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0 Introduction

This is a study about proofs; 1t 15 not about theorems or theories,
but about mathematical arguments, proofs of correctness for programs
included. The original incentive to investigate proofs in their own right
was simply a matter of necessity; later the challenge of exploring a
topic that has received relatively little explicit attention became a second
impetus for the investigations.

Let me briefly discuss the necessity. In the late seventies it had
bacome possible to derive a program and its correctness proof hand-
im-hand, and if the proof was sufficiently detailed the outcome was a
trustworthy design. That constraint of sufficient detail, however, was
something of a problem, because what mathematicians usually consider
sufficient detail did not suffice in the context of program design, and for
all but the simplest problems the requirement, if met at all, tended to
lead to proofs that were long and verbose, or complicated and laborious

when given formally.

Qur conclusion was that computing scientists would have to learn
to make their proofs more effective, if their methods were to be appli-
cable to more ambitious problems as well. At the time, however, it
was far from obvious what the characteristics of effectiveness could be
(although one thing wes clear: it should be a combination of complete-
ness and brevity of argument), and even less obvious how they might be
effectuated.



That was, in short, the initial incentive for investigating proofs
in their own right. All by itself the topic is so rich that the present study
can only be considered the beginning of a much larger exploration. The
explorations reported here have been aimed at variety rather than at
concentration on a few special topics, so that now we have gathered a
lot of themes each deserving more extensive exploration all by itself.

To avoid confusion and misunderstanding, it seems appropriate
to delimuit the scope of this study.

. Firstly, the major stress is on presentation rather than on de-
sign.  Although in the long run the latter is the more important and
interesting topic, there was, I believe, a very good reason for postponing
its investigation: it is hard to imagine how one can become articulate
about methods of finding proofs without knowing what kind of proofs
one would like to find. Besides that, the relative scarcity of literature
on the topic suggested that a study of expositional issues could in itself
be a valuable endeavour,

Thus, this study is more concerned with form than with content
—whence its title— , although the distinction between the two turned
out to be less sharp than we had anticipated. We found, for instance,
that the choice of nomenclature, usually considered to belong to the
realm of presentation, could greatly influence the structure of the argu-
ment.

By this and other experiences, heuristic considerations ultimately
started to play a somewhat larger r6le; wherever appropriate they will
be elaborated upon. As a rule, these heuristic considerations do not
address psychological questions like: “How do people find solutions”;
they address more technical questions like: “How can proof design be
guided by syntactic analysis of the demonstrandum”. That perhaps
not many mathematicians to date arrive at their proofs by means of
such a technique is only of secondary importance. In order to improve
upon the status quo one must be willing to deviate from it, 1n matters
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of heuristics as well as in matters of exposition or notation. (In our
explorations we ignore the practical problems of the day that may arise
from such a deviation, like the difficulty of unfamiliar conventions or the
constraints of editorial policy. That does not mean, however, that we
consider such problems negligible.)

. Because of the goal of combining completeness and brevity of
argument, the recourse to formalism presented itself from the very be-
ginning, and, indeed, the use of formalism plays a predominant role in
this study. This holds particularly for the use of predicate calculus.

That does not mean, however, that this study is concerned with
foundations. The properties of interest here, viz. properties that make a
formalism convenient for use, are not the same as those properties that
make it convenient for study: while for the logician the existence of
proofs is a major point, the user of 2 formalism is more interested in their
efficiency; while redundance of the rules is inconvenient for the study
of a formalism, that doesn’t necessarily hold for its use; while for the
logician the distinction between axioms, theorems, and “metatheorems”
is relevant, it is not for the user, whose main concern is their valdity.

Likewise, while in this study the use of equivalence 1s stressed
more than the use of implication, and implications P = @ are some-
times replaced by the equivalent P A Q = P, that does not automat-
ically imply preference for a calculus based on equivalence rather than
on implication.

. This study deals with “human” theorem proving, and not with
mechanical verification or mechanical theorem proving. I consider it
important to mention this choice explicitly, because superficially some
of the interests shown in this study might suggest the opposite. For
instance we share, with those involved in mechanical verification and
proof design, the interest in manipulation -—of formulae— without
interpretation and in proof design guided by syntactic analysis of the
demonstrandum. Such similarities indicate that efforts at mechanization



might contribute to “human” theorem proving more than is already the
case.

{On the other hand the differences are large. Although efficiency
is & common concern, we first of all aim at efficiency of the result, viz, of
the proof, and hence at short formulae and short derivations, and at the
avoidance of repetiticusness in formulae and argument; for the designers
of mechanical systems the efficiency of the process of constructing a proof
is the major worry. Another difference is the usability of symbolic rewrite
rules, e.g. A = B. In mechanical systems they are not so popular;
they need special treatment because they can lead to nonterminating
derivations: replacements of one gide by the other can be undone again;
the present study, however, extensively exploits such rewrite rules at
advantage.)

. Although the explorations reported here have been inspired by
computing’s needs and challenges, mathematical proofs in general were
an object of investigation just as well as correctness proofs of programs.
They did so because of my personal interest and because I expectad both
fields to profit from each other. In addition, their inclusion provided a
wealth of extra source material.

Although the work was not confined to programming alene, ear-
lier experiences in the development of programming methodology and
needs of the fleld did have an influence on how the explorations were
condueted, on what was done first and what was considered most im-
portant. Some of these influences are listed below.

Firstly, the decision to postpone heuristics was inspired by a sim-
ilar decision taken in the early days of the development of programming
methodology: the latter began to make progress only after it had been
realized that not every program is worth proving. When it had become
clearer what a “nice” program might look like, drastic simplifications
often proved to be possible. Programming similarly inspired the de-
cision to experiment extensively with “smaller” problems first, rather
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than tackling a necessarily small number of “large” problems with the
danger of having to deal with too many details specific to the particular
problem.

Furthermore, the decision to explore the use of formalism exten-
sively and, more generally, the stress on methodological issues were an
immediate consequence of what we felt to be needed in computing and
potentially useful in general. The greater concern with methodology
is the consequence of the fact that computing science is one of the less
knowledge-oriented branches of applied mathematics.

For instance, for the computing scientist, the technique of “re-
ducing” a problem to an already solved one is not neatly as obviously
appropriate as it is for the mathematician that wishes to establish the
validity of some hypothesis: for a programming problem not only the
existence of a solution but also the solution’s efficiency —in terms of
computation time and space— is vital, and reduction of a problem to an
already solved one does not necessarily give the most efficient program.

In addition to this, computers really deserve the qualification
“general purpose”, which means that the computing scientist is regularly
confronted with problems for which the relevant concepts, notations,
and theory have not been developed yet. That was another reason for
stressing methodological concerns.

So much for some of the ways in which computing has had an
influence on the explorations.

End ».

The scope of the investigations having been delimited, the next
point perhaps is what one can expect as the result of such explorations.
After all, many hold the opinion that mathematical and expositional
style are purely (or at best largely) a matter of personal taste. Admit-
tedly, there is no such thing as the “best proof” or the rule of thumb
that always works, but what I hope to show is the existence of a vari-



ety of technical eriteria by which one argument can be objectively less
streamlined than another, and a number of expositional alternatives that
are, for unclear reasons, neglected. It has turned out that a lot can be
sald about mathematical arguments in general that is independent of the
particular area of mathematics an argument comes from.  Ameong the
topics explored are, for instance, proofs by cases, exploitation of symme-
try, the problem of what to name, the exploitation of equivalence, proofs
by calculation and their influence on the cheice of notations, the degree
of detail of proofs, and linearization of proofs.

One of the problems to be solved with a methodological study
like this 15 how to sail between the Scylla and Charibdis of vagueness
by too much generality on the one hand and explanation-by-example
only on the other. The solution chosen here is a study consisting of two
parts, viz, a series of “expositional essays” and a number of more general
chapters putting the example arguments into perspective,

Each of the essays deals with one problem —a theorem to be
proved or a program to be designed—. The problems thermselves are of
minor importance; they have been chosen for what can be illustrated by
their solutions. For that purpose they have been chosen small enough
to avoid raising too many issues at a time, and sufficiently diverse to
show a variety of characteristics,

With one or two exceptions, each essay contains a “model” solu-
tion I think beautiful enough for inclusion and an alternative argument
taken from the literature, with which the first is compared and con-
trasted. In one case only an argument from the literature is discussed,
and for some of the programming problems the contrasting argument
is absent because in the literature a correctness proof has hardly been
given. In most cases, the discussion of the argument given includes
remarks about the design of the proof.
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I do not claim that the model arguments are the best possible,
because I do not believe that such a thing existe, nor do I claim that the
contrasting arguments are the best ones to be found in the literature.
The latter have been chosen from the writings of traditionally reputable
authors, not because I wanted to dispute their mathematical qualities,
nor becanse the symptom of ineffectiveness discussed oceurs more often
in their writings than in others’, nor because I think that in their cultural
or historical context they could have done “better”, but primarily to
show that the phenomena discussed do not just occur in some obscure
writings only.

So much for the expositional essays. As indicated by the chapter
titles, the other part deals in a more general setting with naming, clarity
of exposition, and notation and the use of formalism.

The two parts can be read independently, in either order; in
fact each chapter has been written to be as self-contained as possible.
References from one part into the other de occur, but they have been
phrased in such a way that prior reading of the passage referred to is
not strictly necessary.

Notwithstanding their independence, however, the reading of ei-
ther part will probably be more profitable with some knowledge of what
i3 in the other (it may, for instance, be instructive to read the passage
on the proof format in Chapter 16 before reading the more formal expo-
sitional essays, and, conversely, to read some of the expositional essays
in which naming is an issue before reading the chapter devoted to that
topic). To assist the reader in choosing an order that suits him best, the
series of expositional essays starts with a short description of the main
points of each essay. For the sake of convenience a list of notational and
other conventions and a summary of proof rules for programs in guarded
command notation have been included in this thesis.
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Summaries of the expositional essays

1 A termination argument

The point of this little essay is to show in a nutshell how exploitation of
symmetries —-in this case between zeroes and ones— does more than
reducing the length of an argument by a factor of 2: the exploitation
strongly invites the “invention” of the concept in which the argument 13
most readily expressed. The essay is an exercise in not naming what
can be left anonymous.

2 A problem on bichrome 6-graphs

This chapter's main purpose is to show the streamlining of a combinato-
rial argument full of nested case analyses. The decision to maintain all
symmetries is the major means to that end: the consequential avoid-
ance of nomenclature strongly invites the use of a counting argument
rather than a combinatorial one, and, like in “A termination argument”,
the “invention” of a concept in terms of which the argument is most
smoothly formulated.

3 Proving the existence of the Euler line

This chapter is concerned with some eonsequences of introducing nomen-
clature: repetitiousness, caused by the destruction of symmetry that is
inherent to giving different things different names, and lack of disentan-
glement, caused by the availability of avoidable nomenclature. A second
point the chapter wants to illustrate —and remedy— is how the use of
pictures has the danger of strongly inviting (i) the introduction of too
much nomenclature, and (i) implicitness about the justification of the
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steps of the argument.

4 In adherence to symmetry

This chapter is another illustration of the complications engendered by
the introduction of nomenclature, here emerging in the form of over-
specificity and loss of symmetry. It also discusses the choice between
recursion and complete unfolding.

5 On a proof by Arbib, Kfoury, and Moll

This chapter discusses an extreme example of the harm done hy the
introduction of nomenclature that forces the making of avoidable dis-
tinctions, in particular the introduction of subscripted variables. In
addition it illustrates some consequences of neglecting equivalence as a
connective m ity own right.

6 Not about open and closed sets

This chapter is primarily included as an example of orderly and explicit
proof development guided by the shape of the formulae rather than by
their interpretation. In passing it illustrates the usefulness of the equiv-
alence in massaging proof obligations. In revealing the structure of our
argument clearly and in justifying in a coneise way why each step is
taken, the use of formalism is essential.

7 A monotonicity argument

The belief that equivalence is always most appropriately proved by show-
ing mutual implication has undoubtedly been strengthened by the way
in which proofs in Euclidean geometry are conducted. The purpose of
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this chapter is to show that some of that “geometrical evidence” is not
compelling at all.

& On the inverse of a function

This very small essay tracks down the origin of an asymmetry in the usual
treatments of the notion of the inverse of a funetion, and does away with
that asymmetry. [t 13 another exercise in maintaining equivalence.

9 A calculational proof of Helly’s theorem on convex figures

The proof in this chapter is included firstly to show the calculational
style in action, this time in a geometrical problem, and, secondly, to
illustrate the earefully phased exploitation of data that is enabled by the
introduction of nomenclature,

10 The formal derivation of a proef of the invariance theorem

The construction of the formal proof in this chapter illustrates to what
extent the shape of formulae rather than their interpretation can inspire
and assist the design of a proof.

11 Proving theorems with Euclid’s algerithm

Algorithms can be used to prove theorems., This chapter illustrates
how the notion of invariance can assist in proving equivalences directly
instead of by mutual implication.
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12 On the design of an in-situ permutation algorithm

It is shown how the availability of an adequate notation, for permutation-
valined expressions in this case, can be essential for the presentation of
an algorithm and the design decisions leading to it.  The choice of
the notation was guided by constraints of manipulability, constraints
that were met primarily by being frugal in the use of nomenclature (of
subscripted variables in particular),

13 An exercise in presenting programs

This chapter’s purpose is to show how the use of an adequate formal-
ism, predicate caleulus in this case, enables us to present an algorithm
clearly, concisely, and in all relevant detail, 10 a way that reveals 2ll the
ingenuities of the design.



1 A termination argument

The point of this little essay is to show in a nutshell how ex-
ploitation of symmetries —in this case between zeroes and
ones— does more than reducing the length of an argument
by a factor of 2 : the exploitation strongly invites the “in-
vention” of the concept in which the argument is most readily
expressed. The essay is an exercise in not naming what can
be left anonymous.

We are requested to provide an argument for the termination of the
following game: = fmite bit string (i.e. a string of zeroes and ones) is
repeatedly transformed by replacing

a pattern 00 by 01 ,or

a pattern 11 by 10 , wherever in the string and
as long as such transformations
are possible.

The argument will consist in the construction of a variant function, i.e.
a function that decreases at each transformation and is bounded from
below.

Since the pair of transformations is invariant under an inter-
change of 0 and 1, only equality and difference of bits matter. Ex-
ploiting this observation, we record the succession of neighbour equalities
and differences in the bit string as a string of y's and z’s, with

14



y standing for a pair of equal neighbour bits, and
x standing for a pair of different neighbour hits

(which given the first bit precisely determines the bit string).

In this terminology, a transformation changes a ¢ in the “code
string” into an x, while leaving all elements to the left of that y un-
changed. Thus the code string decreases lexically at each transformation.
Sinee it furthermore is lexically bounded from below —hby the string of
appropriate length consisting of «'s only— the game terminates.

(The shape of the bit string upon termination follows from the
observation that the lefmost bit of the bit string does not change in the
game and that upon termnation the code string consists of «'s only.)

* #*

The introduction of the code string effectively exploits the sym-
metry between 0 and 1, since it hides the individual bits completely.
Thus we can discuss the effects of a transformation without being tempted
to use case analysis.

More importantly, however, the introduction of the code string
allowed us to use lexical ordering as “canned induction™: our argument
boils down to proving that the game terminates for each code string
by observing that (i) the game terminates for the lexically amallest
code string and  (ii) if the game terminates for all code strings lexically
smaller than a code string 4, it also terminates for ¢, since any single
transformation changes s into a lexically smaller code string. This proof
by induction on lexically ordered strings is valid since lexical ordering is
well-founded.

In a way the argument presented 15 as efficient as possible: we
only had to consider one change of one symbol, viz. of a vy into an z;
not even the reverse change of ann ¢ into a y was relevant. QOne can
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certainly imagine other proofs, such as a proof by induction on the length
of the bit string or a proof —by induction on the number of preceding
bits— that each bit is changed only a finite number of times; it is hard
to imagine, however, how such proofs could be mere efficient.

Finally we add that, as usual, we have consciously tried to in-
troduce only a meodest amount of nomenclature. We named neither
the lengths nor the individual elements of bit string and code string and
learned that, mdeed, no such names were needed.



2 A problem on bichrome 6-graphs

This chapter’s main purpose is to show the streamlining of a
combinatorial argument full of nested case analyses. The deci-
sion to maintain all symmetries is the major means to that end:
the consequential avoidance of nomenclature strongly invites
the use of a counting argument rather than a combinatorial
one, and, like in “A termination argument”, the “invention”
of a concept in terms of which the argument is most smoothly
formulated.

We present and discuss two expositions for the following problem. Con-
sider a complete graph on 6 nodes, each edge of which is either red
or blue; demonstrate that such a coloured graph contains at least 2
monochrome triangles. (Three nodes form a “monochrome triangle” if
the three edges connecting them are of the same colour.)

Exposition0 .  This exposition first establishes the existence of 1

monochrome triangle as follows. Of the 5 edges meeting at some node
X . at least 3 have the same colour, say red. Calling their other end
points P, §, and R respectively, we have: triangle PQR is monochrome
or it contains at least 1 red edge, PQ say. In the latter case triangle
PQX isall red.

To establish the existence of a second monochrome triangle we
assurne that the existence of a, say, all-red triangle has been established.

We mark each of its nodes “A” and each of the remaining nodes “B”.

17
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Qur first dichotorny is: triangle BBB is monochrome or it is
not. In the latter case BBB has at least 1 red edge and at least 1
blue edge; also, any second monochrome triangle is of the form AAB
or BBA.

Case BBB not monochrome is subdivided into two subcases:
there is a monochrome triangle AAB —i.e. an all-red AAB , since
AAA is all red— or there is not. In the latter case we hence have
that at each B less than 2 red BA-edges meet; hence at each B at
least 2 of the 3 BA-edges are blue. From these and a blue BB-edge,
the existence of which we have not exploited yet, we find an all-blue
BB A-triangle:  of the at least 2 + 2 blue BA-edges meeting at the
endpoints of a blue BB-edge, 2 meet at the same A (on account of the
pigeon-hole principle), thus yielding a blue BBA .

End Exposition0 .

*

The above proof, though not long, yet sufficiently detailed, is
unattractive, because of its case analysis and its destroying all sorts of
symmetry.

The trouble already starts with “at some node X7, which by
naming one node destroys the symmetry among the nodes. The next
harm is done by the introduction of the three distinct names P, ¢, and
R: the subsequent “PQ say” shows how the naming inappropriately
breaks the symmetry. (The use of subscripted names would not have
been any better.)

Later the more symmetric nomenclature AAA/BEBB is used,
which somewhat smoothes the presentation of the second part of the
argument, but still we have the A’s versus the B’s.

By distinguishing a first and a second monochrome triangle we
had to distinguish three cases for the second, viz. whether it shares 0,
1, or 2 nodes with the first triangle.
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The symumetry we lost almost from the start is the symmetry
between the colours. All these distinctions render a generalization of the
exposition to graphs with more nodes very unattractive if not imposaible.

* *

Exposition] 1z based on two decisions: to maintain the symmetry
between the colours and among the nodes, even to the extent that we
shall try to leave them anonymons.

Expositionl . We head for a counting argument to establish a lower
bound on the number of monochrome triangles, because such argurments
are more likely to maintain symmetry. To that purpose we wish to
characferize monochrome triangles, or bichrome ones —whichever is
simpler— . 'We have this choice because in the complete 6-graph the
total number of triangles is fixed, viz. 20. Hence the difference of 20 and
an upper bound on the number of bichrome triangles is a lower bound
on the number of monochrome triangles.

To investigate which is easier to characterize we note that for a
monochrome triangle we need 3 edges of equal colour; for a bichrome
one, however, 2 differently coloured edges meeting at a node suffice.
The latter is the simnpler characterization, because 2 < 3 and no colour
specification 15 needed. Therefore, we give the concept a name and
investigate its properties,

A bichrome V is a pair of differently coloured edges
meeting at a node.

Bichrome V's and bichrome triangles satisfy (i) each bichrome triangle
containg two bichrome V's (i) in a complete graph, each bichrome V
is contained in exactly one bichrome triangle. Consequently, the number
of bichrome triangles is half the number of bichrome Vs,

Finally, we compute an upper bound for the number of bichrome
V's . We note that from the 5 edges meeting at a node 0 %5 or 1#4
or 2+3, 1e at most 6, bichrome V’s meeting at that node can be
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constructed. Hence the total number of bichrome V’s is at most 6+ 6,
the total number of bichrome triangles is at most 6%6/2, and hence the
total number of monochrome triangles is at least 2.

¥nd Expositionl .

The “nvention” enabling us to construet the above argument
is, of course, the notion of a bichrome V¥ . The concept, however,
does not come out of the blue: it is the result of our having realized
the option of counting monochrome triangles by counting bichrome ones
and of the decision to keep things symmetric and simple. None of these
circumstances should be surprising. The bichrome V' effectively hides
the individual colours -—and rightly so, because their only réle is to
express equality and difference of colour— in very much the same way
as in Chapter 1, the 2 and the y hide individual bits by standing for a
pair of different and equal neighbour bits respectively. In this respect
we note that two edges of different colour form the simplest ensemble
that is invariant under colour inversion.



3 Proving the existence of the Euler line

This chapter is concerned with some consequences of introduc-
ing nomenclature: repetitiousness, caused by the destruction
of symmetry that is inherent to giving different things different
names, and lack of disentanglement, caused by the availability
of avoidable nomenclature. A second point the chapter wants
to illustrate —and remedy— is how the use of pictures has the
danger of strongly inviting (i) the introduction of too much
nomenclature, and (ii) implicitness about the justification of
the steps of the argument.

In the following we present two proofs of the existence of the Euler
line, 2 standard argument in Expesition0 and an alternative argument
in Expositionl.

Theorem . The orthocentre, the centroid, and the circumcentre of a
triangle all lie on a single line: the (not necessarily unique) Euler line.

Exposition0 .

Proof. Let H be the orthocentre, G the centre of gravity, and M the
circumeentre of triangle ABC . Multiply the whole figure with respect
to G with afactor —1/2, so that €' is mapped onto the midpoint of AR
and cyclically A onto the midpoint of BC and B onto the midpoint
of CA. Of course the images ¢, A', and B’ respectively are such
that A'B'//AB | etc., so that M is the orthocentre of triangle A’'B'C’,
or M =H'.

21



3. PROVING THE EXISTENCE OF THE EULER LINE 22

End Expositiond .

Expositionl . In a triangle

) the perpendicular bisector and the altitude of a side are paral-
lel; the first goes through the midpoint of the side, the second
through the opposite vertex;

(1) the median of a side connects the midpoint of the side with the
opposite vertex;

(2) the three perpendicular bisectors concur in the circumcentre, the
altitudes in the orthocentre, and the medians in the centroid,

(3) the latter dividing each median in the same ratio (viz. 1:2).

Proof of Theorem . There exists a multiplication (viz. with a factor
—2) with respect to the centroid that

maps each midpoint of a side onto the opposite vertex,
by (1) and (3), and
transforms each line into a parallel one,
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hence, by (0), maps each perpendicular bisector on the parallel altitude,
hence, by (2), maps the circumecentre onto the orthocentre; hence the
centroid, the circumecentre, and the orthocentre are collinear.

This proof uses that a multiplication with a factor m with re-
spect to a point X by definition maps each point P onto a point ¢
that is collinear with X and P and such that the proportion of XQ
and X P is m (negative factors indicating that X separates a point
and its 1mage), and the proof uses that as a consequence each line is
transformed into a parallel one.

End Proof.
End Expoesition] .

Bath proofs seem of roughly the same length, but are only super-
ficially so, since Exposition0 leaves quite a few things implicit:

(1) It does not mention the convention of using primes to distinguish
the image from the original; 1t only uses it,
(11} It does not define the notions circumcentre, centroid, and ortho-

centre; it only uses them.

(iii)  Neither does it define the notions perpendicular bisector, median,
and altitude; what is more, they are not even mentioned,

(iv) It does not mention the theorem that the centroid divides each
median noa ratio 1 25 it only uses it

(v) It takes for granted that multiplication with respect to a point is
such that when A, B, and C are mapped onte 4/, B’ and ¢’
respectively, the orthocentre of triangle ABC is mapped onto
the orthocentre of triangle A’B'CY.

Circumstances (iv) and (v) are an immediate consequence of (iii) :
without the notions perpendicular bisector, median, and altitude and
their properties, the terminology is lacking to formulate and justify the
theorems in {iv) and (v) m any detail.
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Although cn the one hand being quite implicit, Exposition on
the other hand is quite overspecific. It introduces the names H, G,
and M, which not counting the picture are nsed about once. It names
all the vertices of the triangle and as a result shows that naming can
destroy symmetry: the symmetry has to be saved by enurmeration or its
“substitute”, the elliptical “etc.”.

In Expositionl we decided to try to leave the vertices anonymous.
Then, not being able to distinguish easily between vertices {or sides for
that matter) we were more or less straightforwardly led to concentrate
on one side and its altitude, median, and perpendicular bisector. As a
result, we arrived at an argument in which the fact that three sides and
vertices are involved only enters the discussion by means of the perfectly
symietric notions circumcentre, centroid, and orthocentre. This is in
contrast with Exposition0, where in the expression 4'B'//AB at least
two sides are involved.

Having formulated our argument in a satisfactory degree of detail
without the introduction of names, we are able to follow Lagrange by
dispensing with the picture: it has proved to be superfluous. The
picture, however, is not only superfitous, but misleading as well: does
the theorem hold for an obtuse {riangle? In presentations like these the
hest a picture can do is to give an example, an instance. As such it is
eo ipso overspecific. It invites, almost forces, the reader to deal with
the general case in terms of a specific instance, the particulars of which
are to a large extent left implicit.



4 In adherence to symmetry

This chapter is another illustration of the complications engen-
dered by the introduction of nomenclature, here emerging in
the form of overspecificity and loss of symmetry. It also dis-
cusses the choice between recursion and complete unfolding.

We consider couplings, i.c. one-to-one correspondences, between two
equally sized finite bags of natural numbers. Hence, a coupling can
be considered a bapg of —ordered— pairs of numbers, the subbags of
which are as usual called 1ts subcouplings. The value of a coupling is
defined recursively by

—the value of an empty coupling 15 0;

—the value of 2 one-element coupling 15 the product of the members
in the single pair;

—the value of a non-empty coupling s the value of one element +
the value of the remaining subcoupling.

Note . By the associativity and symmetry of addition, the above iz a
valid definition.

End Note .

The problem is to construct a coupling with maximum value. Such
a maximum value exists, since the finite bags have a finite number of
couplings.

A construction follows from the two lexamata

25
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Lemma0 .  Each subcoupling of 2 maximum coupling is itself a maxi-
s coupling,

Lemmal . In a maximum non-empty coupling, the maximum values
of the two bags form a pair.

The construction then consists in choosing the maximum values to form
a pair and constructing a maximum coupling for the remainders of the
bags in the same way. The construction terminates since the bags are
finite and decrease in size at each step,

Proof of Lemma0 . By the symmetry and associativity of addition we
have —with U for bag union—

the value of coupling BUC = the value of B + the value of C;

Lemma0 now follows from the monotonicity of addition.

Proof of Lemmal . We consider a maximoum coupling, in which the
maximum values U and V of the bags being coupled are paired with
v and u respectively, and we prove v =V vu=1U.

¢ If (U7,v) and (u, V) are the same element of the coupling, U =u A
v="V,

o If (U,v) and (u, V) together form a two-element subcoupling we
have

true

{by Lemma0 and maximality of the coupling}
value of {(U,v), (w,V)} = wvalue of {{U, V), (u,v)}

{definition of “value”}
UevtuxVe2UsV+usy

{}
(U—ujr(v-V)20

f{(U=-wW*(v—-V)<0,since Uzu A Vzu}
(U—u)sx(v-V)=0

H



End Proofs.

The above theorem is far from new, but in the literature one usually finds
a rather different formulation, which is essentially as follows.

Given an ascending sequence a;, 0 < ¢ < N, of natural
numbers and a sequence b of natural numbers, we are
requested to maximize (St1:0<i < N g *b,((ﬁ-)), where
T ranges over the permutations of 1 :0 < < N .

There s quite some overspecificity n this formulation. Firstly, instead
of introducing bags it introduces sequences, as a result of which permu-
tations mevitably enter the problem statement. (In “Inegualities” by
Hardy, Littlewood, and Pdlya, for instance, the problem 1z dealt with
under the heacing “Rearrangements™.) Any ordering of clements, how-
ever, is forcign to the problem of finding some one-to-one correspondence
and should therefore only be introduced with care and good reason. In
the above, sequences arc probably used as a generalization of sets allow-
ing multiple oceurreneces of values: the bag, however, by not involving
order, is a more appropriate generalization.

Next, the above formulation introduces names for all the cle-
ments of the sequences, consequently also for the length of the sequences
and for the permutation. Apparently none of these names 1s necessary.

Finally, the ascendingness of sequence ¢; is irrelevant for the
value of the sum to be maximized, but its introduction hmmediately
destroys the symmetry between the two sequences. This we consider a
disadvantage.
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In summary, the above observations led us to head for an argu-
ment phrased in terms of bags, being completely symmetric in the bags,
and using as few names as necessary. A consequence of not naming the
elements was the obligation to define the value to be maximized, i.e. the
value of a coupling. This, however, straightforwardly led us to Lemma0
and hence to the recursive description of the construction comprised by
Lernmal and Lemmal.

We note that at the few places in the argument where we intro-
duced names —most notably in the proof of Lemmal— we have chosen
them so as to reflect the symmetry between the bags.

Finally we note that the ascendingness of sequence ¢; and per-
muted sequence b; in the traditional formulation can be viewed as the
completely unfolded version of our recursive scheme. This choice be-
tween recursion and complete unfolding is worth noting; recursive for-
mulations tend to be more compact than their unfoldings and, hence,
may be more convenlent to manipulate,

{Another illustration is the proof of a probably well-known theo-
rem relating the number of times a prime p divides into n! to the sum
of the digits of n’s p-ary representation, viz. with f.n being the former
and s.n the latter, the theorem says fn=(n—-sn)/{p—1).

The recursive definition of n! immediately suggests a proof by
induction over n. (See EWD538 in “Selected Writings on Comput-
ing: A Personal Perspective” by Edsger W. Dijkstra.}) The recursive
definition may even assist in deriving the theorem itself. The unfolded
definition of n! —n! =(Pi:1 <4 < n:1)— provides much more
possibilities for massaging and, hence, is more difficult from a heuristic
point of view. In books on number theory its use, for instance, leads
to fin)=ndivp+ndivp®+ .. +ndivp* +--- | a relation that does
not lend itself as easily for manipulation or for proof by induction over
71 as the earlier one.)



5 On a proof by Arbib, Kfoury, and Moll

This chapter discusses an extreme example of the harm done
by the introduction of nomenclature that forces the making
of avoidable distinetions, in particular the introduction of sub-
scripted variables, In addition it illustrates some consequences
of neglecting equivalence as a connective in its own right.

The proof we discuss below takes to the extreme some unfortunate
though common mathematical habits. It is taken from “A Basis for The-
oretical Computer Science” by Michael Arbib, A.J. Kfoury, and Robert
N. Mell, That the aunthors consider their proof exemplary illustrates
a widespread neglect of the circumstance that for computing scientists,
perhaps cven more than for mathematicians in general, effective mathe-
matical arguments are not a luxury but often a sheer necessity for keeping
complexity at bay.

One of the habits alluded to above is proving the equivalence of
two statements by proving mutual implication. We have noticed that
for many mathematicians following this pattern of proof has become
accond nature, even so much so that some advocate it as the only pattern
possible, The authors mentioned above, for instance, are convinced
that

“to prove A € B [ ...] we must actually complete two
proofs [ ...] : We must prove both 4 = B and its
converse B = A7

29
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The exemplary proof with which they want to demonstrate their point
is a proof of

(0) “Theorem. A natural number is a multiple of 3 iff the
sum of the digits in its decimal representation is a mul-
tiple of 3.”

Their proof by mutual implication, however, is self-inflicted: it is solely
due to the shape of the auxiliary theorem from which (0) is derived.
That theorem reads, with r(n) being defined as the sum of the digits of
natural number n's decimal representation,

(1} “If n=3m , then r(n) is a multiple of 3.
I n=3m+1,then r(n) is of the form 3k + 1.
Ifn=3m+2,then r(n} is of the form 3k +2.7

We can only guess why the authors have not chosen a concise formulation
without cases and with a minimum amount of nomenclature, such as

r{n) mod 3 = n mod 3 , with (0) as the special case
r{n)mod3=0 =nmod 3=0.

Perhaps they were reluctant to use the extra concept mod . Another
possible explanation is that they have chosen formulation (1) because
it reflects most directly the proof they had in mind: (without actually
giving the proofs) the authors say that (1), in its turn, is to be derived
from

(2)  “r(n+3) differs from r(n) by a multipleof 3.7

“by mnduction on m for each of the three cases”. Apparently they
force themselves to make do with the restricted form of mathematical
mduction that allows steps from m to m + 1 only. Indeed, in their
treatment of induction they write:

“First, we check that the property holds for 0. [ ...]
Then we prove that whenever any n in N satisfies the
property, it must follow that n+1 satisfies the property.
[...] Proofs by induction may start at 1 as well as 0;



31

and, indeed, proofs of this kind may start at any positive
mteger.”

Such a restricted form of mathematical induction is, of course, a self-
inflicted pain. It 13 inadequate for mathematicians in general, and even
more so for computing scientists who need, in termination arguments for
programs, various well-founded sets besides the natural numbers.

Finally, the proof of (2) presented by Arbib, Kfoury, and Moll 1s
an extrerne example of the harm done by making too many distinctions,
especially if it is combined with a lot of overspecific nomenclature. In
that proof, when describing how the decimal representation of n + 3,
denoted by (n+3), can be derived from the decimal representation of
n , denoted by (n}, the authors distinguish between 0 carries and at
least 1 carry, subdividing the latter into (1) exactly 1 carry, (i) as
many carries as {n) has digits, and (i1} a number of carries in between,
and once more subdividing subcase (i) according to whether (n) has
1 or more digits, i.e. according to whether the case overlaps with (iii) .
{The proof 13 shown further on in this note.)

So not only do the authors distinguish between 0 and the other
natural numbers, they also treat 1 differently from the larger natural
numbers. In making these distinetions, however, they are in no way
exceptional. Hardy and Wright's very first theorem in “An introduction
to the theory of numbers”, for instance, reads: “Every positive integer,
except 1, 1s a product of primes”, thus neglecting 1 as a product of 0
primes; and Harold M. Stark, in “An Introduction to Number Theory”,
writes: “If n is an integer greater than 1, then either n is prime or n is
a finite preduct of primes”, thus not only neglecting 1 as a product of 0
primes, but also neglecting that a product of 1 prime is a finite product
of primes. Because both books are still widely used, the distinctions
continue to be made.

We elaim that such distinctions as the present authors make are
the result of introducing nomenclature. By introducing
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dmdm_l e d]_d (m E 0)

for (n) , they force themselves to express (n+3) in the same terminol-
ogy. Consequently, they have to worry about which digit values change,
which index values these digits have, and even about whether the length
of the digit sequence changes. This leads them to their complicated
proof of theorem (2) , which we add for the sake of completeness and
reference.

“Praof. We prove the result by exhausting two cases:
(1) The last digit d of {(n) s 0,1, 2, 3,4, 5 or 6.
In this case we form (n + 3) by changing d to d+3.
Thus, r(n + 3) = r(n) + 3, satisfying the claim of the
lemma.
(II) Thelast digit d of (n) is 7, 8, 0r 8. Inthat case we
form {n43) from the string {n) = dpdp—; .. did{m = 0)
of digits by the following rule, which exhausts three pos-
sible subcases:
(1) I di#9,set (n+3) = dndey ... {dy + 1)(d = 7).
(If m = 0, this rule changea (n) to 1{d —7).) Then
r(r+3)=1+r(n)— 7=r(n) — 6, satisfying the claim
of the lemma.
(2) If (n) = dndmer-. - gpadiy19...9d with dp g #9
{where 1 < k £ m), set
(n +3) = dnys ... dpsa(digs + 1)0...0(d = 7). Then
r(n +3) = r{n) — 9k — 6, satisfying the claim of the
lemma.
(3) If{n)=09...9d,set (n+3) =10...0(d—"7). Then
r{n+3) = r(n)—9%m—6, satisfying the claim of the lemma.
Having verified the lemma for all subcases, we have proved
it to be true.  O”

*

There are, of course, many effective ways to prove (0), such as
the following. It proves r(n) = n + multipleof 9. We adopt the
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decimal positional system, dropping, however, the constraint that each
digit be less than 10. We start with the decimal number having n as
its only significant “digit” —and, hence, having digit sum n— , and by
repeated carries transform it into n’s standard decimal representation
—-which has digit sum r(n)— . A carry consists in subtracting 10
from a digit > 10 and adding, or creating, 1 at the position to the
immediate left. Each carry, hence, changes the digit sum by 8. The
process terminates because the digit sum is at least 0 and decreases at
cach carry. Hence r(n) = » + multiple of 8.



6 Not about open and closed sets

This chapter is primarily included as an example of orderly
and explicit proof development guided by the shape of the
formulae rather tham by their interpretation. In passing it
illustrates the usefulness of the equivalence in massaging proof
obligations. In revealing the structure of our argument clearly
and in justifying in a concise way why each step is taken, the
use of formalism is essential.

In the following we construct a proof for a theorem that occurs in most
elerpentary books on analysis. Tom M. Apostol, for instance, in “Mathe-
matical Analysis A modern Approach to Advanced Calenlus”, formulates
it as follows, for a subset 5 of some universe K,

“Theorem. If § is open, then the complement Ey—S is
closed. Conversely, if § is closed, then F,—5 is open.”

(The reader that considers the above to be a definition rather than a
theorem is invited to view our proof as a proof of equivalence of two
definitions. For what follows the distinction is irrelevant.)

First of all, becanse we have learned to appreciate equivalence
and symmetry so much, we prefer to formulate the theorem differently,
viz.

Theorem . Subsets § and T of some universe that are each othet's
complement sabisfy

34



S isopen = T is closed

End Theorem .

Next the only thing we can do is to consider the definitions of
“complement”, “open”, and “closed”. Firstly we have

(M subsets & and T of some universe are each other’s com-
plement means (Az nzeS#xeT)

Following Apostol, we next define

(1) S isopen = (Ar:zeS:iSa)
{2) T wsclosed = (Az:al2:2eT) |

1 W

where ¢5.r means “r is an interior point of $” and aT.z means “z
15 an accumulation point of T | notions to be detailed later.

The right-hand sides of (1) and (2) show a similarity in strue-
ture that we can even increase by rewriting (2)'s right-hand side: re-
placing zeT by —(ze ), on account of (0}, and by predicate calculus,
we get

RH5(2) = (Az:wzeS:-al.x) ;
RHS(l) = (Az:ze¢85:i512)

80 we can prove the theorem, the equivalence of RHS(2) and RHS(1),
by proving

(3) —aT.x = iSx for ze 8

Remark . Proving the equivalence of two universal quantifications by
proving the equivalence of their terms means strengthening the decon-
strandum quite a bit; it is, however, the simplest step suggested by the
formulae and, therefore, always worth being investigated.

End Remark .

Now the only thing we can do in order to prove (3} is to consider
the definitions of iS.z and eT.z, i.e. of the notions interior point and
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accumulation point. With dummy V ranging over neighbourhoods of
z we have, again following Apostol,

aTz = (AVa(WV-{2)ynT # ¢) ,
1.¢. by De Morgan’s Law,
-aTz = (EVu(V—{2}) N T=¢) ; and
iSz = (EV a2V CE5)

Again, (3) can be proved by proving the equivalence of the terms of the
above two —existential— quantifications, i.e. by proving
(4) (V-{2hnT=¢ = VC5

for ze S and V a neighbourhood of =z

This we do as follows:

(V“ {.’l:}) nT=4¢
= {T and S are complements}
V—{z}C ¥ .

{z&5,see (3)}
(V-{a))u e} G 8
{set calculus}

Viu{z}cs

= {set calculus}
vCs

= {set caleulus}
V—{z}c s . #*

By the recurrence of expression *, all expressions in the caleulation are
equivalent, in particular the first and the one but last, hence {4) has
been established.

Aside . We have proved (4) by means of set calculus because the
demonstrandumn presented itself in terms of sets. We wish to note,
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however, that a proof in terms of the corresponding characteristic predi-
cates, by means of predicate caleulus, can be a micer altermative, When
phrased as

[(VA-XAT) = [V=5] ,given [X= Sand [5£T],

(4) can, for instance, souch more easily be proved by means of equiv-
alence transformations only. (As usual in this study, square brackets
denote universal quantification over the universe.) Such a proof might
run as follows

~(VA-XAT)

= {De Morgan}
-V VX VST

= {[§ = -T1, since [§ £T]}
“VVXVSE

= {[AXv&=9],since [X = 5]}
-Vv>§

= {implication}
V=25

Hence we have proved the stronger:
F(VA-XAT) = (V= 5)
End Aside .

This completes the proof.

We have presented the above proof because we wanted to show
that its design 13 a purely syntactic affair. We started by writing down
formal definitions of open and closed, and from a syntactic analysis
of these definitions we immediately derived the next step of the proof.
Then we did exactly the same once more, reducing the demonstrandum
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to a relation between setas, and that was all. No “invention” involved at

all.

Note that with the exception of (D) each definition is used only
once in the proof. This we consider to be indicative of an effective
separation of concerns. The only property of neighbourhoods used is
their being sets. For the proof it is irrelevant whether a point belongs
to its neighbourhoods. That {0) is used only twice means that for the
larger part of the argument this relation between § and T is irrele-
vant. Hence introducing a separate name T rather than using E;—S
had a few advantages. We could aveoid frequent repetition of an expres-
sion whose internal structure is largely irrelevant but that lengthens and
complicates the formulae and their parsing. Furthermore we did not
have to introduce a name for the universe.

By way of contrast we add Apostol’s proof of the theorem. To
simplify the comparison we repeat our proof, leaving out all heuristic
remarks.

5 1is open

{definition of open}
(Az:zeS:iS.z)

{i8.2 = -~aT.x for x5, see below}
{Az:ze8:-aTl.x)

{predicate calculus and (0)}
(Az alx:z2eT)

{definition of closed}
T is closed

fl
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—aT.x
{definition of aT'.x}

AV (V-{shinT # ¢)
{De Morgan}
(EV o (V—{a})NnT = ¢)
{see (4)}
(EV:VCS8)
= {definition of 5.2 }
iS.x

The proof of (4) is as before.

Apostol’s proof .

“3-158 THEOQOREM. If 5§ is open, then the complement
Ei—5 1s closed. Conversely, if 5 is closed, then
Ly—5 is open.

Proof. Assuine that 5 is open and let x be an ac-
cumulation point of £1—5. If 2 ¢ £/— 5, then ze 8
and hence some neighborhood N(z) C 5. DBut, being a
gubset of 5, this neighborhood can contain no points of
E{— 5, contradicting the fact that z is an accumulation
point of B, — & . Therefore, 1 ¢ B1—5 and £;—5 15
closad.

Next, assume that § is closed and let z ¢ F; - 5.
Then ¢S5 and hence z cannot be an accumulation
point of &, since & is closed. Therefore some neighbor-
hood N{r} has no points of § and must consist only of
points of Fiy—5. That i, N(z) C B1—% and 1 — 5
must therefore be open.”

End Apostol's proof .

The two proofs have roughly the same number of symbols (about
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500 ), but the former is much more explicit, about definitions, about the
justification of steps, and about the structure of the argument. We
note that Apostol has obscured the similarities between the two parts
of his proof in three ways: by not formmulating the second conjunct of
his theorem as “If By —5 is closed, then 5 is open™; by avoiding the
concept “interior peoint” while using the concept “accuraulation point™;
and by using a (superfluous) proof by contradiction in only one of the
two parts.



7 A monotonicity argument

The belief that equivalence is always most appropriately proved
by showing mutual implication has undoubtedly been strength-
ened by the way in which proofs in Buclidean geometry are
conducted. The purpose of this chapter is to show that some
of that “gecmetrical evidence” is not compelling at all.

We consider a function f of two arguments satisfying
(0 <y = foy<fyal

and show that it satisfies

(1) o=y = fay=fysl

Note . Square brackets denote universal quantification over z and y .
Variables ¢ and y are taken from a universe on which a total order
relation “ < ” is defined; similarly for the range of function f.

End Note .

Proof .
(0)

{by definition}
g <y = foy< foyz)

Il

{doubling, once renaming the dummies}
iz <y = foy< fyz] Aly<e = fyz<fzy

41
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= {term-wise disjunction, p<g V g<p = ¥ # q}
[z#y = foy# fyal

= {contrapositive}
[z=y ¢ foy=fyz

= {z=y = foy=fyzr]}
=y = foy=fy3z

= {by definition}

(1)
End Proof .

Remark . In addition to (1), other equivalences can be derived from
(0). Their derivations are, however, deferred to an appendrx, becanse
they are irrelevant for this chapter’s main topic.

End Remark .

In Euclidean geometry the two thecrems

. “An isosceles triangle has two equal angles”, and
) “A triangle with two equal angles is isosceles”™

are usually proved separately, with congruences, Usually prior to that it
is established that opposite to the larger angle lies the larger side, in the
jargon: « < f# = a < b. For fixed “third side” ¢, this is a statemnent
of form (0); so congruences are not needed for the proofs of the two
theorems, since the latter are subsumed in the conclusion corresponding
to (1): a=0 = a=5b.

The same holds for the two theorems

* “An isosceles triangle has two angle bisectors of equal length”
and
. “A triangle with two angle hisectors of equal length is 1sosceles” .
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Thanks to all the above, both theorems are subsumed in

(2)  “In atriangle, the larger angle has the shorter angle bisector”

which, again for fixed base of the triangle, is also of form (0).

Theorem (2) can be proved in various ways. For instance, in a
triangle with sides of length «,b, and ¢, the square of the length of the
angle bisector of o, the angle opposite to side o, equals

(3)  bxex(l—(aftb+e))")

an expression that is inereasing in & and decreasing in a and, therefore,
satisfles (0): an f that is increasing in its first argument and decreasing
in its second, satisfies

vy = fay< fyy A fyy < fya)

So much for theorem (2). (As for {3), it follows by applying the cosine
rule in the two subtriangles into which the original triangle is divided by
the angle bisector, and eliminating the equal cosines.) For the sake of
completeness we note that the whole argument pertains to imterior angle
bisectors only.

Appendix . In addition to implying equivalence (1), viz. [z =y =
fay = fya], (0) also implies

(4) [ty = fay< fyx] and

(8) fr <y = foy< fyr

Firstly, (5) = (4):

(5)

}

{
[# =y = fay< fyz)
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{negation of both sides, ~(p < ¢) = ¢ <p}
[y <z = fyx < fzyl
= {renaming the dummies}

(4)
Relation (4) is proved by proving mutual implication:

<y = foy< fyal

= {term-wise disjunction, using [z =y = f.e.y= fy.z]}
[z <y = fzy< fyz
= {}
(0)
and

[z <y & fays fyal
= {contrapositive, ~(p £ ¢) = ¢<p}
ly<z = fyzr<fzyl
{renaming the dummies}

(0)

Finally we note that (1), (4), and (5) also hold for the special case
that f depends on only one of ite arguments, i.e. if f is an increasing
function or a decreasing function.

End Appendix .

This chapter is a revised version of technical report AvG36/EWDE78,
with Edsger W. Dijkstra.



8 Onmn the inverse of a function

This very small essay tracks down the origin of an asymme-
try in the usual treatments of the notion of the inverse of a
function, and does away with that asymmetry. It is another
exercise in maintaining equivalence.

For a binary relation R on a Cartesian product A x B we define

(0): (Az:zed:(Ny:yeB:xRy)> 1)
(12 (Az:zeB: (Nv:yed:yRz) = 1)
R is functional (2): (Az-wved: (Ny:-yeB:-2Ry)<1)
R is injective (3 (Az:zeB:(Ny:yedA:yRz)<1)

The symmetry exhibited by (0)—(3) is such that (1) = (0)(A, B, =Ry :=
B, A, yRz} and, similarly, (3) = (2)(A, B, zRy = B, A,ylRz). It is re-

flected in the notion “converse”:

It is total 0

R 15 surjective

e nee

relation Ron A x B and relation Son B x A
arc cach other's converse

I
:

(Ar,y:zeB A yeA:25y = yRr) ; hence
(1) = (0)(A, B,R:= B,A,S) and (3) = (2)(4,B,R:= B, A,5), ie.

{4) R is surjective = & is total
(5) E isinjective = § is functional

For relations IR and 5 that are each other’s converse we define

45
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S is the inverseof B = R isfunctional A S is functional |

the symmetry of which immediately yields
5 isthe inverse of B = R isthe inverseof §

Finally, by (5) we have

R's converse is R's inverse = R is functional and injective

(One may prefer to confine the notion of an inverse to total relations;
this is incorporated by conjoining the right-hand side of the definition
with “R is total A S is total”, which by (4) is equivalent to “R is total

and surjective”.)

*

The above grew out of the following observation. In many text-
books the introduction of the inverse of a function terminates with a
proof of the theorem “If f is the inverse of ¢ then ¢ is the inverse
of f." . Apparently the symmetry of the relation “being each other’s
inverse” requires proof. Since in these treatments the notion of an
inverse is based on the symmetric notion of the converse, just like it is
in the above treatment, that means that somewhere along the way from
converses to inverses the symmetry is destroyed.

In the proofs (see, for instance, “Mathematical Analysis, A Mod-
ern Approach to Advanced Calculus” by Tom M. Apostol) the symmetry
is primarily broken because functionality and injectivity are not treated
symmetrically: the latter notion is confined to functions. However, the
notation R(z), introduced for the unique solution y of =Ry in the case
of 2 functional relation, is less suitable for rendering relations like the
above.

As a result, we prefer to attach all four notions teo relations rather
than functions. If one then defines the notions formally in as concise
and homogeneous » way as possible, the rest of the treatment becormes
hardly more than a simple syntactic activity, We note that the use of
equivalences wherever possible has smoothened this activity.



9 A calculational proof of Helly’s theorem
on convex figures

The proof in this chapter is included firstly to show the cal-
culational siyle in action, this time in a geometrical problem,
and, secondly, to illustrate the carefully phased exploitation of
data that iz enabled by the introeduction of nomenclature.

Preliminary remark . In this chapter, we aim at illustrating how the
shape rather than the interpretation of the formulae that emerge leads
the way in the design of a proof. For that purpose, the proof proper
is interspersed with considerations of heuristic flavour. Wherever the
distinetion could be made, we have isolated these heuristic considerations
in Notes.

End Preliminary remark .

Helly’s theorem is concerned with finite sets of figures, “tuples”
for short, for which the following notions are relevant:

a figure is a set of points, and for tuple #

B.t = the figures of ¢ have a point in common
C.t = ench 3 figures of ¢ have a point in common
#t & the number of figures in ¢.

Helly’s theorem . A tuple ¢ of plane convex figures such that 3 < #t,
satisfies Ot = B.t.
End Helly’s theorem .

47
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The proof given below consists of 3 sections and an appendix.

. The initial section eliminates concept € from the demonstran-
dum; it does so by the use of mathematical induction. (In
passing, the constant 3 all but disappesrs from the demonstran-
dum, thus paving the way for a generalization of the theorem.)

. The next section takes into account that B has the form of an
existential quantification over a dummy of type point. The proof
obligation in terms of B is rephrased in terms of a predicate D
defined on points.

. The third section meets the final proof obligation in terms of D
by taking the convexity of the figures and the dimension of the
space into account.

. The appendix contains deferred proofs.

* *
*

The proof. Inthe following, identifiers r, 4, ¢, and p denote tuples, i.e.
sets of figures, For later use we first note that B and ¢ are monotonic
with respect to tuple containment “ 27, i.e.

raos = (Br= Bs)a (Cr=(Cs)

Note0 . For the removal of ¢ from the demonstrandum, we investigate
what proof obligations emerge if we attempt to prove Helly’s theorem
by induction on #t.

End Noted .

Induction on #t:

. Base: 3 = #t implies C.t = B.f, since £ 15 the one and only
subtriple of 1.

. Step: we wish to derive, for 3 «<#t, C.t = B.t from induction
hypothesis (Ap:3 <#p<#t: Cp = B.p). We calculate
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Ct
= {monotonicity of ¢ w.r.t. 3}
(Ap:top A 3g#p<#t: Cp)
= {induction hypothesis, monotonicity of 4 }
(Ap:top A B<#p<#t: Bp)
=> {7, heading for B.t}
Bt |

a calculation whose last as yet unjustified step suggests us to choose that
step as our remaining proof obligation, viz.

Bt <« (Ap:taop N 3<#p<st: Byp)

or, by B's monotonicity w.rt. 2 equivalently,
(i) Bt = (Ap:top A #p=#t~1:B.p) for 3<¢t.

Notel . We omit “3 g #p” from (i) because it follows from #p =
#t—1 A 3 ¢ #t. We note that with s disappearance from the demon-
strandum, nearly all traces of the specific “3” have disappeared. We
also note that so far the only property about “3” used is the equality
of 4t for the base of the induction and the “3" in C.t; replacing all
symbols 3 by k, hence, maintains the validity of the argument.

End Notel .

Having removed €', we now concentrate on B. In order to
prove {1}, we shall have to take more details of B into account. More
formally, for r a tuple of figures,

Br = (EQu(Af:fer:Qinf))

where 7 is a dummy of type point and “@ in f” stands for “point @
is a point of figure f7 . From here onwards, dummies r s, and p will
be confined to subtuples of ¢,
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Drawing from our experience in programming, we isolate the
inner quantification of B.r, by naming it, and investigate its properties:

[Dor = (Af: fet\r:@Qin 1)
Notational remark . In the above, square brackets denote universal
quantification over § -—note that .7 implicitly depends on — and
#\r denotes r's complement in t,ie. fet\r = fetA ~(fer); so Dr
also implicitly depends on ¢. We have only made the dependence on
r explicit, because it is the only parameter in D.r for which we shall

need different instantiations.
End Notational remark .

The purpose of D’s introduction is to remove B. We have, for
any tuple r, rct,
B.r
{definition of B}
(EQ=(Af:fer:Qin ha);
{definition of D, using r = ¢\(t\r)}
(EQ = D.(\r))
s0 that we can now reformulate demonstrandum (i) into
(EQ: D.(1\t)) &= (Ap:#p=#t—1:(EQ = D.(t\p))) ;

since t\t = ¢ and by the one-to-one correspondence between figures of ¢
and one-element tuples #\p with #p = #t—1, this is equivalent to

(i1) (EQ = D.¢) follows from (Af: fet:(EQ = DA

Note2 . The shape of the rightmost formula in (i} ——a simple quan-
tification over figures rather than tuples— was the main reason why in
our definition of D, t's complement entered the scene. We arrived at
D.r by the technique of replacing a constant by & variable, applied to
B.t's inner quantification (A f: fet: @in f). Rather than replac-
ing t, however, we replaced “invisible” constant ¢ ——t=1t\¢—, by
variable 7; although both options were there, our choice was guided by

Ik



51

manipulative convenience.

End NoteZ ,

* *

Now that B has been removed from the demonstrandum, let us
first consider some nice properties of D (for proofs see the appendix),
viz.

Q)] [DrADs = Dirns)
(1) (Dr=Ds| « rcs

Property (0) gives us the slack to write D.¢ as D.r A D.s for rNs = ¢,
and, hence, to write target (EQ :: D.¢) of (ii) as

(itia) find disjoint » and $ such that
(iiib) (@:D.r) and (@ :D.s) have a common solution

Property (1) enables us to exploit the antecedent of (i) the latter
gives us that each of the (#t) equations (@ : D.{f})} has a solution, and
because from (1) we deduce [D.{f} = D.s] for fes, we also have

(2) for sct, (@: D.s) has a bag of (at least) #s solutions, viz. for
each f, fes, asclutionof (Q:D.{f}}.

30 far, the properties of D ~~such as (2)— only admit satisfac-
tion of (1iib) for non-disjeint r and 81 fer Ns A D.{f} = D.r A D.s;
however, according to (ilia) we need disjoint v and s, so we need some
more. We get it by exploiting the convexity of the figures of ¢ as follows.
Without proof we use

(3) For a-convex figure f and a bag of points X with convex
hull XH , we have (AQ: QeX :Qinf) = (AQ: QeXH :
@i f),

with which we derive (see the appendix)

(4) For convex hull XH of X and tuple r,
(AQ:QeX:Dr)= (AQ:QeXH:Dr) |

a relation telling us that for a bag X of solutions of (@ : D.r), X'
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convex hull consists of solutions as well. As a result, we can reformulate

(iiib) as

(ivb) with R and S bags of solutions of (@ : D.r) and (Q : D.s)
respectively, ie. with (AQ 1 QeR: Dr) and (AQ - Qe5:
D.s),

(ive)  the convex hulls of R and $ have a common point;
all this for

(iva) r and s disjeint, viz. for (iiia).

Condition (iva) can be met in various ways, e.g. any partitioning
of ¢ will do, and by (2) there is a one-to-one correspondence between
such partitions of ¢ and partitions satisfying (ivb) of the bag containing
one solution of (@ : D.{f}} for each f in ¢. Therefore, we take for
RU S this bag of #t points and try to partition it into an R and 5§
satisfying (ive); if we are successful we are done.

Because nothing is known about the position of points, we can
only use their number #¢ ~-—3<#t— and the yet unused planarity
of the figures, i.e. we could do with a theorem like “A bag of » 3
points in the plane can be partitioned into two subbags whose convex
hulls have a common point.” . Note that the “3" and the “plane” are
related: the statement does not hold in three-dimensional space. In
view of NoteD about 8’s irrelevance, we venture a generalization of the
above statement and reinvent

Radon’s theorem . In a real linear space of dimension k-1, each bag
of > k points can be partitioned into two subbags whose convex hulls

have a common point.
End Radon’s theorem .

(For a proof see the appendix).

With Radon’s theorem we have finished the step of the induction
and, thereby, the whole proof. Taking Notel into account, we now have
proved the generalized theorem



Theorem . For ¢ a tuple of convex figures in a space of dimension k—1,
with &k < #t, we have: each &k figures of t have a point in common =
all figures of ¢ have a point in common.

End Theorem .

We first present the appendix to fulfil the proof obligations post-
poned, and finally end with some remarks.

Appendix .

Proofof (0). [DorAD.s = D.(rns)

D.(rns)
{definition of D}
(Af:fet\(rns):Qin f)
{domain split: fet\(rna) = fet\r vV fet\s}
(Af:fet\r:Qin f) A (Af: fet\a:Qin §)
{definition of D}
D.r A D.s

End Proof of (0) .

Proofof (1). [Dr=Ds] « rcs
From (0) with r M s = r wederive [D.r A D.s = D.r],ie. [Dor = D.s).
End Proof of (1) .

Proof of (4) . For XH the convex hull of X

(AQ:QeXH: Dr) (#%)
{definition of D'}
(AQ:QeXH:(Af: fet\r:Qin m

= {interchange of quantifications}
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(Af:fet\r:(AQ:QeXH :Qin f)) ()
{(3)}
(Af:fet\r:(AQ:QeX:Qin [))
{undoing: () and (++) with XH:= X'}
(AQ:QeX :Dur)

il

1l

End Proof of (4) .
For cormpleteness’ sake we also include a proof of Radon’s theorem.

Proof of Radon’s theorem . We are to show that in a real linear space
of dimension k— 1, each bag of > k points can be partitioned into two
subbags whose convex hulls have a common point. We define the convex
hull of a bag of points to consist of all the linear combinations of the
- points such that each coefficient is = 0 and the sum of the coefficients
equals 1.

We can now rephrase our interest in convex hulls with commeon
point —z , say— into an interest in a linear combination, of all the
points, that (a) is non-trivial, (b)is equalto 0, ie to 2 — =z, and
(¢) whose coefficients have sum 0,ie. 1—1.

In & space of dimension k — 1, a linear combination of the more
than k points that satisfles (b) gives rise to k — 1 homogeneous equa-
tions in the more than k coefficients, and property (c) gives another
such equation. These equations have a non-trivial solution, and, by
scaling, a non-trivial solution for which the sum of the positive coeffi-
cients equals 1 and hence —by (c)— that of the negative coefficients
equals —1.

From such a solution we congtruct a partition of the points into
bags v and w such that the points with positive coefficients are in
v and those with negative coefficients are in w . (The allocation of
points with coefficient O is immaterial.}) With Pv and Pw the linear
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comabination confined to v and w respectively, we have Pv + Pw =0,
le. Pv = —Pw, while Pv isin v's convex hull and —Pw is in w’s
convex hull,

End Proof of Radon’s theorems: .

Remark . In two respects our formulation of Radon’s theorem is stronger
than formulations found in the literature: it uses bags rather than sets
of points, and “more than & points” rather than “exactly k+1 points”.
In this way the theorem provides a better imterface: it smoothens ap-
plication without complicating the proof,

End Remark .

End Appendix and Proof .

* *

The above proof, though as we later discovered not new, has been
newly invented. The initial incentive to construct this formal calcula-
tional proof was a desire to avold some of the characteristics of proofs
we found i the literature: we wanted to avoid pictures and abundant
nomenclature; in any case we wanted to avold unmanipulatable formulae
like

e MNnkRN . . NnFE nFan...NE #0 (cycle)

(see “Convex Sets” by Frederick A. Valenting) We achieved the latter
by not naming all the figures and instead introducing the concept D,
with which we can render the analogue of the above formula as 2.{y} for
¢ a figure, and which invites us to formulate and use simple properties
of D. (We mention that the above simple rendering D.{g} is the main
reason why #'s complement entered the definition of D (see Note2).)

Besides having been included for its formal character, the present
proof has been included for the way in which we chose to effectuate
disentanglement in it. We were keen on being explicit about where the



9. HELLY’'S THEOREM 56

various data are used, or rather where they are not used, because we are
interested in dealing with as few issues at the same time as possible.

The introduction of nomenclature did the job: by introducing
B and ', we could remove €, and with it most traces of “3”, before
introducing more details of B by D and predicate @@ in f; D enabled
us to formulate a few simple heuristically helpful properties such as the
exploitation of convexity in (4); and, finally, in predicate “@ in " we
encapsulated all geometric interpretations. (In passing we note that the
need for such interpretations hardly arises: except for the validity of
(8) and the adequacy of B’s formalization in terms of D, the proof is
independent of what ¢} in f standsfor.) We note that as a byproduect of
the encapaulation, Helly's theorem is independent of whether some of the
fgures coincide: coincidence of f and ¢ can now only be expressed as
[@in f = @ in g], and such expressions do not cccur in the argument.

In summary, the introduction of names, largely for predicates,
has enabled us to keep formulae manageably short and, thereby, to give
a formal proof, the shape of the formulae leading the way, and it has
enabled the gradual introduction and exploitation of detail, disentan-
gledness being a result.



10 The formal derivation of a proof of the
invariance theorem

The construction of the formal proof in this chapter illusirates
to what extent the shape of formulae rather than their inter-
pretation can inspire and assist the design of a proof,

In this chapter we formally derive a proof for the invariance theorem.
Our only concern here iz the design of that proof from its specification:
we wish to show to what extent the symbols can do the work. For
the reader that has an interest in the theorem itself, we include a short
appendix. The contents of that appendix are, however, of no relevance
to the argument below.

Theorem . For

F and @Q : predicates on a space V',

t :  an expression on V', having its values in a partially
ordered universe ) (¢ <7 denoting the non-reflexive
partial ordering);

< : asubset of D;

f :  a predicate transformer;

we have that
[P = Q]

follows from the conjunction of

57
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(€, <) is well-founded

[P A -(teC) = Q]

(Az:zeD:[P At=z = f(PAt<z)])
[f.Q = Q]

J is monoteonic

L

End Theorem .

Notational remark . Square brackets denote universal quantification
over the space V' ; ¢ can be viewed as a function application in which
both the function (from V te D) and the argument have been left
implicit, while the whole expression has been named (similarly for P
and Q).

End Notational remark .

We shall prove the theorem by proving [P = @] < true ina
calculation starting at [P = Q] and terminating at true, and using
premisses (0) through (4). We note that ¢, ', and f —unlike P and
(2 — only oeccur in the premisses of the theorem and not in consequent
[P = @] orin true. This means that somehow they have to enter the
calculation and disappear from it again. The same holds for universal
quantifier “A” ,in (2).

We cannot say much about such introductions and removals until
(0) and (4) are known in some more detail.

(4a)  f is monotonic = forall Y and Z, [f.Y = f.2] < [V = Z] .

By its shape, definition (4a)} looks most snitable for removing f's from
the calculation of [P = @] <« true. Premiss (3) —[f.Q = Q]—
seems suitable for both introduction and removal.

(02) (O, <) is well-founded

for each predicate &
{Az:zeC:8z) = (Ax:2eC: Sz (Ay:yeC Ay<az: Sy)))
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The well-foundedness does not help us introduce or remove A’s, it allows
us to rewrite one quantifieation equivalently into a formally weaker one.

Since we do not have a rule for introducing “A” vet, it may be worth-
while to remember the one-point rule:

(3) [E{z:=r)= (Az:z=r: E)] for any expressions + and E

We have one final remark before starting the caleulation. In
the derivation, there are only a few places where a design decision has
to be taken. We give the calculation first and discuss the design deci-
sions later. For ease of reference, we label the steps that embody these
decisions.

Proof.

() Instead of massaging [P = ¢}, we massage the more general
[PAZt = @), for Z.t a predicate:

[EAZt = &
(7) = {(1),le [@ = 62\/(13'A —(teC))i}
[FAZt:bQV( (e C))]

{reshuffling, aiming at the removal of one P}
(PAZEtAA(PA-(ieC)) = Q]

{De Morgan, negation}
[PAZEA(RPYVEeC) = Q]

{complement rule}
[PAZinteC = Q]
(8) = {(8) with r:=t , E:=s PAZazhzreC = Q;

see NoteO below}

[fAz:z=t:PAZzrzel = Q)

{trading, heading for (2)’s antecedent}

H
i

,-\
w

=
I
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[(Az:ZzAzeC:PAz=t = Q)
= {see Intermezzo below, manipulating the term,
monotonicity of 4 and []}
[(Av:ZzArzeC:[PAt<z = Q)
Note0 . Here we use that [P(x:= t) = P), similarly [Q{z:= t) = @],

and [(Z.a)z:=t) = Z1].
End Note0 .

Deferring the Intermeszo, which exploits (2), (3), and (4)/(4a),
to the end of the proof, we summarize, noting that the only unused

premiss is (0)/(0a), that our calculation so far yields
(10) [PAZt= Q) « [(Az:ZazrzeC:[PAt<e = Q))
Notel . In (10), the square brackets around (Az : Z.¢...) may be

omitted if Z.z is independent of V.
End Notel .

Now we can perform the main caleulation, exploiting (0), by

[P = @

= {(10) with Z.t:= true}
[(Az:2eC:[PAt <2 = ]

= {(0)/(0a) with Sa:=[Prt <z = Q]}
{Az:zeC:[Part<r = Q] «

(Ay:yeCry<a:[Prt<y = Q)

= {{10) with Zt:=t <z, z:= y, see Notel}
[(Az:zeC :true)

= {predicate calculus}
[ true |

= {1}

true
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thus fulfilling our main proof obligation.
Finally we have

Intermezzo . For z¢e C A Z.2

PAz=t =
= {heading for (2)'s consequent, transitivity of = }
(PAamit = fiPAt<z)) A(f(PAt<a) = @)
= {(2) wsing C ¢ D}
FPAE< ) = @
2 {(3), preparing removal of f's by (4)/(4a)}
FPAt<) = £.Q
e {(49)/4a))
[PAt<z = @

End Intermezzo .

End Proof .

On the design decisions .

COur first design decision was to try to use each of the premisses
of the theorem only once, because in our experience duplicate usage can
be a symptom of insufficient disentanglement of the argument. Here
the decision led us to the isclation of lemma (10), i.e. to design dedsion
(8): before we had decided to massage the more general [P A 2.4 = Q)
instead of [P = @], our caleulation more or less consisted in doing the
same manipulations twice,
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So design decision (6) helps avoid repetition and lengthiness, but
the price we pay is that now the reader is confronted with this decision
at a stage of the caleulation at which he cannot yet see the need for it.
In general we prefer to avoid such heuristic rabbits being pulled out of a
hat as much as possible, but as illustrated here, we do not do so at any
cost.

As for the design decision embodied in the first step, (7), of the
caleulation: few of the options look promising; premisses (0), (2), and
(4) are not electable since there is no “f” or “A” in manipulandum
[P A Zt = @], and introducing one f by (3) does not help much yet.
What remains is the choice between the use of (1) and the introduction
ofan “A” by (5).

Of the two options, the introduction of “A ™ is, however, some-
what premature because we do not know what to choose for » in (5).
Hence we first exploit premiss (1) in step (7), simplify, and then are
ready in step (8) to introduce the universal quantifier.

Having introduced the “A ? . we now have two options: using
(0)/(0a) or first exploiting (2). The first choice would give us a long
expression to which (2), (3}, and (4) still have to be applied, so for the
sake of brevity and simplicity we choose —in step (9)— to head for the
exploitation of (2) first. After thiz decision, the rest of the caleulation
hardly leaves any more choice.

We note that the emergence of expression [PAt < ¢ = (]
at the end of the intermezzo, where all premisses except (0) have al-
ready been used, is a strong hint that [P A Z.t = Q] could be worth
considering. Indeed, ite emergence in our original repetitious calcula-
tion inspired the transition to manipulating this more general expression
instead of the original demonstrandum [P = Q] .
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In summary, the design given above rests on three pillars: syn-
tactic analysis of the formulae to be manipulated, familiarity with pred-
icate caleulus so as to be able to mould the formulae into a shape that is
convenient for the manipulations to be performed, and the use of a few
of our rules of thumb, such as trying to use each datum only once and
trying to postpone usage until hardly anything else can be done.

Showing these three things at work was our main goal. We
had proved ocur vehicle towards that goal —the invariance theorem—
before, eg. in “A simple fixpoint argument without the restriction
to continuity”, Edsger W. Dijkstra and A.J. M. van Gasteren, in Acta
Informatica. It took us quite a few iterations to get the proof presented
in that paper in a sufflciently nice form; the design given here emerged
with W.H.J. Feijen’s cooperation, after he had sugpested that in the
mean tine we should have learned to construct a proof inspired by the
shape of the formulae.

Appendix .

In the usual invariance theorem for the repetition, P is the in-
variant and { the variant function of repetition DO: do B -+ Sod ,
whose semantics is considered equivalent to the semantics of
if B -+ 5; DO{|~B — skipfi , viz. for all R

[wp.(DO,R) = (BY R)A(—B V wp.(5,wp.{DO, R)})]

For R:= P A —B in particular, we have that wp.(DO, P A =B} is aso-
hution of (X : (X = f.X]), with [fX = (BVP)A(-B v wplS,.X)).
(It is defined to be the strongest solution.)

That is what premiss (3) comes from. Premisza (4), f’s mono-
tonicity, is usually formulated as wp.(5,7) is monotonic. Premiss (2)
istheusual (Az i [PABAt=z = wp.(5 PAt<a)]), and premiss
(1) is a (weakened) substitute for the traditional [P A B = te (], The
latter two statements require a proof, which we leave to the reader.
(Predicate caleulus suffices.)

End Appendix .



11 Proving theorems with Euclid’s
algorithm

Algorithms can be used to prove theorems. This chapter il
lustrates how the notion of invariance can assist in proving
cquivalences directly instead of by mutual implication.

Most monographs on number theory include Euclid’s algorithm, in some
form. or other, in their treatment of the greatest common divisor. Usu-
ally, the validity of the procedure rests in some way or other, on the
validity, for all integers z, v, and w, of
(0} zlv A zlw = zlv A z|(w —v)
(1) z>0 = zgedz=12

Rarely, however, is the algorithm used at all. In this small

chapter we shall show how it can be used to prove some theorems. In
the following, variables denote integers unless stated otherwise.

* #

We use the algorithm for computing pged ¢ in the following form

[p,g:mt{p>0 A g>0}

[z, rint; z,y:= p.g
sdox >y = zi=o—y
ﬂy‘:}a: — Y= y—x

64
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od
{z =y}

Il
o

Using (D), the reader may verify that the above program maintains
P ¥

P (Azuzlpazlgz zlzAazly) Az>0A y=0 |
and, hence by the notion of “greatest”,
pgedg=agedy Ae>0A >0
so that upon termination, from ¢ =y and (1), we have pgedg = 2

Apgedg=y .

All this is familiar to computing scientists, but perhaps a little
less so to other mathematicians. The reason why we exhibit it is to stress
how the whole almost solely depends on the simple additive property (0),
and to pave the way for the observation that if instead of exploiting (0}
we exploit the equally valid (2):

(2} lm*v A zlmxw = zm*v A zlme(w —v)

we similarly have the invariance of € :

Q: (A= zlmep A zlmeg = z|mez A zlmsy)

then, upon termination, with = and y equal to pged g, we hence have
(3) (Az: z|m*p A z|m*g = z|mH(pgedg)) ,forp>0 A ¢>0

Since (3) does not depend on variables of the state space, it not only
holds upon termination, but also 1s just a valid theorem.

We note that (3) also holds for non-positive integers p and ¢ .
It holds for p < 0, sice

(—p)gedg = pgedg and  z|lm+(—p) = zlm+p
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it holds for p =0 and ¢ # 0, since
Ogedq = ggedg and z[0 A zlm#g = z[mag A z{mxq
Hence using the symmetry between p and ¢ we have

(4) (AzzlmepAzimrg = zlm#*(pgedq)), forp#0vg+#0

Different instantiations of (4) now immediately provide a number
of well-known theorems about greatest common divisors:
Corollary0 . Instantiation of (4) with m =1 yields the familiar
(AzuzlpAzig = 2lpgeda)
Corollaryl . Instantiation of (4) with z = p yields
plmeq = pimx(pgedq)
which is probably less familiar thaa its consequence

Corollaryla . If pgcdg =1 and p|m*q then plm.

Furthermore we have, for any z,

zlmx{pged ¢}

{4}

zlmp A xlm#g
{Corollary0}
al(mxp)ged(m*q)

from which we conclude —using that (Az = zlz = zly) = [z| = |yl
and that ged is positive—

Corollary2 . (m#p)ged(mx*q) = [m|+(pged g}, i.e. multiplication with
a positive number distributes over ged .

Corollary3 . ged is as sssociative as conjunction: we have, for any 2,
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z|(pged gjgedr
= {Corollary(}
z|{pgedg) A zlr
{Corollary0}
(zip A zlg) A zlr and similarly

zlp A (zlg A zlr) = z|pged(ggedr)
go that

conjunction is associative
= {see above}
(Az: zl(pgedg)gedr = zlpged(ggedr))
= {arithmetic, and ged is positive}
(pecdg)gedr = pged(ggedr)

*® *

The above theorems can be, and are, proved in various ways.
We have several reasons for showing our proofs, a main one being that
the algorithm is such an effective interface: the proofs of the corollaries
require no appeal whatscever to properties of ged ; all such appeals
are confined to the proof that Euclid’s algorithm meets its requirements.
We consider this a nice separation of concerns. The most elegant “con-
ventional” proof we have seen for, for instance, Corollaryla, requires the
introduction of two extra names —as our algorithm does— but relies on
the theorem that pged g is a linear combination of p and ¢ (a theorem
that can also be proved with the algorithm, viz. by choosing “z and y
are linear combinations of p and ¢” as an additional invariant). Other
proofs rely on the unique prime factorization property.

A second reason for showing the above is that the equivalence
in (4) was not proved by proving mutual implication, in contrast with
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traditional proofs of the corollaries, which usually are. In fact, the
validity of (0) and (2) together with the notion of invariance is a strong
incentive to consider such equivalences as appearing in P and @.

We also note that by choosing to use formula (4) we opened
the way for such simple conclusions as Corollary3, viz. that ged 1s as
associative as conjunction, and achieved that further proof obligations
could largely be met by manipulation of uninterpreted formulae.



12 On the design of an in-situ
permutation algorithm

It is shown how the availability of an adequate aotation, for
permutation-valued expressious in this case, can be essential
for the presentation of an algorithm and the design decisions
leading to it. The choice of the notation was guided by con-
straints of manipulability, constraints that were met primarily
by being frugal in the use of nomenclature (of subscripted vari-
ables in particular),

In this chapter we develop an algorithm for the in-situ inversion of a
eyclic permutation that is represented in an array. We do so not for
the sake of the algorithm, but because the development is such & clear
demonstration of how the availability of an adequate notation can decide
between failure and success,

We present the development of the algorithm first. In a “heuris-
tic” epilogue we shall discuss some of the design decisions in more detail.
In particular, we shall pay attention to the choice of our notation and to
the reasons why alternative notations that we employed in eazlier efforts
were inadeqguate,

We consider a permutation P of the elements of & finite non-
empty universe, L.e. P is a one-to-one function from the universe to the

69
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universe, Its inverse @ is defined by
(0) Qi=i=Pi=j; , foreach i,j in the universe.

We want to design an algorithm $ that changes in situ an array H ini-
tially being equal to a cyclic permutation P into the array representing
its inverse @; ie. the functional specification of 5 is

(1) {(H=P} S {H=Q} , for P and Q satisfying (0).

*

Besides introducing some notation and nomenclature, we first in-
troduce the concept of a “ring” and its relation with cyclic permutations
and arrays. After having done so, we shall carry out the major part of
the development in terms of such rings, because they are more conve-
niently manipulated than arrays. (Also, the treatment will pertain to
permutations over any universe, i.e. by choosing some one-to-one corre-
spondence between such a universe and an initial segment of the natural
numbers, the ultimate algorithm may be used for arbitrary domains.)

. Elements of the universe are denoted by lower case letters, se-

quences of such elements by capitals, and catenation of finite sequences
by juxtaposition; one-element seguences and elements are identified;

the empty sequence is denoted by ¢ .

. Function rev on finite sequences iz defined by
rev. = qb
rev.d =
rev.(dC) = (r ev.C)d ,  hence satisfles

rev.(BC) = (rev.C)(rev.B)

. On finite sequences of distinct elements we define equivalence
classes, called “rings”, denoted with square brackets and induced by the
equivalence relation relating BC to CB, for all finite sequences B and
C'; ie we have

[BC) = [CB] ., the Rule of Rotation.
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. For elements in a non-empty ring the notion of “follower” is
defined by

(2) the follower of d in [BdC'] = the first element of sequence C'Bd.

(Note that in a one-elernent ring, the element is its own follower.)

. Finally, between cyclic permutations and rings we establish a
one-to-one correspondence:  for cyclic permutation R and ring [B]
that have the smine domaln

) R corresponds to [B] = (A{: the follower of 7 in [B] is R.{)
The importance of this correspondence is that for P and @ satisfy-
ing (0) we have

(4) P corresponds to [U] = @ corresponds to [rev.l)

The (caleulational) proof of (4) is given in an appendix.
End e.

Correspondence (3) and theorem (4) enable us to rephrase spec-
ifleation (1) in terms of rings as

{(h=[U]} § {h=[reu.l]]
where hois a variable of type ring (corresponding to the original H )
and [U] is a constant of type ring (corresponding to P ).

The defimition of revy shows that for rings with at most one
element, 5 = skip satisfies the specification; thervefore, we concentrate
on rings with at least two elements, viz, we solve, with p and ¢ as two
further constants, of type element,

(5)  {r=[Upgl} S {k=[gp(rev.U}]}
Remark( . The above case analysis requires a justification, We deal

with that in the epilogue.
Fud TRemarkO .
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In order to find an invariant, we consider generalizations of the
initial and final states in (5). Observing that, by the Rule of Rotation,
the posteondition 1s equvalent to k= [p(rev.U) ¢], we are led to the
introduction of two new variables X and Y, of type sequence, and
connected with h by invariant

PO h = [XpYyq|
Solving equation {X,Y : P0) for initial and final state yields

(6) witially, X, ¥ = U ¢
finally, XY = ¢ rev.l

For the time being we posipone our concerns aboutl variable A
and conecentrate on finding a program fragment operating on the se-
quence variables X and ¥ and establishing transformation (6). Since
initially and finally the sequences X and ¥ comprise the elements of U,
it 1a strongly suggested to include this In an invariant. We suggest

P1 (ree. Y} X =U

which is satisfied by both states of (6) —on account of properties of
rev— .

Remarkl . Why we did not propose the at this stage equally acceptable
invariant X(rev.Y ) = U will be discussed in the epilogue.
End Remarkl .

Because P1 A X = ¢ implies the final state, the task is to shrink
X under invariance of P1. Doing so one element at the time means
~wsee P1— removing the first element of X and attaching it to the
end of rev.Y |, Le. to the front of ¥ .

So we get for transition (6) the program fragment

do X # ¢ —
with r and Z chosen to satisfy X =rZ
(XY = 20V

od
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So much for the invariance of 1.

It is now time to return to A and the invariance of P0O. For the
latter purpose we Introduce the statement “massage k" , whose refine-
ment will be postponed for a while. We insert it before “X,Y .= Z,r¥"”,
80 #8 to be able to derive its posteondition with the axiom of assignment.

Including the initialization, we get our next version.

X, Y:= U4 {POA PL]
sdo X #9 —
with r and Z chosen to satisfy X =rZ:
s “massage B
XY = Z0Y {FOAFL}
od
{POAPLA2 = &)

The oaly task left is the design of “massage h” so as to guarantee the
ivarnance of PO We derive a specification for “massage h” by taking
PO A X =r2 asits precondition and wp. (X, ¥ := Z »Y | P0) as its
posteandition:

(7 {h = [rZpYy¢]} massage h {h = [ZprYq|}

We shall translate operations of “massage A" into operations on H
according to

(8) H corvesponds to ring A

Finally, R, U X,V | and Z wil] be eliminated as thought quantities.

*

Starting with the refinement of “massage b, we note that (8)
together with (7Ys precondition gives:

H p = the first element of sequence Yy
Hy r
H.r the first element of sequence Zp

il
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and that (8) together with (7)'s postcondition gives:

Hp e
H.q = the first element of sequence Zp
H.r the first element of sequence ¥q

For all other elements of ring A (viz. the elements of Z and 1), the
follower in k does not change. Hence, “massage A" can be refined
to

“massage h” . Hp, Hq Hr:= Hq Hr, Hp

Note that here we use that the elements of a ring are distinct,

Finally we observe, using correspondence (8), that

in the initial state of 5 (see (8)), g= H.p;

by PO, guard X # ¢ is equivalent to H.q # p;

by POand X =rZ, r=Hyg
Hence, thought vaniables b, U7, X, Y, and Z c¢an be eliminated, yielding
the nltimate program

{1 is any element of the ring to be inverted }

g:= Hp
;do Hg#p —
r:= Hyg
i Hp Hg Hr= Hqg Hr,Hp
od

(Note . If so desired, the above program can be changed a little so as
to maintain r = H.q; in that way the duplication of expression H.g
can he avoided. Bothering about such issues, however, is beyond the
scope of this text.

End Note .)

&

Before discussing other matters, we first return to the design decisions
referred to in Remark0 and Remarkl.
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Re Remark0 . We could justify our distinction between rings with
al maost one element and rings with at least two by peinting out that
the program we derived works for rings with one element also, but that
would be too easy a way out: it iz a justification after the fact rather
than a well-considered design decision.

We do, however, have & more convinang justification,  We did
not start our initial investigation with the case distinction, because as
a rule we avold making distinetions unless we cannot.  So from the
spocification, {h = [U]} §{k = [rev. U]} we derived —by the same
pattern of reasoning as used in the development above— invariants

0 h=[XY¥]
Q1 (U] = [(rev.Y)X] with

itially, U=X¥ A Y =rcv.Y and
finally, X =rev X

The same shrinking of X, by {X = rZ} XY := Z,rY |, now
vields for the specification of “massage A7, (see Q0),

1B = [P ZY)} massage h {h = [ZrV]}

For the implementation of this “massage A" in terms of array H |, we
then noted that H.r, i.e. the follower of r in fi, changes only if neither
Z nor ¥ s empty.

S0 we were in a quandary: admitting thecase £2=¢ V ¥V = ¢
wemld give us @ case analysis in the repeatable statement, excluding it
by adding Z # ¢ A Y #£ ¢ as a precondition of the repeatable state-
went would force us to confine the algorithm to rings with at least two
elements, le it would give us a case analysis “outside the repetition”.
If forced to choose between the two, however, we as a rule prefer the
lutter. Hence our choice.

End Re Remark0 .
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Re Remarkl . Concerning the choice between X{rev.Y) = U and
(rev.Y)X = U as an invariant, we note two things. Firstly, whatever
the choice, it is uniquely connected to the choice between shrinking X
at the end or shrinking it at the front: the one choice fixes the other.
Secondly, the choice of how to shrink X is fixed by the chosen correspon-
dence between ring k and array H and our wish to design an efficient
algorithm: followers can be computed efficiently, viz. by one application
of X, other elements cannot. Given h = [XpY'g|, the computation of
X’s lagt element takes as many applications of H as X has elements.
End Re Remarkl .

We included the above justification of our earlier design decisions
for several reasons. We did so firstly because we like the degree of
completeness that can be achieved for such considerations. Secoudly,
we consider the analysis yet another example of how a careful syntactic
analysis of the formulae gives strong heuristic guidance. But most
importantly, we wanted to show how vital an adequate notation is for
the feasibility of such an analysis. We are convinced that the above
analysis could not have been carried out without the introduction of the
concept of a ring and the Rule of Rotation.

Because the introduction of the notion ring is at the heart of the
design, we give in short the history of its invention. In two earlier efforts
at developing & formal and convincing argument for the permutation in-
version problem, we had not introduced the concept yet. The treatments
were, indeed, formal but barely convineing. It was only later, when we
had experienced more often how tightly the choice of notation is coupled
to the manipulations required, that we realized what the source of the
trouble had been.
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As soon as we started to develop a little caleulus for permuta-
tions, it became clear that in order to keep the formulae manageable,
we should introduce only a very modest amount of nomenelature, And
that was exactly where the carlier efforts had failed miserably.

In the first effort we characterized a cyclic permutation in terms
ol its array representation H by giving one element p and giving the
others by expressions of the form H* p. Such expressions then occurred
in large quantities in the text, quantified and not guantified, making
first of all the formulae almost unmanageable and making, secondly, the
argument totally unconvincing, because the effect of a change of array
H on expression H*.p could not he deseribed simply.

The next effort was superior in that it at least introduced an
auxiliary concept, but its relation with cyclic permutations was as in-
adequate as the above one:  the concept was a sequence of appropriate
length with some rotational freedom, and the relation bhetween sequence
s and permutation y was given by s = y'om for all 1 in the given
range and some fixed . As a result the treatment, besides suffering
fram indexitis, was as much complicated by the occurrence of expressions
y' o as the first effort,

In both efforts the major mistake was that all elements, and
even the size, of the permutation had received a name, overwhelming
detail and unwieldy formulae being the result. With such overspecific
nomenclature, even the formulation of & simple rule like the Rule of
Rotation would have been painful, and any discussion of heuristic con-
siderations nearly impossible.  Although conventional, the notations for
permutations that we had used, appeared to be totally inadequate for
our manipulative needs.

That our third effort became an order of magnitude more ef-
fective than the carlicr ones, aguin confirms our and many computing
scientists’ opinion that in the design of algorithms the development of
adequate mathematical notations 15 a key issue,
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Finally we mention that our initial incentive to investigate the
permutation problem dealt with here was the publication of an algerithm
for it in Information Processing Letters by B.-C. Huang. Because that
paper did not give any justification for the correctness of the solution,
we decided to investigate the problem in order to find out how such per-
mutation problems could be dealt with more formally and convineingly.
We confined ourselves to cyclic permutations because that is where the
heart of the problem is.

The above treatment 1s a revised and extended version of a paper
co-authored by W.H.J. Feijen and D. Gries, published in Information
Processing Letters.

Appendix . Proof of (4): for P and @ satisfying (0)

P corresponds to U] = @ corresponds to [rev.U]
The validity of (4) rests on the validity of two relations between rev
and rings:
(9) [X] =[V] = [rev.X] =[rev.Y] and
(10)  the follower of ¢ in {U] is § = the follower of j in [rev.U] is :
which will be dealt with shortly.

P corresponds to U]
{definition (3) of “corresponds”}
(At :: the follower of ¢ in [U] is P.)
{(10)}
(A7: the follower of Pi in [rev.U] is §)
= {dummy transformation: ¢ = ., ie. by (0), F.i=j}
(Aj:: the follower of j in [rev.U] is Q.4)
{definition (3)}
} corresponds to [rew.U]

1l
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Relation (9) holds since for all B and ¢

[rev (BC)] = [rev.(CB)]
= {definition of rev}
[(rev.C)rev. BY) = [(rev.B)Y(rev.C))
= {Rule of Rotation}

true ;

relation {10) holds since for U7 = XY

4 1s follower of @ in [U/]
= {definition (2) of follower, I7 = XiY"}
7 is the first element of ¥ X7 and ¢ is last
o {property of rev}
7 is last element of rev.(Y Xi) and 7 is first
= {definition of follower}
i s follower of § in [rew.(Y X7))
= {by (9) [rev.(YX:)] = [rev(XiY)], U= XiV}

15 follower of 5 in [rew.U)

s

End Appendix .



13 Shiloach’s algorithm

This chapter’s purpose is to show how the use of an adequate
formalism, predicate calculus in this case, enables us to present
an algorithm cleatly, concisely, and in all relevant detail, in 2
way that reveals all the ingenuities of the design.

As an illustration of how a program can be presented clearly, concisely,
and in all its relevant detail we present Shiloach’s Algorithm for checking
the equivalence of two cireular lists. The presentation is followed by a
discussion.

The problem we describe is symmetric in the integer sequences
A(i:0gi<N)and B(i:0gi<N), N31,andsowill be the solution.

In terms of A(i : 0 <v <« N) we define the set of so-called A-
sequences SA.i —the “rotations” of sequence A— for all natural ¢

{i.e. 120) by
SAi=Ak:izk<i+ N}

with indices in A reduced modulo N. Note that SA.:= SA.(i+ N}, s0
that the set of A-sequences contains at most N elements. H-sequences
are defined by symmetry. We are requested to write a program solving
equation R in eq

R: eq = (Ei, ;2 SAL= SB.j)

Note . In the notation of Chapter 12; we are to solve equation

80
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eq = |A] = [B]
End Note .

Remark on terminology

In discussing programs, it is convenient not to restrict oneself to deter-
ministic programs or program components. In order to do justice to
this fact, we prefer to avoid terminology that is only applicable in the
case of determinacy; in particular, we do not describe the “output” as a
funetion of the “input”. Instead, we specify the program using a post-
condition to be satisfied at program completion. Such a postcondition
18 & boolean expression on what are also known as “input variables” and
“output variables”, the distinetion being that the postcondition has to
be satisfied by assigning suitable values to the output variables.

We have adopted the convention of rendering this distinction by
considering the postcondition as an equation in the output variables and,
accordingly, phrase the programmer’s task as writing a program “solving
that equation”. (Here the English word “equation” has been generalized
to that of the Dutch “vergelijking”, in the sense that the posteondition
may be any boolean expression and need not be constrained to equalities
between two expressions. )

End Remark on terminelogy .

R is casily solved by comparing each A-sequence with each B-
sequence, but in our trade we refuse to do so: no specific property of
A-sequences and B-sequences would then be exploited.

We observe that the sets of A- and B-sequences are either dis-
joint, in which case e¢ = false solves R, or not disjoint, in which
case ey = true solves R. If they are not disjoint they are equal: if
544 =58 then SA.({+k)=SB.(j+k),forall k, ¢, and j. The
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sets being either disjoint or equal, they can be compared by comparing
canonical members, e.g. with

AA = the lexicographically first A-sequence , and
BE = the lexicographically first I-sequence

we have

(0) R = (eg=(A4 = BB))

R can be solved by computing A4 and BB, but in our trade we
refuse to do so: im solving R only their equality or difference matters.

We propose to discover the solution eg = true by identifying
a pair (4,7} such that SA.i = §B.j. To that end we introduce the
weaker condition

P Och A (Ak:O0ckeh: SAik=SBjk)
which derives its importance from the validity of

(1} (P A RzN) = wp.(eq:= true R)

PARzN

= {definition of SA.i and $B.j}
SAi=SB.j

= {definition of R}
wp.(eq = true, R)

We propose to discover the solution eg = false by observing A4 # BB.
To that purpose we introduce the weaker condition

QA: O0<i A (Ak:0<k<i:SAk>BB) ,

in which “ > 7 is read “comes lexicographically after”. It derives its
importance from the validity of



) (QA A {xN) = wp(eq:= false I7)

w2

(

(QA NGz N)
= {definition of Q4 }
(Ak:0zk <N :5Ak>BB)
= {definition of 44}
AA - BE
= {see (0)}
wp.(eq:= false, R)

Note that condition P couples i with 4 and j with B, so that we
propose that
(%) the discussion is symmetric in the pairs (4,i) and (B,7)

from which @B and its properties follow.

The above observations suggest the following program:

[ 7,5 it
Pkt 7= 0,0,0
{PAQANAQB}
sdoh < NAi<NAj<N —
{h+i+j =« 3xN_-3}
“increase h 4 i+ j maintaning F A QA A QE”
od
{PAQAAQRBA(A2NViIizNVjizN)}
Jif hxN — {PAR:2N} eq:= true {R, see (1)}
JizN — {QAAizN}eq:= false {R, see (2)}
I j2N = eq:= false {R, by (3) and the preceding
alternative}
fi {R}
I
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Note that the repetitive construct terminates by virtue of its specifica-

tion,

Remark . Theif-statement can be replaced by the much shorter eg:=
(h>N) since its precondition guarantees that 12N V jzN =
-(h > N)
QA ANisN AP
= {see (2)}
A4+ BB AP
= {see (0), definition of P }
(A4,j SAi#SBj) A0<h A
(Ak:0<k<h: SALEk = SB.j.k)
= {definition of equality SA.4=SB.j}
h«N

End Remark .

*

Qur remaining obligation is detailing “increase h+:+7 main-
taining PAQAANQB” .

. Inspection of P shows that if SA.i.h = SB.j.h —le. A+ k)
= B.(j+h)— anincrease of i by 1 does the job, Note that QA and
(B are maintained as well, because h does not occur in them.

) If SA.ih+# SB.j.h,we conclude SA.i# §B.j or, more gener-
ally, (Ap:0<p: SA(i+p)# SB.(7+p))-

More specifically we conclude for any p, 0 gp<h:

SAih>SB.jh AP
= {definition of P, 02p<h}



SAuh>SBjh A (Ak:pskah: SAiLk=58Bj.k)

= {lexicographic ordering}
SA(i+p)>SB.(j+p)
= {definition of BH}

SA(i+p)= BB
from which we deduce, rewriting $4.1.h and SB.j.k,
(4) QAAPANA(I+hR)>B.(j+h)
= {by the calculation above}
QA A (Ap:O<p<h:5A(i+p)-DBB)
= {renaming the dummy: i+p=Fk}
QA A (Ak:igksi-}-h:SA.k}B.B)
{definition of QA4}
QA= i+ h+1)

End e .

And now we are ready to present “increase ...’
HA(G+R) = B(j+h) = h:i=*FH+1
TAG+R) > B{g+h) - i i+h+1{QA, see (4)}
ihi=0{F}
I B.(G+h) > A(i+h) = j:=j+h+1; hi=0 {by (3)
and the preceding alternative}

I

fi
Note that in the last two alternatives, statement h:= @ is included so
as to establish P (trivially), which may be falsified by assignments to
v and 7. Note, furthermore, that A4 ¢4 § is increased by 1. so that
—see the guard A <N A i< N A j <N of the repetition— the body
is never executed more than 3+ N — 2 times.

This completes the treatment of the algorithm.
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The above presentation is a slightly adapted version of “Shiloach’s Al-
gorithm, taken as an exercise in presenting programs” by W.H.J. Feijen
and A.J.M. van Gasteren, published in Nieuw Archief Voor Wiskunde.
The major changes are the use of a somewhat more modern notation
and the insertion of a missing step in one of the calculations.

Then and now, our incentives for writing the text were twofold.
Firstly, though programs are designed and published that sometimes
embody ingenious intellectual achievernents, they are rarely presented in
a fashion conducive to excitement. Secondly, this unfortunate state of
the art in the field of presenting programs and justifying their correctness
might very well be the reason why the mathematical community as a
whole hardly recognizes computing science as a challenging branch of
applied mathematics.

In order to narrow the gaps we wanted to demonstrate how a
program can be presented clearly, concisely, and in all relevant detail by
a suitable arrangement of the considerations leading to its development.
As an example we chose an algorithm by Yossi Shiloach, published in
Information Processing Letters.

We did so becanse on the one hand the algorithm was very in-
genious yet presented in a way not revealing or deing justice to this
ingenuity, and on the other hand we were convinced that the problem
allowed @ treatment that, firstly, would shed more light on how the al-
gorithm might be designed and, secondly, would be clear and detailed
enough to admit, for instance, presentation in an elementary course on
programming,.

In our presentation the two major design decisions become visi-
ble. The first one is the decision how to exploit P in the case A.(i+h) #
B.(j + k): the introduction of the concept of an ordering —where
st first only equality and difference (of elements and sequences) were
involved—— , paves the way to exploit lexicographic order. The second
design decision, which in all probability is a direct consequence of the
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first, is the introduction of A4 and BB, and their usage to capture a
whole bunch of inequalities SA.(i4p) » SB.(j+p). Then, the contiguity
of the bunch of inequalities SA.(1 + p) » BB suggests the introduction
of invariant A, with which all “inventions” of the design have been
pointed out.

In our presentation we have almed at a rather fine degree of
detzil, We did so for several reasoms.

Firstly, it is the level of detail that most convincingly shows the
correctniess and efficiency of the algorithm, because it matches the fine-
grained proof obligations like P A A.(i+h) = B.(j+k) = P(h:= h+1)
that the axiom of assipnment brings about.

Secondly, the detail enabled us to be explicit about where exactly
the design decisions come into the picture and, what is more, to Justify
why they have been taken. In other words, the fine degree of formal
detail may provide heuristic guidance.

Finally, we have come to appreciate in general a homogeneous
and rather fine degree of detail for mathematical arguments. That, as
a result, the treatment above can be presented in an elementary course
on programming, we consider an encouragement and an extra.



Part 1
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14 Clarity of exposition

We consider it beyond doubt that any mathematician wants his texts to
be correct and clear, Yet they often are not: proofs contain quite a few
“inaccuracies”, many published algorithms are incorrect, and frequently
a reader can only gain confidence in the correctness of an argument at
the expense of a lot of time and intellectual effort.

We are particularly concerned with this problem in the area of
program design: the demands of correctness and, hence, of ease of
verification put on & program that has to operate impeccably a million
times per day, say, without interference from its user, ought to be stiff,
stiffer perhaps than for a mathematical theorem that is appealed to once
a week, say, by a mathematician gifted with experience and commeon
BENSE,

The desire to improve on the status quo has been our main incen-
tive to investigate “clarity” as a topie in its own right. Compared to its
recognized difficulty, however, clarity of written exposition receives re-
markably little attention in the mathematical literature; Halmos's “How
to write mathematics” is one of the rare examples of texts that de not
exclusively have a didactics context but aim at providing guidelines to
the practising mathematician as well.

Partly because of this scarcity of material and partly for the sake
of comparison, we decided to investigate the topic by experimentation,

a0
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with ourselves as guinea pigs:  we wanted to learn to be more explicit
about our standards of clarity and to learn how to meet and refine them.

Initially, we primarily experimented with (the exploitation of)
the freedom of the writer that remains once the structure of the argument
and the necessary ingredients have been chosen. The present chapter
largely deals with findings of these cxperiments. Later experiments, in
which the structurc of the argument was affected by streamlining, are
dealt with in the chapters on formalism and naming.

The main issues in this chapter are

- the division of labour between reader and writer;
- matters of arrangement, viz. of order and location of parts;
- disentanglement, i.e. the avoidance of local and global irrelevancies.

Before we proceed with the successive discussion of these three
issues, one remark has to be made about the kind of mathematical texts
to which our discussion 1s supposed to pertain. We certainly have in
mind texts that are intended for publication or other forms of wider
dissemination, but we also include the texts that a mathematician writes
to record the results of his every-day work for, for instance, later usage,
or the correctness proof that a programmer designs and records in the
course of developing an algorithm. We shall rarely distinguish among
such texts, because we consider the differences to a large extent marginal:
the advantages of the eoincidence of reader and writer quickly diminish
with the passing of time.

14.0 The division of labour between reader and
writer

The justification of the multitude of mathematical statements of fact
thal a proof usually contains, is a combined task of reader and writer,
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but it is the writer that, by his choice of what to include or exclude,
dictates how much of that task is left to the reader.

On the one hand it is unavoidable that the reader takes his share,
unless one resorts to first principles only; on the other hand statements
of fact whose justification is wholly or largely left to the reader are a
major source of error and of hard and time-consuming intellectual work
from the reader’s part.

Therefore, we decided to investigate how the writer could take a
larger share of the work.

Remark . We were prepared to at least temporarily ignore objections
often put forward against detailed proofs, such as that if a writer wants
to be detailed, he will inevitably have to sacrifice brevity, or that if he
is detailed, he is boring. As for brevity: as long as the length of a text
is not a very good measure for the time needed to read that text, we
are more concerned with techniques that may save the reader time than
with ways to save paper and ink. And as for the danger of boredom: we
would rather be boring than incorrect or unintelligible, and, in addition,
no reader is forced to read everything a writer cares to write down; if
an argument is presented in such a way that more detailed parts of
the reasoning are easily recognized and skipped, readers with various
opinions on what is boring can be served at the same time. In short,
we consider the potential disadvantages mentioned above a separate and
later concern: the art of omission has proved to be too difficult to be
practised on the fly. In addition we doubt that such disadvantages
inevitably occur. In fact they often don’t.

End Remark .

The major problem for the reader that wants to fill in the details
and gaps of an argument he is studying, is the size of the search space
in which he has to find the ingredients for his proof.
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Of course, his walk through the search space is not completely
randorn.  The (syntactic) structure of a demonstrandum already pro-
vides some hints:  for instance, the structure of expressions (pX -
g(X})R) and (pX - A(g(X).T,R)) suggests that for a proof of their
{semantic) equality one may need the definition or derived properties of
“ut L or CA” or Y97 | perhaps even of all three of them.

As the above example shows, however, even a syntactic analysis
alone already shows how much freedom of choice there is; and in addition
other things may be needed, such as predicate caleulus or concepts and
properties that do not occur in the demonstrandum itself.

Therefore, we consider it a major task of the writer to keep the
reader’s search space small, Le. to be explicit about what ingredients
are to be used (or not to be used, for that matter). Such explicitness
can be achieved in various ways. Consider, for instance, the following
demenstrandums:

"Obvicusly, (Vues(s —a)u € Cy = ue Cy)
implies (Veec(s —a)ueCy = uwe )"

which at first sight has quite some degrecs of freedom. If, however,
the “Obviously” were replaced by “Since €y G C)”, one would have
expressed very compactly that most of the internal structure is totally
irrelevant. It helps a lot, and costs only one symbaol.

Remark . We have observed that for some of the qualifications like
“obviously”, “trivially”, “it is a simple matter to verify”, and the like
that we encounter, a more appropriate phrasing would be: “once the
ingredients are known, 1t is a simple matter to verify”.

End Remark .

Like the replacement of “obvicusly” in the example mentioned
above, a simple hint like “predicate calculus” cuts down the search space
quite effectively:  with only two words it expresses that nome of the
properties of the atoms of a predicate are relevant.
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To the extent that 2 hint’s purpose is to narrow down the search
space, it is hardly relevant whether such a hint is in some sense “trivial”,
or elementary, or familiar, or established earlier in the text: it is included
first of all to express compactly what is irrelevant.

Therefore, the “trivial” may deserve explicit mention just as
much as the non-trivial does, Similarly, explicit appeals to definitions
are equally important as explicit appeals to theorems and lemmata. Yet
the former occur much less frequently than the latter. In Apostol’s
“Mathematical Analysis”, for instance, hundreds of definitions oceur,
each of them provided with a label, but explicit references to the defi-
nitions are extremely rare. Certainly there are situations in which the
application of a particular definition is the only possible option, but then
again there are many situations where that is not the cage.

Remark . The addition of “trivial facts” and definitions can have
yet another advantageous effect in the sense that it may simplify {the
discussion of) heuristics. In, for instance, “On bichrome 6-graphs”
[Chapter 2], the “trivial fact” that the total mimber of triangles is finite
is the only thing necessary to realize the option of counting monochrome
triangles by counting bichrome ones, a necessary step m finding the
effective argument discussed in the chapter.

As another illustration, consider the proof quoted below, which
has been taken from Courants “Differential and Integral Caleulus”. It
demonstrates the existence of the limit of a (bounded, monotonic) se-
quence by proving the existence of an “accumulation point” and its
uniqueness, and a, completely silent, appeal to some theorem relating
unique accurulation points to limits, Definitions of limit and accumu-
lation point are neither given in place nor explicitly referred to; the
uniqueness proof constitutes the bulk of the argument.

It is equally easy to see that ¢ bounded monotonic in-
creqstng or monotonic decreasing sequerce of numbers
must pessess a limit.  For suppose that the sequence
is monotonic increasing, and let ¢ be a point of accu-



95 14.0. DIVISION OF LABOUR

mulation of the sequence; such a point of accumulation
st certainly exist, Then £ must be greater than any
number of the sequence.  For if a number a; of the
sequence were equal to or greater than £ every num-
her an for which n > [+ 1 would satisfy the inequality
ap > iy > ) 2 £, Hence all numbers of the sequence,
except the first (I + 1) at most, would lie outside the
mterval of length 2(ay ~ ¢) whose mid-point is at the
point ¢ . This, however, contradicts the assumption that
£ is a point of accumulation. Hence no numbers of the
sequence, and a fortiori no points of accumulation, lie
above £. So if another point of accumulation 7 exists
we must have n < ¢ . But if we repeat the above ar-
gument with » in place of § we obtain £ < n, which is
a contradiction. Hence only one point of accumulation
can exist, and the convergence is proved. An argument
exactly analegous to this of course applies to monotonie
decreasing sequences.

If, however, the definitions had been included, their similarities would
show why accumulation points enter the proof at all and suggest “sach
accumulation point is a limit” as the remaining proof obligation, and
their differences would show how to fulfil that obligation. The result-
ing proot would be simpler and shorter, primarily because the proof of
uniqueness with its detail would disappear, as would the need to appea)
to the theorem. (The definition of “limit” says that for the limit of
a sequence each neighbourhood contains all but a finite prefix of the
sequence, and for an accumulation point each neighbourhood contains
infinitely many points (of the sequence), so the difference to be bridged
13 that between “all but a finite prefix” and “infinitely many”.)

End Remark .

In part, greater explicitness about the ingredients can be achieved
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in a simple and concise way, viz. if those ingredients themselves oceur in
the text. The relevant technique is well-known: it is labelling,

Yet the technique does not seem to he used very systematically.
In the literature one may observe that, apart from deflnitions, theorems,
and lemmata, formulae are about the only pieces of text that are labelled.
(For example, we encountered the phrase “condition P implies” followed
by a formula labelled “(0)” on a separate line. All subsequent appeals
to (0), however, were in fact appeals to “P implies (0)” , so labelling
the latter would have been more accurate.)

What we would like to point out is that if labelling is restricted
to formulae and one conducts a proof primarily verbally, a lot of neces-
sary ingredients can only be referred to by repeating them; and since
repetition is lengthy and laboricus, the references tend to be omitted.
(Sometimes even conditions appearing in the formulation of a theorem
are nowhere mentioned explicitly in the proof.)

At the cost of only a few symbols, labelling facilitates greater
explicitness and avoids the need for repetition. It can be used as refined
as necessary: if, for instance, the conjuncts of a definition are appealed
to separately, we give each of them a label, otherwise one label for the
whole definition suffices. (For composite ingredients separate labelling
is often the most handy choice.) In this way one can give very precise
hints; in particular one can avold stronger kints than necessary.

Finally, an additional advantage of a disciplined and sufficiently
generous use of labels is that it reveals more of the structure of the argu-
ment; also it becomes more visible how frequently all kinds of statement
of fact are used within one and the same proof, which may give an indi-
cation of how disentangled the proof is.

¥ *

Labelling helps being explicit in a concise way about proof ingre-
dients that are contained in the text. A remaining question is to what
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extent an author 13 prepared to rely on theorems not proved -or even
formulated—- in his text and on concepts not explicitly defined, that ia
how self-contained he wants to make his arguments.

We have decided to attach great value to self-containedness. It
is a personal choice, made in the first place for the convenience of the
reader.  (All too often we have found ourselves being put off by the
multitude of undefined concepts in a mathematical text: we consider
such thresholds unfortunate. Mathematical reasoning is in a way so
universal that one would hope and expect that to a certain extent each
mathematician should be able to read a well-written proof from an area
that is not his own.)

The: reader’s convenience, however, is not the only goal that we
have in mind. Since our interests are largely methodological, and our
long-termn aim is to learn how proofs can be designed in a systematic way,
for us the important point about some concept or theorem -—advanced
or not-— is not whether 1t does the job; the important question is how
the shape of a demonstrandum can actually leed us to the concept or
theoremn that we need, even if it is completely new. In other words,
we are looking for proof technigues that are more constructive than the
appeal to knowledge is.

{We might add that there 13 still a long way to go. On the
one hand we have, for instance, the concept of & “bichrome V7 in the
problem on bichrome 6-graphs [Chapter 2], which emerges as a result
of carefully considered design decisions, but on the other hand there is
the multiplication in the proof of existence of the Euler line [Chapter 3],
which more or less comes out of the blue, and other examples.)

In view of these longer-term goals, we also strive for self-contained-
ness on our own behalf: in doing so, we force ourselves to realize what
exactly and how much “knowledge™ we use, The beneficial side effect is
that to nevertheless maintain brevity, we think twice before introducing
another coneept or a lemmma that perhaps requires a long or complicated
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proof; as a result, the ultimate proof often turns out to be more detailed
and yet simpler and shorter at the same time.

To become a little more concrete, for us proving something by
declaring it a special case of some more general theorem, whose proof
i3 omitted, is not as evidently acceptable as it would be, were estab-
lishing the validity of the demonstrandum our main objective. (In the
treatment of the bichrome 6-graph-problem, for instance, the existernce
of a first monochrome triangle can be established by an appeal to the
famous Ramsey theorem. Such a procedure, however, does not teach us
much about the design of proofs; in addition, if in this case the formu-
lation of Ramsey’s theorem were included, as a matter of politeness to
the reader, the resulting proof would even be longer than the one given
in Exposition0 of Chapter 2.)

Similarly, that a concept is available in mathematics (with its
properties) is not sufficient for us to use it in a proof, if it does not
occur in the problem statement. As mentioned earlier, we would like
the helpful theorem or concept to be suggested by the course of the proof
development. (That such a helpful theorem or concept may very well
turn out to be a generalization is a different matter; as long as not all
premisses of a demonstrandum or components of a definition have been
used, one is dealing with & generalization.)

We are trying to be frugal in our appeals to knowledge, but of
course, we too do rely on “knowledge”: we, for instance, freely use
predicate calculus in our proofs, and we use the proof rules for programs
in our derivations of programs. As for the predicate caleulus, it is so
little domain-specific and so widely applicable, that we consider it one
of those calculi that one learns once and for all —like arithmetic—,
to use it in one’s daily work ever after. The proof rules for programs,
though very few in number and still rather general, are of course more
domain-specific.

We are the first to agree that striving for self-containedness, like
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the pursuit of other desiderata, is a matter of choosing a balance; one of
our current interests is to see whether we can redress that balance. So
we certainly do not mean to say that “knowledge” is of minor importance
for doing mathematics, but for the time being we are playing a different
guamne, a game we think worth playing.

We do not know how far we can get with it, but we are convineed
that frugality in the number of concepts and simplicity of the theorems
to be exploited are indispensable if we want to find more constructive
techniques for the design of proofs. In the mean time, we find encour-
agement In the fact that striving for such frugality and simnplicity has
already often led to much simpler proofs.

In suminary, the first reason for our striving for self-containeduess
is simplification of the reader’s task, under the motto: “If it takes only
a few lines and helps a lot, why not include a definition, a lemma, =
proof, ete.”.  Then there is the more methodological reason, the in-
terest in redressing balances, such as between domain-specific and less
dumain-specific knowledge used. Another balance that may need some
redressing is that between the use of definitions and the use of derived
properties of concepts. The discussion of Courant’s proof some pages
earlier, and the proof of existence of the Fuler line in expository Chap-
ter 3, for instance, illustrate how definitions, rather than being an extra
burden on the length, can contribute to brevity and disentangledness of
the proof,

8o far we discussed being explicit about what is used in a proof.
For clarity’s sake we also want to be explicit about kow it is used, and
we want to do 50 in a somewhat more precise way than by, for instance,
saying: “combining theorems A and B we may conclude”. (Does
“combine” mean taking the conjunction or not, are theorems A and B
to be used with the same instantiation or not, is the order of application
relevant?}
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In other words, we are concerned here with the nature and the
size of steps in reasoning that are left to the reader. Since filling in
too large gaps in an argument is often an exacting and time-consurming
activity for the reader, we aim at choosing steps fairly small.

Besides becoming simpler, arguments thereby also become more
homogeneous in their grain of detail. That is desirable too. We, for
instance, want to avoid that in one place the reader has to provide 10
lines of proof to fill a gap in the argument, while in another place a few
lines suffice, one problem with such differences in size being that they
are seldom apparent from the text itself. (An additional advantage of &
fine, homogeneous degree of detail is that the length of a text becomes
a more adequate measure of the time needed for reading it.)

A simple rule of thumb to keep steps in reasoning small is to write
in such a way that the reader does not need pen and paper to verify the
argument. Although not a very precise rule, it at least discourages us
from leaving manipulations implicit that are too large or too diffienlt to
do reliably and effortlessly by heart. We, in particular, have operations
in mind that manipulate invisible intermediate formulae or results.

Compare, for example, the following proof with the alternative
that follows it:

The invariance of Q, with @ defined as p | z¥m A p | y*m, under
£:= x—y requires, besides the axiom of assignment, nothing but
the distribution of multiplication over addition and the fact that,
forall z and y, p|(z—w) A ply = plz Aply

The alternative reads:
Qz =z —y)
{definition of @}
pllz—y)xm A ply+sm
{distribution of multiplication over addition}

plz*m—yxm) A ply+m
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{additive property of division}
ple+m A plysm
{definition of @}

@

We think that the most important difference between the alternatives is
the visibility, in the latter, of the intermediate expression “p | (x—y)*m
A plyxm”. Even in this extremely simple example, its presence
considerably reduces the effort needed for verification, without making
the proof longer.

Besides the not so very specific maxim of trying to make paper
and pen superfluous for verification, we have a number of more fine-
grained rules of thumb. They emerged in the course of our experiments,
and we feel we have benefited greatly from trying to stick to them.

. Firstly, we use the rule of substitution of equals for equals as
much as possible. The operation is attractive both from a logical point
of view —because it is value preserving— and from the point of view of
manipulation —because substitution is a simple operation, which can
be performed “almost mechanically by the eye”— .

The occurrence of an application of this rule we always indicate
by “=": schematically, for f a function we write

f.A
= {hint why A = B, or [A = B] for predicates}
fB .

Note that an expression is a function of each of its subexpressions, so that
the above boils down to replacing some, not necessarily all, occurrences
of A by B. (In verbal arguments, “ = * is usually rendered as “equals”,
or as “means”, “equivales”, or “is equivalent to” in the boolean domain.)

The hint indicates the two expressions that act as the replaced
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expression and the replacing expression respectively. 1t may do so di-
rectly, as in
AV E
- {B=C])
Ave
or by mentioning a symmetric rewrite rule that is to be instantiated, as
in
g+ (MAXz: bt pa)
= {distribution of + over MAX }
(MAX z:bx:g+pzx)
or by merely indicating “predicate calculus” or “calculus”, if the rewrite

rule is deemed sufficiently known and its applicability can be inferred
sufficiently simply by parsing and pattern matching of the formulae.

Not only do we always indicate the use of substitution of equals
for equals by “ = ", it is also the other way around: when we write
“ = " this almost invariably indicates a substitution of equals for equals.
That means, for instance, that we rarely write

A
= {hint}
B
—ifor [A = B]— in a calculation, if that equivalence is to be established
by separate proofs of [A = B] and {B = A4]. It also means that we
allow ourselves to write
F(AVB)
= {[4=B]}
B,

although the relation in the hint does not have the shape of an equiv-
alence: the presence of “ = ” indicating substitution of equals for
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equals, the reader has no choice but to realize that by predicate calculus
[4 = B is equivalent with [AVE = B].

The possibility of this closc connection between occurrences of
“ =" and the use of substitution of equals for equals, has provided us
with yet another reason for explicitly distinguishing steps that are value
preserving from steps that are net.

) The most common steps that are not (necessarily) value pre-
serving are implication (=) and follows-from ( <z ), and similarly =
and > . Although formally they are redundant if equality and equiva-
lence are available, they are included for the sake of convenience. (For
amore extensive discussion, see the section explaining the proof format
in Chapter 16.)

Just as equivalence and equality go together with equality pro-
serving operations, 1.e. with function application, in exactly the same
way = and < go together with order preserving operations, viz. with
the application of monotonic functions.  Schematically, for monotonic
f, we write

X
“= {hint why [X <« ¥]}
7Yy
Again, the hint is to indicate the arguments to which the order preserving
opcration is applied,

The use of = and <« works out so well because many of the
logical operators are monotonic with respect to =, and, hence, their
compositions are so as well: A and V are monotonic in both arguments,
= 1% monotonie in its second argument, A is monotonic in 1ts term, and
E is monotonic in both term and range; and, in addition, negation is
antimonotonic, and so are A and = in their range and first argurnent
respectively,  Similarly, arithmetic operators like addition, maximum,
and multiplication with a pesitive number are monotonic with respect
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to <.

. As regards implication, there is a step that does not fit under
the preceding heading. Consider, for instance,

z =y
= {Leibniz’s Rule}

TmaXx 2 — ymax g N

which has no counterpart in arithmetic, f.e. a similar rule with “ <
" instead of “ = " does not exist. As a result, we consider such
weakenings that are intrinsic to applications of Leibniz's Rule a separate
type of step.

End e.

In the above we have enumerated three basic types of steps that
we try to use whenever possible.

Qur next rule of thumb is to be very cautious in combining such
steps. In general we avoid the combination of steps of different type,
because then it is no longer possible to infer the type of a step from the
symbol: asymbol “ =" or “ <" might stand for an order preserving
step or for the combination of such a step with a value preserving step.
The admittance of such combinations would require far more elaborate
means to achieve the same degree of explicitness, the burden of whick
would have to be carried by the hints.

But even if we were to confine ourselves without exception to
combinations of steps of the same type, which then could be inferred
from the symbol used, we would be too liberal. The difference between
combining two steps whose order is fixed and performing the steps one
after the other is the absence in the former of the intermediate result, so
that the second step of the combination requires the manipulation of an
invisible expression. Some of such manipulations we try to avoid, viz.
those that are nested substitutions, 1.e. combinations where in the second
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step a term is replaced that entered the argument by the replacement
performed 10 the first step.

So much for our rules for combining steps. As mentioned before,
they have greatly helped us, in deciding how to render our arguments,
and in achieving the homogeneity and fine-grainedness of detail that we
aim for. There is, however, no point in being dogmatic about following
the rules. We sometimes do allow ourselves to combine nested substi-
tutions, as in

AvE
{IB = B A C]; distribution of v}
(AVBYA(AVC)

or
QV{Azr:-QAFPx)
= {distribution of v, [@V (=@ APz) = @V Pux}}
(Az AP
(The semicolon 1 the hints indicates that the step consists of a suc-

cession of manipulations and 1t separates the hints for the individual
manipulations.)

Note, however, that combinations may require more specific hints,
because the intermediate expression is not available for pattern match-
ing. Compare, for instance, the latter step with the uncombined:

Qv (Az:-QAPg)
= {predicate calculus}
(Az Qv (~QAFPux))
{predicate calculus}

(Ar@QvPa)
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here we comsider the hints “predicate caleulus” together with the inter-
mediate expression sufficient for deducing the rule applied, so that the
gain of combining steps in this case is certainly debatable.

We terminate this section, dealing with explicitness about how
proof ingredients are used, with two remarks. Firstly, a step like

AV(BAC)

= {}
(4vC) A (4vB)

not only appeals to distzibutivity of v over A, 1t alse uses the latter’s
symmetry. Such an interchange of conjuncts might be considered totally
ipnorable in a context where a coarser grain of detail is admitted. In
our context of finer detail, however, it constitutes a step. We have,
therefore, adopted the discipline of avoiding transpositions like these
unless and until they are truly nceded.

Secondly, in the above we considered some types of step in reason-
ing without claiming completeness. We mainly concentrated on proofs
in the calculational format, since we consider that format so convenient
for achieving the explicitness we are after; among other things we do so
because of the visibility of the “=", =7, and “ <=7,

We also note how indispensable the hints, in their present format,
are for our purpose. Of course, hints are not new: one, for instance,
can see them used in proofs using natural deduction. Usually, however,
the amount of space allotted to them is so small —like a third of a
line or less-~ that it is hardly possible to be explicit about the nature
of a step, let alone about combinations of steps or about the particular
instantiation of a theorem used. We do not consider the use of long hints
desirable, but such severe limitations of space are too inconvenient to he
acceptable. Hence our generosity with the amount of space available
for hints. Their incorporation as a fully fledged syntactic category so
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to speak —first suggested by W.H.J. Feijen-— greatly simplifies such
Fenerosity,

14.1 On arrangement

Even if the contents of a mathematical text have been determined, the
writer is left with quite a lot of freedom in how to arrange his material.
How that freadom is hest exploited may, of course, depend on what
the text 1s about., If it is devoted to the development of some theory,
concepts and theorems are studied in it in their own right; they arc the
subject matter; in the proof of some specific theorem, however, they
are s means to an end: they arc presented primarily because they are
needed.  Such differences in réle may well have an influence on, for
instance, their positioning in the text.

We shall confine our attention to the situation of one well-specified
goal, viz. to the task of proving a specific theorem. We do so because
that is the situation we explored most; we have deliberately postponed
larger-scale investigations, such as the development and presentation of
conglomerates of theorems, because we think that the present task of
exploring individual proofs needs to be dealt with first.

In our considerations we shall keep in mind that a text may be
written for more than one purpose.  On the one hand a writer may
wish to communicate hus result, as clearly and convinecingly as possible,
for the record so to speak.  On the other hand he may also wish to
convey information with a more methodological flavour, such as how the
proof was designed, or why particular design decisions have been taken
rather than others. We take the position that whenever it 1s possible to
combine such multiple goals, that is well worth doing. (The reader of
this monograph may notice that we, in fact, aimed at the combination
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in nearly all our little expository chapters.)

* *

The one problem that we face when having to write down an argument
is how to render an in general non-linear structure on a one-dimensional
medium -—our paper— : logically, we can view a proof as a directed
graph, two logical components being connected if the validity of the one
relies on the validity of the other, or —in the case of concepts— if
the one is formulated in terms of the other. Because definitions —we
ignore recursive ones— and arguments are supposed to be non-circular,
the directed graph, having no cycles, represents a partial order.

The duty to linearize this partial order faces us with two types
of considerations, viz. “ordered” ones and “unordered” omes. Firstly,
we have to decide how to linearize an ordered pair. The choice is not
irrelevant, because texts are read in one particular direction and not in
the other; we shall assume in the following that reading is from left to
right. Secondly, since the directed graph is usually far from complete,
we also have to linearize unordered pairs.

We shall deal with unordered considerations first, and with or-
dered ones later. For the sake of simplicity we shall focus on (almost)
tree-like arguments. After all they are not unusual in the case of one
specific problem to be solved.

* *

For the unordered concerns, consider a piece of arpument of the form
“AAB = O", establishing C in three parts, viz. by a piece of reasoning
that devives ¢ from A A B, a proof of A, and a proof of B. Let us
also assume that the proofs of A and B are independent, i.e. that we
are considering a tree with root € and leaves 4 and B .

With respect to ', A and B play exactly the same réle; we
can do justice to this symmetry by letting both or neither of their proofs
precede (s proof. But there is no compelling reason to prefer order
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Al to order BA . All other things being equal, we have decided to
choose an arrangement in which the distances between the formulations
of A and B and their use in C’s proof are minimal. That means
that the shorter of A’s proof and B’s proof 13 located in the middle.
So if, for instance, B has the shorter proof, the only options left are
ABC and (BA; the cholce has to be made on the ground of “ordered”
considerations.

We have formulated the above rule of thumb for statements of
fuct A, H, and €, but it is equally well applicable if A and B are
concepts with their definitions that are needed in some statement of fact
C', or in some definition ¢ in the case of nested definitions.

If minimization of distance is our goal, that also means that if
B is needed for some C but A is not, A will be outside the stretch of
text that containg B and ¢ In this way we can achieve that a lemma
15 as close as possible to its (first) use, and sinmularly for a definition
and its use. {1t may be considered a disadvantage that in such an
arrangement definitions arc scattered all through the text rather than
being concentrated at one place; duplication in the form of a table of
symbols or conventions or the like can make up for that.)

Remark . The desire to minimize distances may bring forth strong
bints for decomposition. For instance, in “Not about open and closed
sets” [Chapter 6] we Introduce the concept “closed™, by
T iz clogad = (Asrr calwweldl)

separately from the definition of a7z, because the two appeared to be
used only in separate parts of the argument. Here, like in many other
cases, 1t 1s the introduction of nomenclature that makes such decompo-
sitions possible.

End Remark .

So much for our discussion of unordered concerns.

¥
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We now turn to ordered concerns, 1.e. to the question of how to linearize
a proof of B of the form “4 = B” | consisting of a proof of A and a
derivation of B from 4. Does the proof of A precede the use of A
—in B’s derivation— or is it the other way around? The predominant
technique in the literature is not to use a result before it has been proved.

As a typical example, consider the proof by Courant guoted on
page 94; although it is to establish the existence of a limit, limits do
not enter the discussion until the very end of the argument in “and
the convergence is proved”; similarly, the (comparatively long) proof of
uniqueness of the accumulation point precedes the use, ete. .

A possible explanation for the predominance of the order proof-
before-use is that maintaining this order guarantees the absence of cir-
cularity in the argument. But so does the reverse order —let us call it
top-down arrangement— if used consistently. Truly tree-shaped argu-
ments admit such 2 consistent use.

Top-down arrangement is by no means new. In classical ge-
ometry it is known, by the name *“taking the demonstrandum as a
starting point”; the familiar phrase “without loss of generality we may
assume...” constitutes the first step of a top-down argument; and fre-
quently the use of a reductio ad absurdum can be considered an effort
to reconcile the wish to reason backwards with the obligation to use
forward, implicational reasoning only. Except in thesc specific eircum-
stances, however, top-down arrangement is quite rare. Ifs relative ne-
glect in comparison to the reverse order, called bottom-up arrangement,
was one of our reasons for paying special attention to it in our explo-
rations. The two arrangements show a number of differences that we
found certainly worth noting. The larger the argument concerned, the
more pronounced the differences.

. Firstly, for the application of a result to be valid, only the ezis-
tence of a proof of the result is relevant, the details of a particular proof
are not (if they are, there is something wrong with the result as an in-
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terface). The top-down arrangement matches nicely with this situation:
the proof with its overspecificity is postponed until the result has been

'!15‘('*('1.

{One might object that it requires some faith from the reader
to apply a result that has not yet been proved in the text, but faith is
required anyhow: in the bottom-up arrangement the reader has to trust
that the use of the result will follow.)

For simplicity’s sake we have been considering only theorems in
the above, but mutatiz mutandis remarks similar to the above can be
madc about definitions as well. 1t is, for instance, very well possible to
use (the name of) a concept i reasoning before a definition has been
given. The earlier mentioned definition T is closed = (Az : aT.z :
¢ T) in Chapter € is used and manipulated before a#T.x has heen de-
fined, so that the reader is not burdened with details at a place in the
text where they are not yet relevant.

In another argument we had to prove for some property P, that
the number of elements of each finite non-empty set with property F is
a power of 2. We did so by establishing that each set with property F
and at least 2 elements has a subset of half its size and also satisfying
property P. Since the validity of this pattern of proof does not depend
on P, we felt frec to postpone the presentation of all details of P until
having presented the main pattern of the proof.

S0 much for 2 discussion of how top-down arrangement assists
us in postponing detail until it is to be exploited. We note that, in the
case of definitions, the introduction of nomenclature creates the helpful
interfaces, 1 exactly the same way as the formulation of a theorem is
the means for separating its use from 1ts proof,

. Secondly, consider once more the tree-shaped argument “AA B
= C" . In the bottorn-up arrangement, the two independent proofs
of A and B precede C's proof, so that the reader has to work his
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way through a number of unrelated pieces of reasoning until finally the
simultaneous use of their outcomes —here: in the derivation of ¢'—
brings coherence into the text read so far. Particularly if the bottom-up
arrangement occurs nestedly, for instance also i the proofs of A and B,
the incoherence of such prefixes becomes more prominent. (A symptom
is the frequent occurrence of turns of phrase like: “Next we prove” or
“We also have” in an argument.) In contrast, top-down arrangement
avoids such incoherent prefixes.

. A third difference between the two types of arrangement is that
top-dewn arrangement is more suitable to convey how the writer may
have designed his argument. Although design seldom is a purely top-
down affair, it tends to be more top-down than bottom-up. In the
bottom-up arrangement, however, the reader starts reading “at the leaves
of the tree”, so to speak; the global structure — usually reflecting the
main design decisions— remains largely invisible until almost the end
of the proof.

Therefore, if it 15 considered important or instructive for the
reader to pay attention to matters of design, top-down arrangement is
more attractive, because the very first thing it confronts the reader with
is the global structure of the argument.

For example, in top-down arrangement Courant’s proof quoted
on page 94 would have started with something like “The existence of the
limit follows, by theorem ..., from the existence of a unique accumulation
point; we prove the latter.” . The reader would have known immediately
that the main design decisions were to use accumulation points and to de
so by appealing to a partieular theorem. He could also have noticed at
the earliest possible moment that Courant had not chosen the plausible
alternative of proving that an accumulation point exists and that, in the
context given, accumulation points satisfy the definition of “limit”, the
proof structure that we alluded to on page 95.

End ».
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By these differences between bottom-up and top-down presenta-
tion, we have come to appreciate the latter, first of all as a service to
the reader. He can see more clearly and earlier what the main design
decisions are; detail is postponed, which makes skipping it easier. An
added advantage is that top-down presentation more or less automat-
tcally mvites the discipline of saying expliatly what you prove before
proving it.

We have also come to appreciate top-down arrangement as a
means to confront ourselves more explicitly with our design decisions,
thereby prompting, at the earliest moment possible, questions about

I)(}HH”:)]H alternatives.

As soon as we had accepted top-down arrangement as a full-
blown alternative to the more traditional bottom-up arrangement, and
hence had to choose between the two all the time, we started encounter-
ing lots of arguments whose steps, when read in one direction, came as
something of a surprise —a surprise only to be resolved further on in the
proof— | while they were almost of the type “there is hardly anything
else you can do” when read in the other direction.

We discuss one typical example of such an argument.

Example . We are to prove, for given predicates X and Y and function
g on predicates,

[g-true A Y = g X]

given

(0 [fMXY)=Y]

(1) [fi(X,0.X) = ¢.X] forany X;

(2) f(X,2) = Z] = [¢X = Z] forany X, Z;
(

3} f is conjunctive, e forany P, @, 5, T,
[FAPQ)AF(ST) = FIPASQAT)
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Note . Square brackets denote universal quantification over the domain
on which the predicates are defined.
End Note .

Proof .

[gtrue A Y = g.X]
{predicate calculus, preparing (2) with X := true}
[g.true = =Y V g.X]
= {(2) with X = true, Z:= YV g.X}
[f.(true,~Y V g.X) = =Y V g.X]
= {predicate calculus, preparing for f’s conjunctivity}
[f(true,~Y Vg X) A Y = g.X]
= {(0), the only thing given about ¥}
[f.(true,-Y Vv g.X) A f(X,¥) = ¢.X]
= {(3): [ is conjunctive}
[f.(true A X ,(-Y Vg.X)AY) = ¢.X]
= {predicate calculus, twice}
(F(X,gX AY) = ¢.X]
= {[g.X = Y], by (2) with Z:= ¥, and (0)}
[f(X,9.X) = g.X]
{0}

true

End Proof .

We note that, if the above proof is read in reverse order, starting
at “true”, particularly the lower three steps look as rabbits pulled out
of a hat: “true” can be rewritten in so many ways that the particular
one chosen will always be a surprise; similarly, for the transformation of
X and ¢.X AY into conjunctions of two terms, there are many more
possibilities than the particular one chosen in the third step from below.
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In the order of presentation given here, however, each of these steps
appears as a pure simplification.

End Example .

We note that the order chosen in the above example is only open to us
by virtue of the availability of the symbol =",

As the example testifies, in linear proofs of the type that estab-
lishes P=@ or P= @ by a sequence of successive transformations
transforming the one into the other, as in other caleulational proofs, we
are faced with the choice at which side to start. A rule of thumb that
often helps is to start at the more complicated side, if one side can be
recognized as such. Refinements of the rule of thumb are the following.

. A side with free variables not occurring at the other side counts
as the more complicated one (as a consequence, constants true and false
are the simplest of all). In other words, we rather recommend opportu-
nity driven elimination than goal directed introduction.

) Often both sides contain as free variable an operator for which
the rules of manipulation are strongly restricted; application of the
operator to an argument for which the rules do not cater directly, counts
as a complication, e g with an f about which little is known, expression
F{AX = X) counts as more complicated than (A X :: £.X).

End =,

Having experienced that it is possible to avoid heuristic rabbits
bemg pulled out of a hat, we made the personal decision to consider
striving for the exorcizing of such rabbits a goal worth pursuing, not only
in the presentation of proofs but also in the process of design. What
started out as a mere matter of form —where to present what— has
led to consequences of a methodological flavour.

With this discussion of top-down versus bottom-up presentation
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and their consequences we end this section on arrangement.

e *

14.2 On disentanglement

One of the qualities that we want our mathematical arguments to have
is what we call “disentangledness”; by that we mean the avoidance of
irrelevancies —be they global, i.e. avoidable altogether, or local, 1.e. im-
material to part of the argument-— . Our main reason for this desider-
atum is the wish to know and say precisely what is used and what is
not.

If, for example, we have a complete finite graph whose edges can
be partitioned into cycles of length 3, we want it to be explicit that the
conclusion “3 divides the number of edges” has nothing to do with the
cyeles, only with partitioning into triples, and that the conclusion “at
each node an even number of edges meet” has nothing to do with triples,
but only with partitioning into cycles, and that so far the completeness of
the graph has been totally irrelevant (it does, however, become relevant
if one wants to use the above conclusions to derive properties of the
number of nodes). Similarly (see “Not about open and closed sets”), if
in an argument sets occur that are each other’s complement, we want to
be explicit about where this property is used and where it is not.

In 2 sense, the current section is both a companion to and &
complement of the preceding sections. On the one hand, achieving
clarity is a major goal to be served by disentanglement; on the other
hand, while earlier the stress was on explicitness about what i¢ used,
here we stress the avoidance of what is not relevant.

Another reason for our conscious efforts to aveid irrelevancies is
that, if successful, they may enhance the possibilities of generalizing the
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theorem and enable a more effective decomposition of the argument.

In this small section we shall discuss some, more mMacroseopic,
means to achieve disentanglement, or, as it is also called, separation of
concerns.  Besides being separated, however, the concerns are also in
some way connected by acting in the same proof or design. Therefore,
a study of disentanglement is as much a study of how to choose one’s
interfaces.

We are not ready yet to present a collection of rules of thumb
to achieve disentanglement; we shall largely confine ourselves to the
identafication of minor “slips” that may bring about entanglement.

The perhaps most familiar instance of separation of concerns is formu-
lating a theorem, so as to isolate the use of the theorem from its proof.
The formulation itself forms the interface between the two parts and,
hence, plays a double réle. As a consequence of this double réle, the
formulation most convenient to use and the formulation most convenient
to prove may not always coincide,

When faced with such a conflict, we have to choose which of the
two réles to favour. Because theorems tend to be used at least as often
as they are proved, it is profitable to tune the formulation to smooth
usage as much as possible, (and adjust it for the proof if necessary), i.e.
to choose a formulation as “neutral” as possible.

The conflict manifests itself in a variety of ways. Without clajm-
ing completeness, we mention a few frequently occurring symptoms.

. The presence of nomenclature (in the formulation) tha is useful
in the proof but superfluous for the use of the theorem, as in “If a prime o
divides & product ab then p divides either a or 4", is such a symptom.
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The phenomenon has been noted by others before, e.g. Halmos, yet can
still be observed often.

. For another symptom, the formulation of the type B hence (',
consider the following formulation by Apostol, taken from “Mathemat-
ical Analysis A Modern Approach to Advanced Calculus”. Apostol
writes (Theorem 3-9) as follows:

“(i) Each point of $ belongs to a uniquely determined com-
ponent mnterval of 5.

(i) The component intervals of 5 form a countable collection
of disjoint sets whose unionis 5.7

Even without knowing what a component interval of & is, we see that
(i) is & consequence of (ii). Combination of the two is, then, a clumsy
interface. If (i) descrves the status of a theorem, for instance because
it is needed in other proofs, it is best isolated as a separately formulated
corcllary; if it does not deserve that status, it need not be mentioned at
all as & theorem. If, as in Apostol's case, it is included to indicate the
structnre of the proof, its proper place is in that proof.

. Of two semantically equivalent formulations of a theorem, the
one can be formally weaker than the other. For instance, that a relation
P is symmetric can be expressed both as (A p,¢:: pRg = ¢Rp) and as
(Ap,g = pRg = g¢Rp). For the use of R’s symmetry, the stronger
formulation is usually more convenient, because it allows substitutions
of equals for equals; for proving the symmetry the weaker suffices, hence
might In general be more convenient.

A similar avoidance of “formal redundancy” can be found in the
familiar definition of a strongest solution (and mutatis mutandis of ex-
treme solutions in general): “it is a solution and it implies all ether solu-
tions”; by predicate calculus, this i3 equivalent to “it is a solution and it
implies all solutions™ -—the condition “othet” has been omitted— . The
latter characterization is more convenient to use, because the exploita-
tion of its second conjunct does not require a case distinction: if, for
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P the strongest solution, we encounter a demonstrandum [P = X, we
can reduce it to “X is a solution”, independent of whether X equals P
or not. (We note that in this particular example, the stronger formula-
tion, rather than the weaker one, is more converient for proving as well,
because there is no simple way to exploit distinctness of predicates.)

. Apart from the difficulty of choosing a formulation most ¢onve-
nient for usage and proof at the same time, the interface between proof
and usage can also be inconvenient in other ways, Superfluous excep-
tions in the formulation of a theorem are an example: excluding, for
instance, 1 in the theorem “Each integer greater than 1 has a nnique
prime factorization” is superfluous (because 1 1s the unique product of
0 primes); even if the theorem 1s never used for the excepted instances,
its application requires the superfluous checking that, indeed, the instan-
tiation 1s within range. That we consider a {minor) inconvenience,

End e .

50 much for some problems in the separation of the concerns
of proving and using theorems. They all belong to the category how
to choose an interface. A more difficult problem 1s when to choose an
interface, in other words: to determine when a result that is used is
worth being isolated. We shall not go info this topic here. We note,
however, a number of familiar symptoms of missing interfaces, most
notably the recurrence of similar picces of reasoning or remarks to the
effeet that “the proof of B is similar to the proof of €7 ; the most
convincing and explicit way of expressing that two proofs are similar 13
by letting the corresponding demonstranda be instantiations of the same
theorem. Tn a similar vein something is missing if we encounter a phrase
like “the proof of B is a special case of the proof of C (replace « by
y )" instead of “I is a special case of 7.

+ #*
-

In the above we have mentioned some symptoms of lacking disentangle-
ment, It is a tople of ongoing exploration. In mdividual arguments it
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is often quite clear what constitutes the disentanglement, or the lack of
it, but as we said before, we are not ready yet to present a collection
of rules of thumb. One thing we do know, however, viz. that & fine
grain of detail and top-down arrangement can contribute considerably
to separate the irrelevant from the relevant.






15 On naming

It is impossible to do mathermatics without introducing names; we need
names to distinguish concepts and different instances of the same con-
cept, or to indicate sameness by syntactic means; hardly a formula can
be put to paper without the introduction of identifiers. There seem to
be two main issues: what to name and how to name. An important
distinction 1s whether a name occurs primarily in formulae to be manip-
nlated or is to be used in a verbal context. We shall explore the two
contexts separately, starting with the latter.

* *

15.0 Names in a linguistic context

In a linguistic context, the first complication arises when a “meaningless”
identifier is identical to & word in the language of the surrounding prose.

Standard examples are the Duteh “U”  -—T is een samenhangende
graaf— and the English “a” - -a string beginning with a b— and
“I" .——because I may be empty— . On paper typographical means

can be used to indicate which is which: the identifier can be made to
stand out by the use of italics or extra surrounding space. In speech
the distinetions are move difficult to render.

A pgreater complication arises when a normal word is given a

122
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specific technical mening. Naming a set “checked” or “preferred”, a
boolean “found”, a logical operator “defines”, or a type “chosen” nearly
preciudes the use of these normal words in their traditional meaning,
But even if an author explicitly states that some common words will
ouly be used in this technical sense and consistently does so, the choice
of such mnemeonic identifiers requires great care, because their normal
connotations can still invite confusion.

For instance, in a manuscript we encountered wires that could
he “open” or “closed”, but on closer scrutiny there appeared to be a
third state, which was left anonymous, Naming it “ajar” would have
been faithful in the sense that transitions between “open” and “closed”
only oceurred via this third state, but no matter how faithful this name
would have been, the nomenclature open/closed was confusing, because
normally the two are considered each other’s negation. By a similarly
confusing convention, n topology a sct can be open and closed at the
srune time. We also remember the confusion we once threw an audience
into by ntroducing a state “passive” (for the machines in a network)
that, instead of precluding all “activity”, prectuded only specific compu-

Lations.

In situations like these, the use of colours is often convenient,
e “red” and “blue” for just exclusive states, “yellow” as the name
of some property, and “white”, “grey”, and “black™ to express a linear
order. Needless to say, the virtue of using colours unmediately turns
into a disadvantage if the colours denote non-exclusive states.

So much for the confusion that can be caused by the multiplicity
of meaning of common words and by the author’s inability to control
which connotations they evolke,

A totally different concern s what we might call grammatical
flexibility: does the term to be introduced have or admit the derivatives
needed.  As an example consider the adjectives “simple” and “complex”.
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Connected with the first we have the noun “simplicity”, the verb “to
simplify” and the noun “simplification”; for the other one we have
the noun “complexity” and the verb “to complicate”, but we lack the
analogous noun “complification”; the noun “complication” does not do,
because it refers to the result and not the act of complicating,

Confronted with existing terminology, there may be no way out
but to coin the missing term, e.g. “to truthify” in the meaning of “to
effectuate the transition from false to true” in analogy with “to falafy”.
If one has to choose new terminology, the need for such coinages or the
impossibility of forming a derivative had better be taken into account
since they would make the terminology less convenient. (In this respect,
the term “stack”, for instance, is more convenient than the clder “push-
down list”.)

Doing mathematics in a linguistic context involves a lot of verbal
reasoning. This circumstance gives rise to other concerns.

Firatly, there is the following linguistic irregularity. In principle,
prefixes and adjectives are constraining: a red dress is a dress and a
wash-tub is a tub. Some prefixes, however, are generalizing and hence
imply a hidden negation: a half-truth is not a truth, a semi-group is not
a group, and a multiset and a fuzzy set are not sets. In natural language
one can apparently cope with this irregularity, and even within math-
ematics words like “semi-group” and “multiset” are prebably used as
unparsed identifiers, but things become & little different with the weakly
increasing sequence, which is not increasing. Having, then, the validity
of “not (weakly increasing) = not increasing”, as opposed to the non-
validity of “not (uniformly convergent} = not convergent”, complicates
verbal reasoning.

The parentheses used in the above hint at another fuzziness
pointed out by many before, viz. the natural use of “not”, “and” and
“sr” . The problem with “not” is that we cannot indicate its scope, vide
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“not retired or disabled”, and “not uniformly convergent”. The prob-
lem with “or” is that it is mostly exclusive, vide “Ii is & boy or a girl?”,
but sometimes inclusive, vide “retired or disabled”. The trouble with
“and” is that it is sometimes conjunctive and sometimes enumerative,
vide “boys and girls”.

Evidently, natural languages are not well adapted to cope with
these constructs. If new terminology intended for use in verbal reason-
ing is to be chosen, it pays to avoid them. In this respect it is worth
considering to give the complement of a named concept an equally posi-
tive name, not only because sentences with too many negations quickly
become confusing, but also because the negation, as in “unequal” versus
“equal” creates an asymmetry in the dichotomy that can be undesirable:
1t suggests that the positively named term is the more fundamental one
and that the other one is a derived term with derived properties. Such
a sugpgestion of derivedness, however, may hamper reasoning.

That is why, for instance, the name “exclusive nor” —once sug-
gested for equivalence— is unfortunate. In a similar way, the nomen-
clature marked/unmarked that we once introduced in & permutation
algorithm was unfortunate: elements began “unmarked” and ended up
“marked”. Besides destroying symmetry, this naming was also objec-
tionable because it nearly introduced marks as mathematical objects, in
the sense that it almost suggested state transitions to be performed by
adding or removing marks. In terms of two colours, both operations
would simply be colour changes.

The simplest instance we know of concepts whose complements
deserve equally positive names is the trichonomy “less than”, “equal to”,
and “greater than”. By introducing new names for their negations, viz.
“at least”, “differs from”, and “at most”, one can avoid “not pgreater
than”, and “less than or equal to”, and “up to and including” (note the
enumerative “and” in the latter); similarly, “differs from” enables us to
avord “not equal to” and “less or greater than”.
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The absence of complementary nomenclature for the above triple
has an immediate analogue in the terminology for properties of se-
quences. Corresponding to “greater than”™, “less than”, and “equal
to”, we have the “decreasing”, “increasing”, and “constant” sequence,
respectively. Let us now consider what corresponds to “at least” and
“at most”. In the absence of this new terminology, “at least”, for in-
stance, is rendered by “not less than” or “greater than or equal to”. For
a sequence X with X7 at least X.({ 4 1) for all i, the correspond-
ing characterizations a “not increasing” or a “decreasing or constant”
sequence are both unacceptable, the former being too weak and the lat-
ter too strong. Mathematical parlance has programmed around it by
strengthening the former to “monotonically not increasing” or calling
it “weakly inereasing” (a term discussed earlier). The whole problem
is solved by introducing new adjectives, “ascending” and “descending”,
corresponding to “at most” and “at least” respectively. (Another alter-
native to be seen in the literature uses “increasing” and “strictly increas-
ing”, corresponding to “at most” and “less than” respectively, avoiding
the anomalous “weakly”, but introducing the term “increasing” in a dif-
ferent meaning.)

Yet another instance of the same lack of positive terms is the
ahsence of such terms for “at least zero” and “at most zero”, as opposed
to the presence of the terms “positive” and “negative”.

So much for naming in a linguistic context.

® #

15.1 Names in a formal context

First of all, in a formal context there should be no confusion as to which
strings of symbols are names and which strings are more complicated
expressions. Are P’ P* and P identifiers, or are they the result of
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applyving special functions denoted by /, ™, and ~ to P; 13 P a name or
151t equal to ()7 Is subscription a mechanism for name construetion,
e 8AgAL A, or 18 1t a special notation for function application, e.g.
if after the introduction of infinite sequence g, #,,... we encounter a
reference to z;. The difference may seem slight, but we note that in the
case of Ay, A, and A; the name A isin the same scope avallable for
other purposes, whereas in the case of x4, 7,... the name z is already
m nse as function identifier,

In this section we first explore the problem of how to name. We
assume a relatively modest syntax for names introduced by the writer,
say not much more than a sequence of letters and digits starting with
a letter. (Even with such a restricted syntax, our freedom in choosing
is usually large enough to avold two-dimensional names with super- and
subscripts or the use of various scripts; these more elaborate possibilities
will be discussed as we come to them below.)

We take the position that formmlae’s main purpose 1s to be ma-
nipulated, and that, therefore, our choice of names should be guided by
ease of manipulation. This position has a number of congsequences, the
muost obvious being that a short name 1s better than a long one, not only
for the writer hut also for the reader, because a long name, by its size,
complicates parsing. (Usually, we choose the largest symbecls to denote
operators with lowest binding power so as to assist the eye in parsing.)
The so-called “self-explanatory™ program variables whose use was made
possible in higher-level languages were inconvenient for manipulation
because of their length. They had, however, another disadvantage: it
15 usually much harder to find a sufficiently descriptive non-ambiguous
name than to express properties of variables by predicates, the danger
of committing “brevity by omissmon” being very high.  In the case of
a totally meaningless identifier 1t 15 obvious to both the writer and the
reader that all relevant properties have (o be stated explicitly.

A second conscquence of the stress on manipulation is that it
pays to choose one’s dumnues carefully.  On the one hand one can try to
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choose them in such way that unnecessary substitutions are avoided, e.g.
by naming an arbitrary solution of an equation by the same identifier
as is used for the unknown. On the other hand, instead of exploiting
equality of names, one may also have to exploit difference of names, e.g.
if 2 theorem is to be instantiated one may avoid confusion by having
the variables to be replaced named completely differently from what is
to be substituted for them. (If presentation is concerned, the confusion
might be avoided also by mentioning the instantiation explicitly, as by for
instance X, Y := X AY,X; if design is concerned, however, things are
different: when a formula to be manipulated is to be matched against
potentially useful rules of manipulation, the pattern matching involved
is simpler if the rules have completely different names.)

Thirdly, we often have to introduce names for groups of objects
with some internal structure, e.g. pairs, cycles, a hierarchy, or reflecting
a combinatorial state of affaixs, & g vertices and edges of a triangle, and
manipulation is simplified by choosing names that reflect such structure
as much as possible. There are a number of well-known techniques, such
as the use of primes, correspondence between small and capital letters,
alphabetic nearness, alphabetic order, multi-character identifiers, and
also the use of special alphabets.

Such techniques require a lot of care. Multi-character identifier
AB | denoting the edge between vertices A and B, is 2 vseful name,
but the pair-wise relations in the set Xs, ¥'s, fz, and fy are more
conveniently rendered by the set X, Y, z, y: formulae using them are
shorter, and simpler for the eye; in the same vein we agree with Halmos
(see “How to write mathematics”) in preferring az + by to amy + b .
Similarly, the names u, U, v, V in Chapter 4 reflect much more visibly
the symmetry and pairings between (v, U) and (v, V) than, for instance,
the choice {z,y)/(u,v) would have done.

Reflection of symmetries , as in the above naming u, U, v, V|
is an important concern. In the bichrome—6-graph problem [Chapter 2]
we could have named the six nodes P, @, R, §, T, U, but such naming
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totally obscures the symmetry among the nodes. When, in the first
exposition, the six nodes are partitioned into two triples, we might have
used Ap, Ay, Az, By, By, By, but we would thereby have obscured
the symmetry among the A’s and among the B’s. That is why we
introduced the nomenclature 444/BBR , which reflects the symmetry
within each triple by using indistinguishable names.

Special alphabets are frequently used to include type information
implicitly in the names chosen, e.g, Greek letters denoting reals next to
the Latin alphabet denoting rationals. Apart from the typographical
problems that arise from the use of a variety of alphabets, such freedom
is often hardly necessary at all. If one deals, as we do here, with one
mathematical argument, the number of instances of some type that are
necded simultaneously is usually small. Rather than introducing a new
alphabet, one can therefore declare a few fixed identifiers to denote in-
stances of a type, e.g. p, ¢, r for integers and B, € for sequences of
integers, or X, V¥, Z predicates on some space and f, g, h predicate
transformers. Even in ensembles of theorems this convention can some-
times be followed (see for instance the little fragment of ring calculus at
the end of Chapter 18).

So mwuch for some of the problems of how to name.

* *

Besides the question how to name there is the question what to
name. As we hope to convey, the choice of what to name may influence
the structure of a proof; thus naming is not just a matter of form: the
decision to give something a name (or not to do so) can be a genuine
design decision.

The first answer to the question what to name is:  as Little as
necessary. The arbitrary identifier that is used only once 1s the simplest
instance of an unnecessary name, e.g. “Every integer N greater than 1
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can be factored into a product of primes in only one way.” (Courant
and Robbins in “What is Mathematics?”.) The remark has been made
by others before, yet the phenomenon is a frequently occurring one.
Superfluity can also be noticed in a statement like “In triangle ABC
the bisectors of the angles A, B, and C respectively are concurrent”
instead of “In a triangle the angular bisectors are concurrent” . The
statement displays a relatively mild symptom of superfluity: the text
gets enumerative, possibly in combination with “respectively’s”, as can
also be seen in, for instance, Exposition0 of Chapter 3, proving the
existence of the Euler line, which says “[...] C is mapped onto the
midpoint of AB, and ¢yclically A onto the midpoint of BC and B onto
the midpoint of CA. Of course the images C’, A’, and B’ respectively
are such that A'B'//AB, etc. [...]". Figures in geometrical arguments
are a rich source of superfluous names.

A more serious symptom of superfluity can be the occurrence
of phrases like “without loss of generality we can choose”, because it
is then quite possible that an overspecific nomenclature has destroyed
symmetries. Avoiding the introduction of the nomenclature may then
involve more than just a cosmetic reformulation of the argument, and
that is why we called the symptom more serious: it often indicates
the possibility of designing a superior argument, such as replacing a
combinatorial case analysis by a counting argument (as in the second
treatment of the bichrome 6-graphs in Chapter 2) and other avoidance
of case analyses.

#

Besides the superfluous name there is the missing name; being
less visible, it can be more difficult to trace. Repetition, in the argument,
of lengthy or similar subexpressions is the usual indication of this type of
defective naming. Introducing names for the expressions serves brevity
and hence convenience of manipulation.

But there is more to it than brevity. Having a name available
enables us to show explicitly which part of an argument depends on the
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internal structure of the expression and which part does not, and thus
offers possibilities for disentanglement and decomposition. For instance,
in “Not about open and closed sets” [Chapter 6] we replaced Apostol’s
couple § and U\S by the couple §, T with § and T being defined
to be each other’s complement in some universe, which could then bhe
left. anonymous; this improves the separation of concerns, since any
appeal to the relation between 5 and T now stands out more clearly.
Postponing the detailing of iS.z in “definition” (A - ze S vS.z) of
“5 i open” has a similar effect: (5. acts as an interface between
manipulations not depending on its internal structure and steps that do
manipulate that internal structure. Yet another example is the proof of
Helly’s theoremn [Chapter 9] in which the gradual introduction of more
and more detail, in other words the postponement of detail, is effectuated
by the introduction of nomenclature.

The treatment of Helly's theorern illustrates vet another concern
for which the introduction of nomenclature can be essential, viz. the
diseussion of heuristics.  If, for instance, in some context we have to
prove that a predicate P is the disjunction of predicates from some
subset of a universe V of predicates, the only thing we can do —if we
don’t want to pull » solution out of a hat— is to introduce a name for the
subset or its characteristic predicate and restate the problem as solving
an equation [P = (EX : XeV Ar.X : X)] in r (the characteristic
predicate), so that manipulations of this demonstrandum can guide the
design and make it explicit.

*

The third problem in naming is naming the wrong object; by
necessity the boundary between this problem and the previous two —the
supcrfluous name and the missing name— is somewhat vague because in
a sense it combines the other two. We mention some common examples
first.

. The first example is the superfluous argument of a function, i.e.
naming a function instead of an expression (viz. the function applica-



15. ON NAMING 132

tion). A function’s characteristic property is that it can be apphed to
different arguments, and if that flexibility is not needed and a function
name, p say, always occurs in the combination “p{8)” , it could be ar-
gued that a name for the combination, P say, would have been more
appropriate. The phenomenon occurs often, and if we count subscrip-
tion, ete. as notation for function application it oceurs very often. It
makes reading and writing unnecessarily laborious, vide

Va@eC™ ()

B(s)p(s) € CF o (s) A E(s)p(s) € €, eo(s)

= E(3)p(s) € € o(s)
Let p(s) € €™(s) be such that premise is satisfled and
let 3 C*. Then B(s)p(s) € Cy(s) and C(s)p(s) €
Cils) ™.

It may even take an unnecessarily large amount of space. On the page
from which we took the above example (Journal of Mathematical Analy-
sis and Applications 87, 1082, p.214), occurrences of the symbol string
“(s)" constituted one fifth of all the symbols on the page.

Sometimes the choice of making the argument explicit is defended
on the ground that in a few isolated instances the function is applied to
other arguments. However, a notation for substitution could cater for
these instances, e.g. P35, or P(s'/s), or (Ae.P)(s'), or Pls:= §') for
p(¢') . (In the presentation of programs, for instance, the combination
of named expressions, such as invariants, pre- and postconditions, and a
notation for substitution is by now well-established; it is so ubiquitous
there since the axiom of assignment, saying that “the weakest precon-
dition such that z:= E establishes P is P(z:= E)”, is one of the core
rules.) We sometimes employ notation Py, but mostly write P(s = 5"
In view of the above connection with assignment statements one also sees

(s:= &) P.

Sometimes the need to express universal quantification (over s)
is felt as a necessary reason for introducing p(s) rather than F:
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(As: p(s)) looks better than {As:: P), because one wonders whether
the dummy is arbitrary or not. In a context, however, where quantifi-
cation over s is the order of the day, great economy of expression can
be achieved by denoting universal quantification aver s by a reserved
bracket pair, e.g. [P] instead of (As :: p(s)).

) A second example of the difference that naming the right concept
may make is what we might call choosing the right coordinate systerm.
Analytical geometry shows a lot of instances; a very simple one, for in-
stance, is the following: in the derivation of an algorithm computing the
coordinates (X,Y) of a pixel on the screen, subexpressions (X — Xy)
and (¥ —¥3) occurred all over the place; naming these expressions, that
15 calling the pixel coordinates (X04x, ¥0+y) would have circumvented
this. Another example in a similar vein is the named predicate expres-
sion that only cceurs with a negation sign; naming the negation of the
expression would have been more appropriate.

. Naming a subset versus naming the characteristic predicate, is a
next example. Given a predicate p, on natural numbers, say, we can
defing set P by

P={n:pn:n}
conversely, given the set P we can define predicate p by
() pn = nelP

In view of this one-to-one correspondence, we need only one of the two.
We have observed that the majority of mathematical texts use £ . In
view of the sirnilarity of the left- and right-hand side of (0) the choice
secms almost irrelevant.  But it isn’t, because the logical connectives
--ab least as we use them— have been developed better than the set-
theoretical operators. The latter suffer from the constraint that each
element of the result is an element of at least one of the operands —U,
N, \ (or -), and symmetric difference +~- or from the anomaly that
the result is not a set (but a boolean) -—C and = — .
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In particular the first constraint makes set calculus less conve-
nient; the hesitation to accept the presence of some universe precludes
the use of the complement operator and the exploitation of the set-
theoretical equivalent of equivalence as a connective. An illustration
of the possible inconveniences can be found in the Aside in “Not about
open and closed sets” [Chapter 6]. A further llustration arises from
an expression like [@ = b = ¢ = d] which is completely symmetric in
@, b, ¢, and d; its set-equivalent, for instance A+ B =C + D or
A+ C = B+ D, inevitably has to break that symmetry. Also, it is not
very attractive that

AN(B\C) = (ANB\C
is valid, whereas
(A\BYNC = A\(Bn )

is not. In general, we have found the application of the logical connec-
tives usually much more convenient.

. The final subject of naming we address is the use of subscripts.
We do not know how Cayley and Sylvester invented the matrix calculus,
but we ¢can imagine that at some time they got tired of writing

A -m+ Ap 2ot A x = W
Az Agg T+ A Za = U2

An1'$1+Aﬂ2'x2+“'+Anﬂ'xn = Un

over and over again, and one of them suggesting: “Why don’t we write
A7 =y, thereby opening the way for the economic expression of
rules for manipulation and calculation. In a much more modest context
we did the same when towards the end of Chapter 16 we showed a
fragment of a caleulus for permutations: rather than “naming” each
individual element of a cyclic permoutation —such asin (aiaz ... n) —,
we avoided the subscription by naming the sequence, with some change
of notation writing [4]. Only then did the expressions become amenable
to manipulation.
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In the expositional chapters, the avoidance of subscription and
the advantages of doing so form a recurring theme, Besides other goals
such as avolding overspecificity and maintaining symmetries, the main
reason why we try to be as frugal as possible with the introduction of
suhacripted variables is manipulative convenience, In many cases they
have proved to be quite avoidable.

End e.

With the above remarks on subscription we end this exploration
of how to name in a formal context. We have stressed that in such a
context manipulative convenience is the driving force behind the choices
to be made. In this respect, inadequate naming tends to manifest
itself fairly clearly. We are the first to admit that in general it is less
clear how to remedy the situation: as some of the examples show,
the concept to be named might need to be invented. We do hold the
belief, however, that in the process of such invention considerations of
manipulative convenience can be of considerable heuristic value,



16 On the use of formalism

“[Symbeolisms] have invariably been introduced to make things
easy. [..] by the aid of symbolism, we can make transitions
in reasoning almost mechanically by the eye, which otherwise
would call into play the higher faculties of the brain. [..]
Civilisation advances by extending the number of important
operations which can be performed without thinking about

them.”
Alfred North Whitehead

“An Introduction to Mathematics”

Formulae can be manipulated and interpreted. Whitehead apparently
advocates manipulation without interpretation. Many mathematicians
do not believe in it, nor do they believe in a combination of the two.
Halmos represents this opinion when, in “How to write mathematics”, he
writes: “The symbolism of formal logic is indispensable in the discussion
of the logic of mathematics, but used as a means of transmitting ideas
from one mortal to another it becomes a cumbersome code, The author
had to code his thoughts in it (I deny that anybody thinks in terms of 3,
¥, A, and the like), and the reader has to deeode what the author wrote;
both steps are a waste of time and an obstruction to understanding.” .
Somewhat further on he says about proofs that consist in “a chain of
expressions separated by equal signs”, that these, too, are encodings, and
suggests that authors “replace the unhelpful code that merely reports the
results [...] and leaves the reader to guess how they were obtained.” .

As for the chain of expressions separated by equal signs, the

136
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question 18 whether it is the presence of the chain or merely the absence
of hints that is to be blamed for the “unhelpful"'ness of the “code™; we
think it is the latter. As for constant decoding, we agree with Halmos
that it, indeed, is & nuisance to be avoided as much as possible. Unlike
Halmos, however, we try to do so by following Whitehead's ideal of
avoiding decoding rather than by avoiding formaliam.

Although in the light of history, the scepticism as voiced by Hal-
mos i3 not unjustified —Whitehead's own work may be related to it— |
as computing scientists we had, at the outset of our investigations, a
compelling reason to hope that Whitehead's ideal would be feasible, and
SOUE enCoOUTaging experiences to support that hope.

The compelling reason was that programs are formulae —and
long ones, for that matter— whose interpretations have proved to be
very hard to work with: interpretation of a program as the set of com-
putational histories that can be cvoked by it, forces one to reason about
a combinatorially complex set, which experience has shown to be hard
to do without error.

The initial encouraging experiences included, for instance, the
apparent feasibility of formally deriving now canonical algorithms like
the Binary Search or Euclid’s algorithm for the greatest commeon divi-
sor from their specifications. Also, activities like making compilers had
familiarized the computing scientists with the manipulation of uninter-
preted formulae.

Thus, besides conciseness and precision, manipulability became
an important property of formalisms to us; investigation of the require-
ments that formulae and their manipulations may have to meet in order
to make interpretation unnecessary then became an explicit concern.

There are two major reasons why manipulation, and in particular
manipulation without interpretation, is so impostant to ns:  the first is
that we want reasoning about programs and (a-posteriori) verification
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of proofs to be as simple as possible, and the second. is that we are
exploring how the structure of formulae in combination with a body of
rules of manipulation can guide the design of proofs and help us to be
explicit about design decisions as much as possible.

We have two main concerns i this chapter: first we deal with
what is necessary to make manipulation without interpretation feasible
at all, next we discuss what can be done to mske it convenient and
non-laborious as well.

16.0 Manipulation without interpretation

Since one of our goals is to use and manipulate formulae without having
to interpret them, we discuss necessary conditions for achieving this goal
first.

A preliminary remark to start with. If we do not wish to rely
on interpretation in terms of an “underlying model”, we have to rely on
the symbols written down, because they are now the only thing we have
got. Consequently, every symbol counts, and accuracy becomes so vital
that it has to become second nature. We make this remark because
failure to accept this consequence has led to disappointing experiences
with formula manipulation. In what follows we take the acceptance of
the consequence for granted.

This having been said, the first thing to stress is that, if the
formulae have to carry the load, they and nothing else have to determine
which are the legitimate manipulations. This means that the formulae
have to be unambiguous, that is do not admit semantically different
parsings. We shall discuss ambiguity in some more detail.
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Non-ambiguity of the formulae

In order to illustrate how quickly one is in danger of introducing am-
biguous formulae, we consider an example from “Ramsey theory”, by
Graham, Rothsehild, and Spencer.

Example

Graham et al. introduce the following two definitions (in a somewhat
different phrasing). (We invite the reader to compare their definitions
withour bothering about how concepts occurring in them are precisely
defined. )

Definitiond . We write n — (1) if

given any colourmg of [r]? with 2 colours, there is a set T,
Tcln], #7 = [, such that {T)? is monochromatic.

End Definition0 .

This definition is almost immediately followed by

Definition) . We write n — (I, ..., 4) if

given any colouring of [n]? with r colours —1 through r— there i
an 1= ¢ <l and there is a set T,

T¢ln), #T7 =1, such that [T]? is monochromatic of colour 1.

End Definitionl .

Graham et al. remark that now n — (I) and n — (I,1) denote
the same thing. They fail to note, however, that now n — (I) is
ambiguous: interpreted according to Definition0, it refers to colourings
of [n]? with 2 colours, interpreted according to Definitionl with » = 1,
i refers to colourings of [#]? with 1 colour.  Because the value of
17 —+ (l) may depend on this choice, the authors have introduced an
ambiguity. Apparently, we have to be very careful whenever we wish to
introduce new notation.

End Example .

Standard mathematical notation itself contains quite a number
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of ambiguities as well. We discuss some common ones.

. Consider sequence “expressions” (1,...,%k) and (z1,...,2x) .
They look similar, but they are not. If we substitute z;:= 1 and
zpi= 7, do we get the sequence (3,...,7), le (1,2,3,4,5,6,7), or
something elge —like (1,7) if & = 2— 7  Usually, the answer will
be: “something else”, but then the conclusion is that (#1,...,2%) isa
formula for which substitution is not allowed, a rather unusual type of
formula. ‘

. For a function f, expression f2z is used to denote two different
things: in “sin®z + cos?z = 1" we know it to stand for (f(x))?, with
sin and cos for F, but it is also used fo denote repeated function appli-
cation, i.e. to stand for (fo f)(x) —or, f(f(#))— . Similarly, f~'(2)
sometimes stands for (f(z))™! and sometimes denotes application of f’s
inverse to x. Here, the desire to save a few parentheses has led to ambi-
guity. In both cases, the first convention is the anomaly. We note that
part of the problem is ¢aused by the exponent notation, because it leaves
the associated binary (associative) operator implicit: from expression
a® we cannot infer which operator is applied repeatedly on a.

. Even in programming languages, ambiguities have been intro-
duced. In an early version of ALGOL 60, an expression of the form
if B then S could be two different things: an incomplete prefix of a
statement if B then 5 else T, or an abbreviation of the complete state-
ment if B then 5 else, which terminates with the invisible statement
denoting skip. As a consequence, if BO then if B then 5 else 50 was
syntactically ambiguous. (Although a pair of parentheses would have
resolved the ambignity, it was not obligatory.)

. Another source of ambiguity in formulae is the way in which
dummies are treated. There are two important concerns here. Firstly,
it should be visible which “variables” are dummies, and, secondly, their
scopes should be clear.
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As regards notations that obscure the identity of the dummy:
there are quite a few around. The usunal set notation is, in principle,
cxplicit about the identity of the dummy and hence QK: in {i | B.2},
the ™7 in front is the dummy.  The problem is that it also denotes
the element: to denote, with this convention, the set obtained from the
previous one by squaring each element, we have to write something like
{7 |{E<: B.i:¢* =j)}. Thisis so clumsy that occasionally the set is
denoted by {2 ] B.i}. Thus we may write {* |{ > 2} and {i® |{ = 3},
hut by the time that we find curselves considering {# |{{ = j}, we are
lost:  we have obscured the identity of the dummy.

Had we written {i : B.i : %} to start with —employing a
notation that explicitly mentions the dummy in the position preceding
the first colon-— , we would have ended up with {i :¢ > j: i}, which
definitely differs from {i,j :4¢ > 7 :#}. (These ambiguities do occur.
Lately we saw a text that contained quite a few instances of “ ;\ "

(e
(with “ A" denoting universal quantification); in half the number of
cases 1 was the only dummy, in the remaining cases j was a dummy as
well. )

Explicit declaration of the dummies also aveids ambiguities in
other quantified expressions, such as summations or “maximizations”.
It, for instance, avolds the (usually tacitly assumed) distinction be-
tween 320_.... and Y7, ... (the assumption being that the left side
of the symmetric(?) equality denotes the dummy), or the ambiguity
of A (a® ~ b) . Similar problems are avoided if the unknowns of

bl
equations arc declared explicitly, so that, for instance, the distinction
between (o :a? + 4% = 10) and (x,y : 2% + y? = 10} is made visible hy
syntactic means.

S0 much for avolding obscurity of the identity of the dummy;
let us next consider matters of scope. One sometimes finds universal
quantification denoted by prefixing with “(Vz)” . Without explicitly
stated priority rules, it is not clear how (Vo)Pz v £ and (Vz)Pz A @
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are to be parsed. For the first formula that is in a way OK, because its
two parsings

(V2)P.z) V @ and (Vz)(Px V Q)

are semantically equivalent; the parsings of the second formula, however,
Viz.

(Vz)Px) A @ and (Vz)(Pz A Q)

are only equivalent if the range of z is non-empty —for an empty range
they yield @ and true respectively— . Such problems can be avoided
by the use of an obligatory pair of parentheses that delineates the scope
of the dummy.

In summary: for all sorts of quantified expressions we employ a
notation that explicitly declares the dummies, expresses their range as
a boolean expression, and, thirdly, contains a term expressed in terms
of the dummies, with & pair of parentheses delineating the scope of the
dummies. Thus we achieve non-ambiguity and at the same time a
greater homogeneity than the established notations possess.

End e .

So much for some of the sources of ambiguity in formulae, and
the ways in which we avoid them.

End Non-ambiguity of the formulae .

So far we have only discussed how the shape of formulae could
be chosen so as to help avoid the need for interpretation. The other
necessary condition is that the shape of the rules of manipulation be
appropriate as well. By that we mean that we would like the rules of
manipulation to be cast i such a form that applying them can be as
mechanical an operation as substitution.

To experience the differences, consider the following rule. Ex-
pression (m; p,3:¢q) is defined to denote “an array equal to m except
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that mmipl.s = ¢”. In the paper containing this rule it was required to
reformulate expression

(m; uys i w)[(my s v)w)s)s = v

in lerms of w1, by using the definition. The resulting formula turns out
Lo be

(u=w A {u=v V mp].s =v))

{u#w A (u=mlwls V mm[w].s.s=1v))

With the definition of (m ; p, s ¢) given above, such a reformulation
can hardly be a mechanical operation. With a definition like, for in-
stance,

(m;us:v)fwls = fu=zw—v [ vw—mw.sfi |

the rewrite can be performed without thinking, by applying rules of pred-
icate calculus and of the caleulus of conditional expressions if ... fi .
(The resulting formula is fairly complicated; therefore, it seerms all the
more necessary to keep the manipulations explieit and simple.) By its
shape, the second definition is more geared to manmipulation in a caleu-
lation.

50 much for the shape in which to cast the rules of manipulation.
The next question is which rules to include explicitly.  For the sake
of expedience, we may omit what can safely be assumed to belong to
the “common knowledge” shared by reader and writer, c.g. the rules of
integer arithmetic. In less familiar domains, however, it usually pays
to be explicit,  If one wants to play the game syntactically, one hag
to provide enough rules to do so.  One of the added advantages of
such syntactic reasoning is that whenever one is forced to appeal to the
interpretation, the model, the conclusion is that there is some theorem
that needs to be formulated.
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In the above we have discussed a number of properties that for-
mulae and their body of manipulations need to have, if manipulation
without interpretation is to be feasible at all. The outcome of our ex-
periments is that if a formalism satisfles such properties, it is, indeed,
possible to render and verify proofs in that formalism without the need
for interpretation (or “decoding”, in Halmos’s terminology). Whether
besides being possible it is also convenient is & different matter, to be
addressed in the next sections.

There is one important point about non-interpretation, however,
that we have not discussed yet; that is Halmos’s suggestion that inter-
pretation is needed for heuristic purposes (“I deny that anybody thinks
in terms of 3, ¥, A, and the like”). We disagree. Far from declaring it
the only source of inspiration, we think that using the syntactic strue-
ture of formulae as the main source of inspiration in the design of a proof
or a program is an underexploited technique. Developing agility in the
use of thig technique was (and still is) one of the goals of many of our
experiments. The outcomes are encouraging. (The formal derivation
of a proof for the invariance theorem in Chapter 10 is an illustration.)

* *

16.1 On convenience of manipulation

In the preceding we discussed necessary conditions for making calcula-
tional reasoning, syntactic manipulation, feasible at all. In the following
we shall be concerned with the question of how manipulation, in addition
to being possible, can be made convenient as well.

The notion of “convenience” is, of course, closely related to the
mechanisms that one has available for manipulation. Mechanized for-
muls manipulation as performed by a computer is quite different from
manipulation with pen and paper, and the latter in its turn even dis-
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tinctly differs from using a blackboard with a plece of chalk in one hand
and an eraser in the other.

We have chosen pen and paper for doing our manipulations with,
and therefore, repetition and lengthiness are among the evident sources
of inconvenience. We shall discuss the avoidance of such laboriousness
later. First we want to address what we consder the most important
way to achieve convenience of manipulation, namely keeping the rules
simple.

Parsing

The two operations that we perform most frequently when manipulating
formulae are substitution of an expression for a variable and replacement
of an expression by another one, of the same syntactic category. That
means that, while manipulating, we are parsing our formulae all the
time. It is, therefore, a matter of considerable convenience if the parsing
algorithm 1s as simple as possible.

This desideratum is, first of all, a second reason for avoiding
arubiguity (besides the earlier mentioned one, viz. avoidance of the need
for interpretation of the formulae).

Secondly, we note that the introduction of infix operators is a
technique that complicates parsing, the problem being that infix opera-
tors invite the introduction of priority rules 8o as to reduce the number of
parentheses needed. Such priority rules complicate parsing, and hence,
substitution: substitute in the product z4y the expression 243 for 2.
Slight though this complication may be, it never hurts to remember that
it is there. In addition, when one introduces an infix operator, it may be
difficult to foresee which priority will reduce the number of parentheses
most effoctively, (We also know from experience and observation, that
beginning by leaving the priority open has the danger of ending up with
ambiguous formulae.)
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For associative operators, however, infix notation is attractive.
There are many of these, such as addition, multiplication, greatest com-
meon divisor, maximum, minimum, conjunction, disjunetion, equivalence,
concatenation, relational or functional composition. It is much nicer to
write

amax bmaxc
than
max (o, max (b,¢)) or max(max(a,b),c)
Remark . By omitting parentheses in the first alternative, we in-

troduce a syntactic ambiguity without, however, introducing a semantic
ambiguity; it does not matter where the parentheses go; therefore, they
are omitted for convenience of manipulation.

End Remark .

The second notation not only has the disadvantage of having
more parentheses, it also forces one to make a totally irrelevant choice.
An inevitable consequence is that calculations may be longer than nec-
essary, because one has to include steps that pass from the one choice to
the other. (If a functional notation is preferred, the better alternative is
to write max (a,b,¢) —i.e. a function applied to a non-empty list— )

So much for infix operators. The third complification of pars-
ing that we discuss here is the admission of context-dependent parsing,
{.e. parsing that depends on the type of the operands. The problem
with context-dependent parsing is, first of all, that it complicates the
demonstration that the formalism is unambiguous —-a demonstration
that is required at each, even temporary, extension of the grammar— .
Secondly, it complicates the use of the formalism.

For boolean equivalence, for example, we could use the normal
equality sign. We could, in addition, decide to give relational operators
on the integers greater binding power than the boolean operators —as
anyone would be tempted to do when working with logical formulae in



147 16.1. ON CONVENIENCE OF MANIPULATION

which such operators oceur in boolean primaries— ; and we are also
ternpted to give boolean equivalence about the lowest binding power
among the logical operators. Then, however, a formula like

a=bAc

cannot be read without knowledge of the types of the operands.

The above was just an example. The introduction of invisible
operators is the most common way of introdueing context-dependent
parsing  -— if not down-right ambiguity— . (Compare 3z, 3%, and
32 . We are so familiar with these notations that we hardly notice
the anomaly any more, although occasionally we may encounter, say,
*11/27 without having a clue whether it stands for 1.5 or for 5.5. Yet,
our own familiarity with these anomalies does not seem enough reason
to burden new generations of school children with therm,)

‘The operators most often left invisible are multiplication, con-
catenation, and function application. The resulting overloading of jux-
taposition has more unpleasant consequences,

It virtually precludes the use of multi-character identifiers, and
the latter are, indeed, rather rare in mathematical texts. To compen-
sate, subscripts and characters from outside the Latin alphabet are very
common. (It is, for instance, not unusual to see the vertices of a tri-
angle denoted by A;, Az, and A4z, where A1, A2, and 43 would
have done just as well.) Similarly, besides the Latin alphabet we can
see Greek, Gothic, Hebrew, and large script capital letters in use, while
the admission of even two-character identifiers only would already pgive
us 52 new “alphabets”.

The wide typographical variety of conventions like subseription
and the use of many character sets has always made typing and printing
mathematical texts a difficult, costly, and error-prone activity. In recent
years, it has created the need for sophisticated text editing systems, that
are apparently difficult to design and difficult to use.
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To avoid the consequences of the use of invisible operators, one
has to introduce symbols for them. For function application this mono-
graph uses the low infix dot suggested by Dijkstra, which is given the
highest possible binding power and, hence, a size as small as possible.
So far, experiments with it have been favourable. (It has the added ad-
vantage of saving parentheses around arguments consisting of a simple
variable.) For concatenation of sequences, various notations are in use,
among others +- (see Richard Bird and Philip Wadler, “Introduction
to Functional Programming” ).

End Parsing .

# *

There is more to be said about keeping the rules simple. The
choice of how many rules to include explicitly in a formalism is a matter
of delicate balancing: if there are too few, proofs will be long, if there are
too many, the multitude of rules will burden the memory and complicate
design. In view of the latter complication in particular, techniques to
bridle the multitude are apparently most welcome. Maintaining homeo-
geneity is one of these, maintaining symmetry another.

Homogeneity

Doing arithmetic in Roman numerals is probably the prime example of
complification by inhomogeneity of the rules —inhomogeneity that is
invoked by inadequate notation— .

The variety of notations for quantification, however, is a still
existing source of inhomogeneity. That is, no doubt, the reason why
the corresponding rules of manipulation, which we consider teachable to
freshmen in mathematics, do not always get the attention they deserve.

Yet, employing a uniform notation, with “op” dencting a bi-
» employing a un °p g2
nary, symmetri¢, and associative operator, and writing “OP” for its
associated quantifier version, we, for instance, have

(QPz:z=y:tz) =ty ,
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i.e. such operators all satisfy the same one-point rule, and for any idem-
potent op we have

(OPz:PaevQe:tz) = (OPz: Pa:tz)op (OPx:Q.x: t.x)

{and similarly so for an arbitrary op and P and @ satisfying Pz #
Q.x for all 2 ), and we have

{OP x : false : t.z) = unit element ofop
if a unit element exists.

Thus, with a uniform notation, the rales for manipulating uni-
versal and existential quantifications, for summations, products, ete. can
be presented (and remembered!) all at once in a concise way. The rules
mentioned above are not intended to be a complete summary,  More
extensive treatments can, for instance, be found in “Een methode van
programmeren” by Edsger W. Dijkstra and W.H.J. Feijen —also in Ger-
man and English— and in “Program Construction and Verification” by
Roland €, Backhouse. Bird and Wadler’s monograph presents another
uniform notation for quantifications.

Yet another concept for which notational conventions vary widely
is function application. Besides the juxtaposition of a function identi-
fier and an argument within parentheses, subscription is often used as
function application as well: an infinite sequence Ag , A, Ag, L
of naturals 1s a natural function on the patural numbers, We might,
therefore, write A7, and A.(i + ), and A(A£) just as well. Note,
however, that subscription is usually considered right-associative, while
funetion application 1s left-associative.

There are quite a few other conventions for function application
around, such as overscripts like in P, P, P, and P , OT superscripts
such as in P*, P’ and PT | or bracket pairs such as in the notation
|P| for absolute value and number-of-elements, with P denoting the

[

argument and ", T, " | ete. denoting the function.
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Upon closer scrutiny, these conventions present all kinds of prob-
lem.

. First of all there are the typographical problems, of symbol va-
riety, but particularly of how to render the application of an overseript

. T B g
operator to an expression: what about ¢ +b%c or Pr(QuU R)?

o More seriously, symbols like the prime sometimes do and some-
times do not denote a function: in, for instance, geometrical arguments
the prime is often used to group identifiers — A4, A', A” versus B,
B', B", while A’ and A” do not necessarily have the same relation as
A and A’; in other words, A” does not stand for (4’)— . It is not
always simple to infer from the context which convention is meant.

' Function application usually has the greatest binding power, but
how do we read an expression like P/ if “~” and “'” do not commute?
End .

Again, as a consequence of inhomogeneity there are, first of all, the
dangers of misinterpretation, and, secondly, the multitude of rules, which
by their very number, are usually left implicit.

End Homogeneity .
Symmetry

Symmetry in the rules and the notation is another means of avoiding
too much pluriformity. We discuss two exazaples.

It is not uncommon to see conjunction being given a higher bind-
ing power than disjunction. We can, for instance, see

PAQVQARVEAPF

(PVQIA(QVER)A(RVEP)
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which has lost the nice symmetry of

(PAV(QAR)V(RAP)

lil

(PVQ)AN{QVRYA(RVD)

Giving A and V the same binding power reflects more explicitly that
rules about A and Vv usually come in pairs, coupled by De Morgan’s
Law.

In electrical engincering the symmetry has been obscured still
further by the use of the symbol “ 4" for disjunction and the invisi-
ble multiplication sign for conjunction, with the correspending binding
powers. Then the distributive rule P(Q + R) = PQ + PR looks very
familiar, but the ¢ompanion rule P+ QR = (P + Q)(P + R), looking
somewhat strange, is much less well known among electrical engineers,
That is an unfortunate consequence of the notational choice.

The other example of destroying symmetry that we discuss is
the notation for binomial coefficients. { § ) is a function of n, k, and

n— &, and it is symmetricin k and n— k. The traditional notation, by
exhibiting one of the latter two plus the sum n, obfuscates this symmetry

completely; it now has to be cast in the form of a theorem: ( Y=

( .. ). The pluriformity immediately extends to other formulae: the

well-known relation ( )= (127} )+ ( "} ) is equivalent with { 7 ) =

(" +( :ffi ), which might even be considered the nicer form because
it exhibits the symmetry between £ and n — k.

Consider the alternative notation that exhibits the summands
as parameters: for natural § and j, we write Pi.j instead of ( ™7)

and { “J'.j ). Now P.i.j is only asymmetric in that we do not have
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a symmetric linear representation for an unordered pair of arguments.
The asymmetry in the rule (7 ) = ( ";* )+ ( }2] ) also disappears,
and hence so does the dilemma which of its forms to choose: with some
renaming it becomes

Pigj = Pi(j—-1)+ P(i-1).7

In view of the latter, a nice recursive definition of Pi.j is

Pij= ifr=0v;=0-—1
Ji£gOAFH£O — P{i—1).7+ Pi(3-1)
fi .
With the alternative notation we can now write
(a+B)" =(8i,7:1+j=n:Pijsa b)

instead of the traditional asymmetric formula. Mathematics has a vast
reservoir of identities concerning binomial coefficients. We wonder, how-
ever, how much the size of that reservoir may be cut down by using the al-
ternative notation. Recently we, for instance, encountered in a summary

of some such useful identities both the formula (3Jk = () .3; ) =

( 7+ ) and the formula (X k= ( [ )( 2, ) = ("} ) for natural r and

b a3
integer n, while both could have been written much more symmetrically
in the form

Pab = (Si,j:i+j=r:Pij*Pla—i)(b-j)) ,

the one with a,b:= r +n,s —n and the other with a,b:= r+3—n,n.

End Symmetry .
*
S0 much for what can be involved in bridling the size of the

body of rules. Another source of inconvenience can be found in rules of
manipulation that do not provide enough combinatorial freedom.
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Combinatorial freedom

From the remote past, we have the example of De Morgan who, for quite
some time, did not have a symbol for negation. Because negation is its
own inverse, it pairs propositions; using the one-to-one correspondence
between small and capital letters, De Morgan denoted the negation of Q
by ¢. But the convention does not cover negation of expressions, so thaf
to formulate, say, De Morgan’s Law, one has to go through contortions
like “if B =pVg then r = P A Q" —arbitrarily choosing one of the
eight forms of the formula --

There arc similar phenomena in more recent literature, e.g. in
R Courant’s “Differential and Integral Caleulus”: Courant writes “If
¢(z) = f(z)+g(x), then [...] ¢'(z) = f(z)+ ¢g’(x)" where the formula
(f+9¢) = f'+¢ would have expressed more directly that differentiation
distributes over function addition. Courant’s reluctance to introduce
expressions whose values are functions, forces him to introduce the name
¢, 30 as to have something to attach the prime to.

(Whether Courant’s reluctance was a consequence of unfamiliaz-
ity with the concept or whether he had other reasons is not very relevant
here. The point we want to make is that purely manipulative consid-
eratlons may invite one to Investigate such expressions, hecause in their
wake it might be possible to formulate attractive manipulation rules
like: the “distribution” (f + ¢g).x = f.r+ g.x and the earlier mentioned

(f+g)y=f+4q")

Yet another type of lack of combinatorial freedom 15 what we
might call “combination of two operators into one”. Consider, for ex-
ample, equality of naturals modulo some fixed N |, denoted by a = b
{mod N). There are special symbols & and @ for addition modulo N
and multiplication modulo N of two natural numbers. Can we express,
with these notational means only, the reduction of & number n modulo
N? Wecan, but we haveto use & —n @B 0— or ® —n @ L— .
It is much more convenient, however, to use a unary arithmetic opera-
tor reduction-module-N . Having it available makes the introduction of
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special symbols like @ and ® superflucus.

A similar situation arises in predicate logic. We have the boolean
connective =, equivalence. It is sometimes suggested that “P =@ is
everywhere true” be denoted by P = ), 1.¢. that a special symbol =
be used to denote the universal equivalence of two predicates. The
convention raises the same problem as the one arising in the previous
example: do we also need special symbols for universal implication,
disjunction, difference. etc.? And if we think we do, do we like it that
thery ~(P = Q) and P # @ are in general not the same? And how do
we express “F holds everywhere”: as “P = true” ? In addition we
have to ask ourselves where to write an “=" iIn P =@ = R to denote
that the predicate holds everywhere. Again, a unary “is-everywhere-
true” operator is a way out. Dijkstra and Scholten, in EWD813, have
suggested a special bracket pair “[" and “|", pronounced “everywhere”,
denoting universal quantification over some universe to be specified.

Remark . For functions f and ¢ in general, f = g is often used to
denote universal equality of f and g. In analogy with f+ ¢, however,
we could also define 4t by (f =g).z = (fx =g¢.z) forall z,1e a5 a
boolean function on the same domain as functions f and g that is true
whenever f and ¢ are equal and false otherwise. In other words, the
first convention can only be used in a context where there is no need to
express this boolean function.

End BRemark .

End Combinatorial freedom .

Finally, in this discussion of convenience and simplicity of manip-
ulation, the boolean connectives = (equivalence) and < (follows-from)
deserve mention. The symhbol < is the notational instrument giving
us the freedom to present calculations as a sequence of strengthenings
rather than the traditional sequence of weakenings, if we so desire. As
discussed more extensively elsewhere (in Chapter 14) this is not just a
cosmetic affair.
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We particularly mention the equivalence here, becaunse from the
point of view of manipulation it is very attractive: it obeys Leibmiz’s
Rule of substitution of equals for equals, and such substitution 1s the
siplest type of manipulation one can imagine.

In mathematical arguments, offen many steps rendered as im-
plications are equivalent reformulations; each definition, for instance,
is an equivalence, and, hence, each substitution of the definition is an
equivalent reformulation. It is not always advantageous or possible to
stick to equivalences when massaging a demonstrandum, but we should
vealize that the option s there,

* *

16.2 Avoiding formal laboriousness

From a formalism to be used with pen and paper, we require that it
offer the possibility of aveiding lengthiness and duplication in formulac
and proofs.  [Such a possibility for economy of expression is the least
one may expect from a formalism; judicious use will, however, always
be TNECessary as Wcll.) We shall discuss three things: what rules to
inchude, how the proof format assists in avoiding laboriousness, and how
notation and naming can do so as well

The fewer rules a formalism comprises, the longer the proofs
carried out in it. Henee, if brevity is deemed important —and, here,
for us it is— the introduction of additional, derived rules 15 similarly
inportant.  As for which properties to add as derived rules, the best
exploitable properties are those that justify simple manipulations. They
are valuable not only because simplicity of manipulation is what we are
after, but also in the sense that a property that is difficult to formulate
will be of less henristic guidance.
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There are many examples of nicely exploitable properties. Sym-
metric rewrite rules, i.e rules of the form P = @, or [P = Q} for
predicates P and @, are the prime example, because substitution of
equals for equals is such a simple manipulation.

Particularly boolean equivalence has proved to be useful for keep-
ing proofs short. It is our experience that, were we to disallow direct
exploitation of equivalences in our predicate caloulus —as is the case
in, for instance, Gentzen’s system of Natural Deduction proper— the
length of proofs might increase by a factor 2 to 8 or more: if we
have to use, or prove, P = @ by using, or proving, mutual implication
(P=Q) A Q= P)or (PAQ) V =(PVQ),or (-PVQ) A (PV-Q),
rather than having the extra possibility of exploiting symmetric rewrite
rules, the danger of doublings m length of the proof or width of the
formulae 13 already built 1. If a formula containg more than one equiv-
alence sign, the differences in length may become more dramatic.  As
Roland C. Backhouse shows in “Program Construction and Verification”,
pp-49-51, in Gentzen’s system the simplification of s = (s #Z g) into -y
may take more than 20 steps (the precise number of steps depends on
how the equivalences are rendered); this is in sharp contrast with the
three steps needed in

s (sgg)

= {definition of “#£ 7}
3= (s =g)

= {associativity of “="1}

(s =s) =~y
{p=p 15 identity element of “=7" for any p}

g
{The latter example is due to J.G. Wiltink, Information Processing Let-
ters.)

Besides equivalences, other nicely exploitable properties are dis-
tributive properties, or more generally, homomorphisms, viz. operations
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f satisfying f(aOb) = f.a© f.b for some operators O and < also
monotonicity properties are useful.

As for other rules to include, brevity is served if we can avoid
such low-level manipulations as the rearrangement of parentheses or the
reshuffling of terms in a formula. So it helps if we are allowed fo exploit
the associativity of an operator by leaving out parentheses altogether,
and to exploit symmetry (combined with associativity) by performing
arbitrary permutations of terms in one go or, if the permutation is in-
tended to preparc another transformation, not perform the permutation
at all and appeal to the symmetry explicitly instead.

So much for the choice of derived rules. We now turn to the proof
format. Traditionally, a proof consists of a sequence of statements, the
validity of each following —by some explicitly stated or implicitly used
deduction rule— from earlier statements. Intermediate statements play
a double rdle: they act as conclusions from earlier statements in one
step and as premisses in a later step. Despite their double réle they
are usually mentioned only once. Later use as a premiss is either left
implicit or made explicit by means of labelling and referencing.

In the calculational proof format that we use, duplication is
avoided by notational means in two ways. Firstly, this format too has
been chosen so as to avoid duplication of intermediate expressions:  a
proof of [P = @] that consists in transforming P into [T, ie. prov-
ing [P = R], and subsequently transforming R into @, ie. proving
[ = 4], is rendered as

P

{hint why [P = R]}
R

{hint why [R=@Q]}
Q@
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so that duplication of R is avoided.

Secondly, a proof of [P = Q] may take the forms

P P
- PAQ or - PvQ
9 9

In such caleulations, first P has to be dragpged along while @ is intro-
duced, and subsequently € has to be dragged along while P 13 removed
again.  The repetition of expressions P and @ 1s quite cumnbersome.

Such repetitions can be avoided because we allow steps that are
not equivalences: P = @ {and the equivalent @ < P) standing for
PA@ = P and @VP = @ enables us to render a calculation establishing
(PAQ@=P] by

P

-, {# : hint why [P = R]}
R

= {++ : hint why [R= $]}
5

= {hint why [S§ = Q]}
Q@

which in the absence of implication would have to be rendered as



159 16.2. AVOIDING FORMAL LABORIOUSNESS

{#}
FPAR
= {e}
FARAS
= {hint why [SAQ =5}
PARASAQ
- {ex)
PARAO
Fa@

a raleulation that is both longer and wider.

For demonstranda of the form [P = Q] there is yet another
calculational format that we use, viz. a calculation that reduces @ to
true in the scope of P, meaning that P is allowed to occur in hints,
That format is sometimes more convenient, for instance if P is used
only once in the middle of a calculation.

So much for notational and other conventions in the proof format
that help avoid laboriousness. In addition, judicious use of the format
is needed. For demonstranda of the forms [P = Q] and [P = ],
we always have the choice between & calculation manipulating the whole
expression P = and P = @, reducing it to true , and a calcula-
tion that transforms one side into the other. The second type is more
restrictive: it precludes manipulations involving both sides at the same
time, like P = Q@ being rewritten into PV Q. It is, however, the
hetter option if all manipulations invelve one side only: in such a situ-
ation, manipulating the whole expression would mean that in each step
the unmanipulated side would have to be copied. Even if this copying
were avoided by combining independent manipulations of the sides n
one step, the gain would be minor: what is gained in brevity of the
catculation is lost in width (of the formulae), and although there would
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he fewer hints, they would be twice as long and, as argued in section
14.0 on the division of labour, negessarily more specific.

In our experience, the caleulational format has a few more nice
properties.

[} Firstly, it enables us to distinguish in a very concise way between
steps that are equivalences and steps that are strengthening or weaken-
ing. That possibility is particularly useful if one is designing a proof:
massaging 2 demonstrandum or premiss into an equivalent one is not &
commitment vet, while strengthening (a demonstrandum) or weakening
(a premiss) is a design decision that may preclude completion of the
proof.

Remark . Having the notational means of making equivalences explicit
has made us much more aware of the presence of such equivalences in
arguments. As we alluded to earlier, thete are many more than we had
realized before.
End Remark .

. Secondly, unlike in the “traditional” proof format, a step in the
calculation is a very local affair: involved are the first expression, the
hint, and the second expression, and nothing else; the validity of that
step does not depend on the prefix of the calculation. That is, the
structure of such a caleulational proof is truly linear.

As we mentioned earlier it is not impossible to “reuse” a formula
later on in the calculation, but then it has to be dragged along through
the calculation and added as a conjunct or a disjunct to all intermediate
expressions: if we want to reuse P we maight write P = QA F instead
of P=Q, Pz=QAP instecadof P=Q, and P <« @V P instead
of P < (). Such recurrence of mostly unexploited parts of formulae,
however, 15 something we would rather avoid. We tend to consider it an
indication that some recasting of the argument might be due: we might
be forcing an argument into a linear shape that is not suited for it.
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The locality of steps in a calculation is certainly one of the ad-
vantages of the linear format. Yet we do sometimes find 1t useful to
deviate from it. The following calculation is a typical illustration.

Example . Given [(A

Az X)) =[X] forall X, we prove
[(Az v X)vY] = [(Ax

2Y)v X, forany X and ¥

[(Az:X)vY]
B {premiss with X = (Az - XV Y}
[(Azo(AzX)VY)]
{V distributes over A : first disjunct is independent of z }
[(Az o .-Y) A2 (Az :: Y)}
{undoing with X, ¥ := ¥, X, using symmetry)}
[(Azr V)V X]

h

End Example .

In the example, the last hint “undoing” indicates a reusing of
the calculation so far, here instantiated by X,Y := Y, X, to justify the
last step.  We sometimes prefer this rendering of the argument to its
alternative, viz. isolating the reused relation as an explicitly formulated
lernma, if that relation 1z not significant elsewhere and if the calculation
cstablishing 1t is of the type “there is hardly anything else you can do”.

. A third advantage of the caleulational style 15 that the validity of
the steps is independent of the truth value of the expressions massaged:
a step P = {...} @ holds irrespective of the value of, for instance,
P . As a result, proof by contradiction loses mueh of its special status:
a calculation of the form —-P = {}...{} false is not more special
than a caleulation of the form P <= {}...{} true . In fact, the one
can be transformed into the other, by transforming steps K = £ into
—-Re=-Q,and R=Q into ~R=-Q. We, for instance, have
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an infinite number of primes exists
= {definition of “infinite aumber”}

for every finite set of primes there is a prime not in the set

for every finite set V of primes: some prime divides
([1p:peV :p)+1 and no prime in V' does so

= {factorization and divisibility properties}
no prime divides 1

= {1}

true

In ather words, a proof by contradiction that has such a linear form can
be avoided.

End ».

So much for a discussion of how the calculational format con-
iributes to the avoidance of laboriousness, and of some maore of its prop-
erties.

Notation plays a major role in the avoidance of lengthiness and
duplication, We discuss a number of coremon examples.

. The earlier mentioned coexistence of implication and equivalence
introduces redundancy: X =Y and X AY =X or X VY =Y are
semantically equivalent, and soare X =¥ and (X = Y) A (Y = X);
since expressing the one into the other in both cases means duplication
of at least one argument, we want to keep both so as not to be forced
to use the one where the other would give a shorter formula or proof.
For similar reasons, mathematics uses both z gy and the equivalent
rmaxy =y.
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. From a manipulative point of view, the ...-notation for guan-
tified expressions is unfortunate. [t forces one to give at least two or
three terms of the quantified expression so as to avoid ambiguities —
Lz + %sz-i—-v--}-%m"—!—--- or l+azy* +a%y*+ .. —; that means
that any manipulation that massages the term of such an expression
has to be done in morefold.  And how about rendering a range split,
Le. a mampulation like (8¢ : 0gien 1) = (87:0<i<k : td) +

(St:k<ien:ti), inthe . . -notation? Other shortcomings can be
1

- . . e —— .
scon in an expression like @y +ay + -+ + a;. (Yet another problem with
the notation is whether it is supposed to denote empty ranges as well.)

. If ),...,7x were our only notation for finite sequences, we
would always be forced to introduce names for the length of the se-
quence and for each of its elements. We would, for instance, have to
write wp.(“zy, .., 25 = Ei,... B, R) = Rgl" % . Naming the se-
quences rather than their elements, we can write wp.(z := £, R) and
Ry

Not only does such frugality with nomenclature keep the expres-
sions shorter, it can also be essential for developing a caleulus on some
domain. Consider, for the sake of the discussion, permutations on some
finite universe. Expression (age; . ..a,) usually denotes a permutation
that maps a; onto a;;; —addition to be taken modulo n 4+ 1— for
0 <izn and leaves all other elements of the universe unchanged. We
might consider functional comnpositions of such (cyclic) permutations and
try to formulate some caleulus for them. Unfortunately, however, even 2
simple rule like (apa; ... an) = (@ktiyy ... @nGo61 ... @p_1) is cumbersorne
to formulate and hence to use.

If we introduce the notation [A], for instance, for sequence A of
distinet elements only, instead of the above (agay...a,), we can render
the rule mentioned above by

0. [AB) = [BA]
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Similatrly, all kinds of other rule can now be written down economi-
cally TFor instance, with X and Y sequences, p and ¢ elements, and
each expression between “[” and “]” denoting a sequence of distinct
elements:

1. [X]o{¥] = [Y]o[X] for disjoint X and Y5

2. [XpY] = [XplolpY] ;

3. [p) o [X]) = [X], [X]o[p] = [X] ,ie. [p] is the identity element
of o}

4. Ipglo[pg] = identity element of o} etc.

Using these rules we can then calenlate with permutations, as in the

following procf of [(XpYglo [pg] = [Xp] e [Yq]:

[(XpY'q] 0 [py]

- {2. with Y:= Yq}
[Xp] o [pYq] o [pa]

= {0. on middle term}
(Xp] o [Ygp] o [pd]

!

{2. on middle term with X,p,¥ :=Y,q,p}
[Xplo[¥q] o gp] o [pg]

{4., using [gp] = [pg] on account of 0.}
[Xp]o[Yq]

The formulation of the above rules and their nse in the calcu-
lation shown, would, we think, have been almost impossible with the
original notation. (Indeed, we have never seen them stated in the lit-
erature. They arose in the exploration of some programming problems
dealing with permutations. (See Chapter 12.))

|

For us, these explorations with permutations once more con-
firmed that the introduction of subscripted variables requires great care
and frugality. All too soon, there are so many subscripts around that
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manipulation is truly hampered. It appears that if one only introduces
subscripts if they are hard to avoid, many of the ones that can be seen
m the literature are avoidable,

A particular source of subscripts, creeping into correctness proofs
of programs, is the use of arrays. (Our first treatments of the earlier
mentioned permutation problems were full of subscripts and as a result
hardly convincing.} Often, the array is best considered an implementa-
tion device, in which one expresses the notions that are most helpful in
the design stage as a separate activity

. Finally we note that naming conventions play = réle in the avoid-
ance of lengthiness and duplication. We mentioned subscripted variables
already in the above. The topic is discussed more extensively in Chap-
ter 15.

End e.

With this discussion of formal laboriousness we end this chapter
on the use of formalism.



17 Epilogue

“If in its continual development mathematics seldom if ever at-
tains a finality, the constant growth does mature some residue
that persists. But it is idle to pretend that what was good

enough for our fathers in mathematics is good enough for us,
or to insist that what satisfies our generation must satisfy the

next.”
Eric Temple Bell

“The Development of Mathematics”
McGraw-Hill Book Company
New York London 1945, p.172

The initial mcentive to this study was above all the need to improve
on the status quo and develop a style of reasoning in which clarity and
convincingness of exposition go topether with the detail and precision
required from the correctness proofs of programs.

Imitially, we were primarily concerned with form and presenta-
tion, because in their tangibility they were things we could experiment
with. Findings of these experiments are dealt with in Chapter 14 [Clar-
ity of exposition|. Experiments with fine-grained reasoning were a main
concern, and & particularly important question, then, was how to orga-
nize a detailed argument so a3 to keep it manageable.

Top-down presentation of proofs is one answer to this question,
because it helps defer detail, in verbal and in formal reasoning alike. The
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resort to formalism is another answer; a great deal of experimentation
was devoted to it.  The calculational style of reasoning was stressed,
again for the sake of orgamzation and manageability: not only does it
make the structure of an argument more visible, the caleulational format
lends itself more readily to detailedness and conciseness at the same time.

A result of these experiments, which were performed in coopera-
tion with Edsger W, Dijkstra and W.II.J. Feijen and which were jeined
by others mn their teaching and writing, is that over the yecars it has
become possible to present all kinds of ingenious algorithms, in all their
necessary detail, in much less space than before, To name just a few:
Shiloach’s algorithm for checking the equivalence of two circular lists
[Chapter 13], Boyer and Moore’s Majority Vote algorithm, Heapsort,
distributed termination detection algorithms, and the like.

As time went by we experienced, through our concerns for form
and presentation, that deeper issues were involved, For instance, viewed
as reference to what they stand for, names can be regarded as mere
presentational devices for shortening the text; but they appeared to
emcrge as carriers for ahstraction and decomposition, for confinement of
detail, and postponement of commitment during the development of a
design. Consequently, our concerns extended themselves to streamlining
the arguments themselves.

Along the way, the traditional distinction between form and con-
tent began to fade. The experience that the introduction of nomencla-
ture could he a design decision, influencing the shape of the resulting
argument, was one of the circumstances causing the distinetion to fade.
There were others; for instance, the introduction of A <= B as a no-
tational alternative to B = A turned out to be much more than that:
it provided richer linguistic means for expressing derivations in which
steps are of the type “there iz hardly anything else you can do”. The
richer Jinguistic means eventually provided us with more heuristic guid-
ance in the design process, thus gradually bringing us into the realm of
heuristies.
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As mentioned already in the introduction to this study, this is
only the beginning of a larger wmvestigation. There 18, first of all, the
confinement to the task of proving one theorem or designing one pro-
gram. Building up a theory is a game for which the rules of thumb
developed here will undoubtedly be insufficient and partly inappropri-
ate. (It is, for instance, hard to see how or why to develop a theory
in top-down fashion unless the theory is meant to solve one particular
problem. )

This 12 also a beginning m the sense that we have chosen for
breadth rather than depth in the explorations. Qur strategy in select-
ing material for experimentation has largely been to pick out problems
and proofs that according to our standards of the day were not dealt with
satisfactorily, and to try to find and remedy the trouble. The remedies
were as varied as the problems, and that 1s how we encountered topics
like fine-grainedness of detail as well as organization and arrangement;
the choice of notation as well as issues of naming; avoiding case distine-
tions and proofs of equivalence conducted by proof of mutual implication
as well as the heuristic guidance offered by the shape of a formula; the
avoldance of proof by contradiction as well as the exploitation of a cal-
culational style.

In many of the single subjects, however, a lot remains to be
done. Take case analysis, as an example. On the one hand, as most
mathematicians will agree, it is often best avoided, and we have seen
that the choice of nomenclature may play a réle in this, hecause it may
destroy symrmetries or introduce overspecificity. On the other hand, we
are still far removed from having extensive criteria for deciding when a
case distinction is avoidable and when it is not. Even though it is idle
to hope for the rule without exception, a systematic exploration could
be very helpful.

The situation with equivalences proved by proving mutual im-
plication is similar. Admitting equivalence as a full-blown connective
has made us more aware of cases in which mutunal implication can be
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avolded —avoidance usually having the effect of shortening the proof—.
Therc are also situations where avoiding mutual implication 1s clearly not
possible. (Consider, for instance, demonstrandum [P = @] where one of
the premisses to be exploited has the shape “for all X, [fX = X] =
[P = X]7.) Again, the topic deserves a much more extensive dedicated
exploration. Case analysis and proof by mutual implication are by no
means the only interesting objects of further exploration.

In a way, we are constantly trying to hit a moving target. At
a time when we were confining our attention to form and presentation,
an objection put forward was that proving rather than presenting or
streamlining theorems was the difficult task, and later when heuristic
considerations had entered the scene and we had begun concentrating
on “given a theorem, design a proof” as a task, a new objection was
that finding a theorem might be more difficult than proving it. There is
truth, no doubt, in this ranking of difficulties, and, holding the view that
there is no point in trying to master the difficult before you know how to
deal with the simpler, we explored presentation first and heuristics only
much later. As for finding theorems: just as the boundary between
form and content has proved to be less sharp than is usually considered,
in the same way the distinction bhetween proving and finding theorems is
somewhat diffuse;  we are continually formulating additional theorems
in the course of a proof, even though these may not be of interest in
themselves.

Finally, in the methodological explorations discussed here, our
ain intention has been to be as explicit as possible about ¢riteria for
exposition and design that we have come to value and profit from. In
part, what we did may perhaps be considered as making explicit styles
of reasoning that able mathematicians use all the time —more or less
subconsciously--- .  Some may even hold the view that it is not more
than that, just like in computing many held, and perhaps still hold, the
apinion that the programming methodology developed in the seventies
was not necessary for the good prograromer because he already worked
along those lines subconsciously.
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Even if it is all we have done, we believe we have gained a lot,
because explicitness has two, not unrelated, advantages; the develop-
ment of computing into a teachable scientific discipline exemplifies both
these advantages. First of all, explicitness moves the boundary between
what is considered simple and what counts as difficult; 1t “increases
the number of operations that can be performed without thinking about
them” —we quote Whitehead— .

Secondly, in the wake of the aforementioned advantage, such ex-
plicitness paves the way to teachability, not only of problems that were
too difficult or advanced before, but also of the methodological issues
involved. In programming, experiences have become more and more
favourable in the last decade. In mathematics at large, such experi-
ences in teaching methodological issues explicitly are much rarer. It is
our strong belief that the teaching of such a topic is both possible and
profitable.



18 Proof rules for guarded-command
programs

For predicates P and € and program or program fragment 8, {P}15{Q}
iz a boolean expression, whose operational interpretation is that execu-
tion of 5 when started in a state satisfying P termunates in a state
salisfying Q. P 1s called the precondition of 5, and ¢ is its postcon-
dition. (We note that in contrast with, for instance, Hoare triples, here
triple {P}5{Q} denotes total correctness, i.e. includes termination.)

Solving a programming problem often means solving an equation
(5:{r}5{qQ}). The following rules are convenient for caleulating with

such equations.

{P}5{Q} @ {P} S {R} A [R= Q)
{P}s{Q} < [P= R A {R}S5{Q]
{P}s{Q AR} = {F}5{Q} n (P} S{R]}

We define the constructs of the program notation in terms of expressions
{P15{Q}:

e skip: {P}skip (@} = [P= Q)]

e assignment : {Plx:= E{Q} = [P = Qlz:= E)

e composition :  {P} 5,7 {@Q} = thereexists an H such that
{PYS{H} A {H}T{Q}

3
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» conditional statement :

(P}if BO— 50 ... ] Bon— Sn fi{Q)

(Ai:0<i<n:{PABI}Si{Q})

[P=(Ei: 0cign:B.i)

* repetitive statement :

We deal with répétitions of the shape do B — Sod only, because

do B0 — S0 ]...7] B.n - S.n od is considered to be the same
program as
do(Ei:0ci<n:Bi) — ifBO-50]...[|Bn—=5nfi od.

A proof of the validity of {P}doB — Sod{Q} as a rule consists of
three parts: for some predicate H

- a proof that it satisfles {H]}do B — 5od {H A ~B}

- a proof of [P = H]

-aproofof [HA-B = (]

The first part is proved by an appeal to the Invariance Theorem, which
states that

Theorem . {H}doB — Sod{H A =B} follows from

- H isinvariant, i.e. {H A B} 5 {H} holds,
— termination 1s guaranteed, 1.e. for some expression £ in terms of the
variables of the state space —the “variant function”— and a well-

founded set (C, <),
[HAB = teCl AN {HABAt=X}5{t < X} holds.

End Theorem .
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Note . Frequently, C is chosen to be a subset of the integers that is
hounded from above or below.
End Note .

End e,

Finally we mention that, viewed as an equationin P, {P}5{@}
has a unigque weakest solution, the weakest precondition, denoted as
wp.(9, Q). Then we have

{P}54{Q} = [P = wp.(5, Q)]

In terms of wp, we can state, for instance, [wp.(skip, @) = @], and
(wp.(z:= E,Q)=Q(z:= E)],and {wp.(5;T, Q) = wp.(5,wp.(T, @)}
etc. . The use of weakest preconditions often smoothens the derivation
of a program.



19 Notational conventions

Logical operators .

-

]

#
=

»

A, vV, = denote negation, conjunction, disjunction, and implica-
tion respectively as usual;
pronounced “everywhere” or “for all states”, is a bracket pair
denoting universal quantification over a universe to be specified;
pronounced “equivales” or “is equivalent to”, is the symmetric
associative connective usually denoted by < or “if and only if”;
pronounced “differs from”, is defined by [(p # ¢) = ~(p = ¢)i
forall p, g¢;
pronounced “follows from?”, is defined by [(p <= ¢) = (g = p)|

for all p, ¢.

In decreasing binding power we have -~; A and V; = and «<; =
and =,

The proof format .
Many of our proofs have the shape

P

Il

{hint why [P =]}

Q
= {hint why [@ = R]}
R '
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as a shorthand for [P= Q) A[Q@= R} A ... . The format is discussed
more extensively 1in section 16.2.

Quantified expressions .
A stands for the more familiar V¥,

E for 3,
5 for 1T,
I for 17,

MAX , MIN for max and min respectively.

[] denoting universal quantification, it shares its properties with A .
Its major use is in Leibniz’s Rule: if predicates P and @ satisfy

[P = @], cccurrences of P in an expression may be replaced by Q

without affecting the value of the expression.

The general pattern for quantified expressions is
(Qr:pr:tzx)y ,

with @ & quantifier, 2 a list of dummies, p.z a boolean expression in
terms of the dummies ——the range— , and .2 the term of the quantifi-
cation. (See also section 16.1.) The same or a similar patiern shows in
the notation for sets, equations, and numeral quantification:

{# - pa-tz} is the set usually denoted by {t.z|p.z}
(z : p.x) denotes equation p.x with unknown 2
(Naz:pz:tx) = (Sz:pantz:l)

Relational and arithmetic operators .

Relational operators have higher binding power than boolean operators.
Associative operators such as min (minireum), max (maximum), ged
{greatest common divisor), etc. are used in infix notation.

Functions .
o denotes function composition;
denotes function application, 1= a left-associative infix operator and
has highest binding power. Expression f.z.y usually denotes the
application of function f of two arguments to the ordered pair z.y ;
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if so desired, it can also be viewed as the application of (higher-order)
function f.z to argument y. If we want to stress that the arguments
form a patr —or, in general, a vector— we write f.(z,y).

Program notation .

See Chapter 18, for “{P}S5{Q}”, “skip”, “z:= E", %™, “if .. fi",
“do ... od”, and “wp”. The bracket pair “|{,]|” opens and closes the
scope of the variables declared after “|[” .

Substitution .

P(z,y:= FQ,E1) : denotes expression P with all free occurrences of
variables = and y replaced by expressions B0 and E1 respectively.
The result is as if F0 and F1 are first evaluated and then substituted
simultaneously. The notational convention is also used to express in-
stantiations, as in “Theorem0 with z,y:= EQ, E1”.

Set operators .

Operators N, U, €, 2, C, D, +, and ¢ have their usnal meaning:

get complement is denoted by an infix “\” or, where we discuss and
[ ki

quote Apostol, by “—"; “4” denotes the empty set, and braces “{”
and “}” are used for enumerated sets.
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Samenvatting

Over de vorm en structuur van wiskundige
argumenten

Dit proefschrift gaat niet over wiskundige stellingen of theorieén, maar
over wiskundige bewijzen, onder andere --maar niet uitsluitend— cor-
rectheidsbewijzen van programma’s. Het is descriptief noch preseriptief,
in die zin dat het zich noch bezighoudt met een systematische beschrij-
ving van hoe bewijzen er in de praktijk uit zien, noch uitspralken doet
over hoe 21y “er uit zouden moseten zien”. Het is het begin van een ant-
woord op de vraag die in de eerste jaren van dit decennium urgent werd,
nl. of en hoe “computing scientists” hun bewijzen effectiever zouden
kunnen maken. Dat de exploraties waarvan de onderhavige studie de
neerslag vormt uiteindelijk niet beperkt bleven tot de context van het
programuneren, was deels een kwestie van persoonlijke interesse en deels
een gevolg van de technische overweging dat correctheidsbewijzen en an-
dere wiskundige bewijzen voldoende soortgelijk zijn om exploratie van
de laatste niet uit te sluiten.

Het probleem waarvoor de programmeermethodologie in het be-
gin van de jaren tachtig werd gesteld was het volgende. Het was inmid-
dels mogelijk geworden een programma en zijn correctheidsbewijs hand-
in-hand te ontwikkelen, en mits het bewijs voldoende gedetailleerd was,
kon het resulterende programma als betrouwbaar worden beschouwd.
Maar “voldoende gedetailleerd” in deze context bleek een heel wat stren-
gere eis dan wat wiskundigen daar meestal onder verstaan, met als gevolg
dat, zo er al aan werd voldaan, correctheidsbewijzen al snel lange ver-
halen werden of ingewikkelde en bewerkelijke formele betogen. Een
centraal thema 13 derhalve de vraag hoe compactheid en een aanzienlijke
mate van compleetheid in één argument verenigd kunnen worden.
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Ter voorkoming van misverstanden zij vermeld dat dit proef-
schrift in de eerste plaats de presentatie van bewijzen tot onderwerp
heeft en niat zozeer het ontwerpen ervan. De scheidslijn tussen vorm
en inhoud is echter minder scherp gebleken dan verwacht; waar dat
mogeliik is zullen derhalve ook hevristische beslommeringen aan de orde
komen. Vanwege de behoefte compactheid te paren aan een fijne graad
van detail, heeft het gebruik van formalismen van het begin af aan een
belangrijke rol gespeeld in de exploraties. Dat doet het evenzo in dit
proefschrift.

Het is gebleken dat er heel wat te zeggen valt over wiskundige ar-
gumenten dat onafhankelijk is van het specificke deelgebied waaruit een
bewijs afkomstig is. Hier zullen onder andere aan de orde komen: de
graad van detail van bewijzen, de organisatie van bewijzen, gevalsonder-
scheid, de exploitatie van symmetrie, de vraag wat benoeming verdient
en wat niet, het gebruik van formalismen —in het bijzonder de predi-
catenrekening en de exploitatic van de equivalentie als connectivam-— ,
bewijzen als (boolse) berekeningen en de invloed van hun gebruik op de
keuze van notaties.

Het proefschrift bestaat uit twee delen, waarvan de volgorde
tamelijk irrelevant is en die in principe cnafhankelijk van elkaar gelezen
kunnen worden. Het eerste deel bevat dertien hoofdstukjes waarin
telkens één programmeerprobleem of één stelling behandeld wordt, verge-
zeld van een discussie van de oplossing. In het tweede deel komen, in
een drietal algemenere hoofdstukken over expositie, benoeming en het ge-
bruik van formalismen, de bevindingen van het onderzoek in algemenere
termen aan de orde en krijpen de betogen uit het eerste deel, die hier
tevens als illustratiemateriaal dienen, meer samenhang.
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On the shape of mathematical arguments
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Het bewijs dat er bij elke cindige verzameling priemgetallen een
niet tot die verzameling behorend priemgetal bestaat behoeft noch
gevalsonderscheid noch een reductio ad absurdum.

Door het gebruik van adequate notatie kan een bewijs van de stelling
van Ramsey gegeven worden dat overzichtelijker en korter is dan dat
van Graham et al. .

Ronald L. Graham, Bruce L. Rothschild, and
Joel H. Spencer, .
Ramsey Theory, John Wiley & Sons, New York, 1980

Het gebruik van het werkwoord “moeten” in logische consequenties
dient - -evenals-dat van zijn ontkenning “niet kunnen™ - vermeden
te worden.

We beschouwen betegelingen van rechthoeken met tegels van 2 bij 1.
Een naad in een betegeling is con rechte lijn die de betegeling verdeelt
in twee rechthockige deelbetegelingen.  Er bestaan een eenvoudig
telargument ter karakterisering van rechthoeken die geen naadloze
betegeling toelaten cn cen eenvoudige constructie die sem naadloze
betegeling oplevert voor alle overige rechthocken die betegelbaar zijn.
Anders dan in Graham’s betoog volstaan betde met een minimmm
aan gevalsonderscheid.

K.A. DPost,
Nicuw Archief voor Wiskunde
vierde scric deel 3 nummer 1, 1985, p.137

R.L. Graham

Fault-free Tilings of Rectangles

in The Mathematical Gardner, edited by David A. Klarner,
Wadsworth Internalional, Belmont Califoruia, 1981

Het is een misvatting te denken dat wiskundige expositie een voor-
nameljk didactische beslommering is.
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Bondi’s nitleg van de werking van de slinger van Foucault is on-
bevredigend impliciet.

Hermann Bondi,
Relativity and Comrmon Sense
A New Approach to Einstein,
Dover Publications Inc., New York, republication 1980

De onzichtbaarheid van de lege statement en de introductie van de
puntkomma als separator —in plaats van als infix operator voor
compositie— leiden tot complicaties.

Kathleen Jensen en Niklaus Wirth,
Pascal: user manual and report,
second edition, Springer-Verlag, Berlin, 1978

P. Naur(ed.) et al.
Report on the Algorithmic Langnage ALGOL 60,
Numerische Mathematik 2, 1960, pp.106-136

De tijd is rijp voor een tijdschrift dat gewijd is aan de methodologic
van de wiskunde.

Voor informatici is ocfening in het rekenen, in elke betekenis van
het woord, van groot belang. Het gebruiken en ontwerpen van
calculi verdient derhalve een zelfstandige plaats in het informatica-
curricilum,

Het veel gehoorde programmeursexcuus: “Maar dat is een heel spe-
ciaal geval” getuigt van operationeel denken.

Het steeds meer ingeburgerd raken van woordcombinaties als “com-
putergestuurd”?, “machine-afhankelijk” en “geldbelust” zal op den
duur tot een verarming van de Nederlandse taal leiden.



