Gradle.

Setting the classpath

1 clojureTest {

2 classpath = project.files(project.configurations.testRuntime)

3 }

This is a delayable option.

Note
For the pre-configured clojureTest task the classpath refers to the testRuntime con-
figuration of the project, the main source set’s output and the test source set’s source
directories.

jvmOptions

The jvmOptions option takes a closure, which is executed against the underlying ClojureExec task.
This way things like heap size etc. can be set.

Chapter 3: Tasks 17

Set JVM exec options

1 clojureTest {

2 jvmOptions = {

3 maxHeapSize = "200m"

4 }

5 }

This is a delayable option.

Note
For the pre-configured clojureTest task inherits the jvmOptions from the main source
set’s compileClojure task.

ClojureDoc

The ClojureDoc task is in charge of generating API documentation based on Vars and their
docstrings. It uses codox¹⁰ for generating the documentation.

There is only one ClojureDoc task pre-configured. Namely for the main source set of the project.

Note
If you want to generate also the documentation for another source set, you’ll most likely
want to add it to the pre-configured task as an additional source. You cannot merge the
output of two ClojureDoc tasks.

Inputs

This task is source directory based. That means you specify the source directories, not the source
files themselves. A single source directory can be added via the srcDirmethod. Multiple directories
can be added via the srcDirsmethod. A whole source set can be added via the frommethod. Setting
srcDirs overrides any previously added source directories.

¹⁰https://github.com/weavejester/codox

Chapter 3: Tasks 18

Adding sources to the doc task

1 task clojuredoc(type: ClojureDoc) {

2 srcDir "a-src-dir"

3 srcDirs "b-src-dir", "c-src-dir"

4 from project.sourceSets.test.clojure

5 srcDirs = ["nuke-any-of-the-above"]

6 }

Note
Source directories are subject to treatment through project.files.

Filtering

This task is filterable. That means you can filter source files with the usual Gradle include/exclude
machinery as well as via Clojure namespaces.

Filtering source for the doc task

1 clojuredoc {

2 exclude "please/**/exclude_me.clj"

3 excludeNamespace "please.**.exclude-me"

4 }

Note
The filtering of a source set, which was added as a source, is honored.

Outputs

The compiled documentation is written to the destination directory specificed by the destinationDir
option.

This is a delayable option.

Chapter 3: Tasks 19

Set doc task output destination

1 clojuredoc {

2 destinationDir = "docs"

3 }

Note
For the pre-configured doc task the destination directory is set to the clojuredoc subdi-
rectory of the docs directory of the project. Changes to the docs directory setting will be
honored.

Options

codox

The codox option takes a simple map with options for codox. At the moment these are the following:

• writer

• srcDirUri

• srcLinenumAnchorPrefix

Set codox options

1 clojuredoc {

2 codox = [

3 writer: "my.custom/doc-writer",

4 srcDirUri: "http://github.com/clojure/clojure/blob/master/",

5 srcLinenumAnchorPrefix: "L"

6]

7 }

Note
The option names are automatically snake-cased for you.

classpath

The classpath option controls the classpath. It is subject to all the usual classpath handling facilities
provided by Gradle.

Chapter 3: Tasks 20

Setting the classpath

1 clojuredoc {

2 classpath = project.files(project.configurations.runtime)

3 }

This is a delayable option.

Note
The pre-configured doc task inherits the classpath from the main source set’s compile
task.

jvmOptions

The jvmOptions option takes a closure, which is executed against the underlying ClojureExec task.
This way things like heap size etc. can be set.

Set JVM exec options

1 clojuredoc {

2 jvmOptions = {

3 maxHeapSize = "200m"

4 }

5 }

This is a delayable option.

Note
The pre-configured doc task inherits the jvmOptions from the main source set’s compile
task.

Chapter 3: Tasks 21

ClojureRepl

The ClojureRepl task is in charge of starting a nrepl server for the project. This is particularly
important for an effective Clojure development cycle, since you usually work with tight integration
of the editor and the repl server.

This task is supposed to be started and keeps running. You can parallel builds on the same project
as long as you don’t change the build.gradle file. In that case you will get cache issues. You then
have to restart the repl task to be able to run parallel builds again.

Note
Currently there is no way to get an interactive repl. This due to some limitations on the
groovy side of Gradle. You’ll have to connect to the repl server by a client as provided by
most of the development environments.

Options

port

The port option controls the port where the repl server will listen for connections from clients. This
may be a string or an integer.

Setting the repl server port

1 clojureRepl {

2 port = 7888

3 }

Note
The pre-configured repl task uses 7888 as default for the port.

handler

The handler option controls the repl handler which the server will pass control to after receiving a
client connection. The option is the fully qualified name of the handler. If not set, a default handler
as provided by tools.nrepl will be used.

Chapter 3: Tasks 22

Setting the repl handler
1 clojureRepl {

2 handler = "my.repl/handler"

3 }

middleware

The middleware option consists of a list of middleware to apply to the default handler. The
middlewares are given by their fully qualified names.

This is intended as a short-cut for the common case, that you only need additional middlewares but
not a truely custom handler. If a custom handler is set, this option is ignored.

Setting the repl middleware
1 clojureRepl {

2 middleware << "my.repl/middleware"

3 }

classpath

The classpath option controls the classpath. It is subject to all the usual classpath handling facilities
provided by Gradle.

Setting the classpath
1 clojureRepl {

2 classpath = project.files(project.configurations.testRuntime)

3 }

This is a delayable option.

Note
The pre-configured repl task uses as the classpath:

1. all source sets’ source directories
2. all source sets’ output
3. the testRuntime configuration
4. the development configuraiton

So changes to the source files will be visible in the repl.

Chapter 3: Tasks 23

jvmOptions

The jvmOptions option takes a closure, which is executed against the underlying ClojureExec task.
This way things like heap size etc. can be set.

Set JVM exec options

1 clojureRepl {

2 jvmOptions = {

3 maxHeapSize = "200m"

4 }

5 }

This is a delayable option.

Note
The pre-configured repl task inherits the jvmOptions from the main source set’s compile
task.

Upload

TaskWatcher

Inputs

Uberjar

Inputs

Outputs

Deps

Chapter 4: Tips’n’Tricks
FIXME: Some real project, which is actually non-trivial which shows a full setup with some tips
around the build script.

Chapter 5: The nitty gritty
FIXME: Some details on the actual plugin structure should someone ever want more fine-grained
control.

Plugin: common

Plugin: base

Plugin: nrepl

Plugin: clojars

Plugin: extras

Chapter 6: Cheatsheet
FIXME: Some short tabular overview for each task with its options.

	Table of Contents
	Chapter 1: Getting Started
	A minimal build script

	Chapter 2: Source sets and options
	Source location
	Source filtering
	Clojure-specific options

	Chapter 3: Tasks
	Delayed options
	ClojureExec
	ClojureCompile
	ClojureTest
	ClojureDoc
	ClojureRepl
	Upload
	TaskWatcher
	Uberjar
	Deps

	Chapter 4: Tips'n'Tricks
	Chapter 5: The nitty gritty
	Plugin: common
	Plugin: base
	Plugin: nrepl
	Plugin: clojars
	Plugin: extras

	Chapter 6: Cheatsheet

