

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 1

Reference: 2004/06/14/orabpel/d5/1.0

BPEL Tutorial
Tutorial 7: Invoking BPEL Processes through SOAP

and Java

As mentioned previously, a BPEL process is itself a Web service, defining and
supporting a client interface via WSDL and SOAP. However, BPEL processes deployed
on the Oracle BPEL Process Manager are also made available to clients via a Java API.
This tutorial describes how to invoke BPEL processes, both synchronous and
asynchronous, through either SOAP or Java.

Contents

Overview... 2
Invoking a BPEL Process with the BPEL Console .. 2
Invoking a BPEL Process with the Generic Java API .. 4

Connecting to a BPEL Process Manager with the Locator class................................ 5
Passing XML messages via Java .. 5
Invoking a two-way operation via Java API... 5
Testing invokeCreditRatingService.jsp .. 7
Invoking a one-way operation via Java API ... 8
Testing invokeHelloWorld.jsp.. 9
Retrieving Status/Results from Asynchronous BPEL Processes.............................. 11
Using the Java API from a Remote Client.. 12

Invoking a BPEL Process with the WebService/SOAP Interface 12
View the WSDL for the Deployed BPEL Process.. 13
Building, Deploying and Testing the SOAP Client .. 14
SOAP Request Content... 17
Review the Implementation of the Axis Client... 18
Creating a BPEL Process Web Service Client “from Scratch” with Axis................ 19
Receiving Asynchronous Callbacks via SOAP .. 21

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 2

Overview

In previous tutorials, you have tested your newly created BPEL processes with the BPEL
Console. This console is useful for testing purposes during development but ultimately
you will need to use an API or develop a custom GUI to initiate BPEL processes.

A BPEL process deployed to the Oracle BPEL Process Manager can be invoked through
three mechanisms:

1. The BPEL Console’s Initiate tab (where you can specify XML data to pass into
the process as input or use the automatically generated HTML test form
interface).

2. Through the generic Java API published by the Oracle BPEL Process Manager.

3. Through its Web service/SOAP interface.

This tutorial examines how each of these interfaces may be used to create instances of
deployed processes.

Invoking a BPEL Process with the BPEL Console

In prior tutorials you have seen how to invoke a BPEL process using the BPEL Console
so we do not discuss it in great detail here. One thing to note, however, is that the BPEL
Console supports two modes of invocation: an HTML Form view and an XML Source
mode.

The XML Source mode, shown below, allows you to enter XML source data directly into
a text form and that source is passed, as is, to initiate the BPEL process. To simplify the
use of this mode, you can configure default XML data in the deployment descriptor of the
process, which will be pre-loaded into the XML data field (see the defaultInput
property in the file C:\orabpel\samples\demos\LoanDemo\LoanFlow\bpel.xml for an
example of how to do this).

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 3

Alternatively, the HTML Form view in the BPEL Console’s Initiate tab will
automatically generate an HTML input form (when possible), which can be used to
provide the input values to initiate a BPEL process for testing purposes:

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 4

But, as mentioned, the goal of this tutorial is not to describe testing BPEL processes
through the console, so we won’t consider it further.

Invoking a BPEL Process with the Generic Java API

Processes can be invoked programmatically via a Java API provided through a stateless
session bean interface by the BPEL Process Manager. The API is slightly different
depending on whether you are invoking a two-way operation (which has both input and
output messages) or a one-way operation (which just has an input message and returns no
result). As such, two code examples are provided in the BPEL Process Manager samples
directory, one for invoking the CreditRating BPEL process, which provides a
synchronous service with a two-way process operation, and one for initiating the
HelloWorld BPEL process, which is an asynchronous service with a one-way

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 5

initiate operation. These two samples are discussed below, but both use a few
building blocks that we will first describe here.

Connecting to the Oracle BPEL Process Manager with the Locator class
To support a flexible client interface without being affected by server clustering and other
production configuration details, a com.oracle.bpel.client.Locator class is provided
which is used to connect to a BPEL Process Manager, authenticate if required, and then
get handles to services provided by that server. For example, the Locator class could be
used to connect to the default domain on a local BPEL Process Manager and fetch a list
of BPEL processes deployed on that server. In this case, we use the Locator class to
return a handle to an com.oracle.bpel.client.dispatch.IDeliveryService instance which
can be used to invoke/initiate BPEL processes deployed on a BPEL Process Manager:

 import com.oracle.bpel.client.Locator;
 import com.oracle.bpel.client.dispatch.IDeliveryService;

 // Connect to domain “default” using password “bpel”
 // null IP address means local server

 Locator locator = new Locator("default", "bpel", null);

 IDeliveryService deliveryService =
 (IDeliveryService)locator.lookupService
 (IDeliveryService.SERVICE_NAME);

Passing XML messages via Java
Because all Web services, including BPEL processes, accept and return XML messages,
any Java API which will invoke those Web services needs to leverage a way to pass
XML data via Java. Going with a very simple approach, which allows support for any
and all XML documents and XML Schema types, the Oracle BPEL Process Manager has
a client class, com.oracle.bpel.client.NormalizedMessage, which allows the developer
to construct an XML message dynamically. For example, to construct an input message
for the CreditRatingService from static string XML data, you could use the code:

 import com.oracle.bpel.client.NormalizedMessage;

 String xml =
 "<ssn xmlns=\"http://services.otn.com\">123456789</ssn>";

 NormalizedMessage nm = new NormalizedMessage();
 nm.addPart("payload", xml);

In practice, of course, you would construct NormalizedMessages much more
dynamically. For full documentation of the NormalizedMessage class, see the Oracle
BPEL Process manager JavaDocs in:

 C:\orabpel\docs\apidocs

Invoking a two-way operation via Java API
Once a delivery service has been instantiated, it can be used to initiate the BPEL process
with a NormalizedMessage XML message. If you will be invoking a two-way Web

http://services.otn.com\">123456789</ssn

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 6

service operation which will return a result synchronously, then you will want to use one
of the IDeliveryService.request() methods. This method is overloaded and you should see
the JavaDoc for all the available versions of it, however here we will use the request()
method with the following signature:
public NormalizedMessage request(java.lang.String processId,

 java.lang.String operationName,

 NormalizedMessage message)

 throws java.rmi.RemoteException

A code example of using this API to invoke the CreditRatingService BPEL process is
provided with the Oracle BPEL Process Manager samples and is shown below.

Sample location:
C:\orabpel\samples\tutorials\102.InvokingProcesses\jsp\invokeCreditRatin
gService.jsp

Full JSP source:

<%@page import="java.util.Map" %>
<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.client.NormalizedMessage" %>
<%@page import="com.oracle.bpel.client.dispatch.IDeliveryService" %>

<html>

<head>

<title>Invoke CreditRatingService</title>

</head>

<body>

<%
 String ssn = request.getParameter("ssn");
 if(ssn == null)
 ssn = "123-12-1234";

 String xml = "<ssn xmlns=\"http://services.otn.com\">"
 + ssn + "</ssn>";

 Locator locator = new Locator("default","bpel",null);

 IDeliveryService deliveryService =
 (IDeliveryService)locator.lookupService
 (IDeliveryService.SERVICE_NAME);

 // construct the normalized message and send to oracle bpel process
manager
 NormalizedMessage nm = new NormalizedMessage();
 nm.addPart("payload", xml);

 NormalizedMessage res =
 deliveryService.request("CreditRatingService", "process", nm);

 Map payload = res.getPayload();

http://services.otn.com\

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 7

 out.println("BPELProcess CreditRatingService executed!
");
 out.println("Credit Rating is " + payload.get("payload"));

%>

Testing invokeCreditRatingService.jsp
1 Make sure that you have the CreditRatingService BPEL process deployed to your

local Oracle BPEL Process Manager.

> cd C:\orabpel\samples\utils\CreditRatingService

> obant
2 Deploy the JSP with the following commands:

> cd C:\orabpel\samples\tutorials\102.InvokingProcesses

> obant
3 Point a browser at the URL:

http://localhost:9700/InvokingProcessesUI/invokeCreditRatingService.jsp

http://localhost:9700/InvokingProcessesUI/invokeCreditRatingService.jsp

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 8

4 If you want, you can now connect to your BPEL Console to see that a new instance
of the CreditRatingService has been created and completed.

Invoking a one-way operation via Java API
The procedure for invoking a one-way BPEL operation via the Java API is very similar,
except that you will use the IDeliveryService.post() method (which is also overloaded).
These methods invoke a one-way operation on a BPEL process and thus return void since
a response is not expected (at least not a synchronous response).

In the code example shown here, the post method used is exactly the same as the
request() shown above, except that it returns void:

From JavaDoc for com.oracle.bpel.client.dispatch.IDeliveryService:

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 9

public void post(java.lang.String processId,

 java.lang.String operationName,

 NormalizedMessage message)

 throws java.rmi.RemoteException

Sample location:
C:\orabpel\samples\tutorials\102.InvokingProcesses\jsp\invokeHelloWorld.
jsp

Selected JSP source:

<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.client.NormalizedMessage" %>
<%@page import="com.oracle.bpel.client.dispatch.IDeliveryService" %>

...

 Locator locator = new Locator("default", "bpel", null);

...

 NormalizedMessage nm = new NormalizedMessage();
 nm.addPart("payload" , xml);

 deliveryService.post("HelloWorld", "initiate", nm);

 out.println("BPELProcess HelloWorld initiated!");

%>

Testing invokeHelloWorld.jsp
5 Make sure that you have the HelloWorld BPEL process deployed to your local

Oracle BPEL Process Manager:

> cd C:\orabpel\samples\tutorials\101.HelloWorld

> obant

6 Deploy the JSP with the following commands (if you didn’t do it already for the JSP
which invoked the \CreditRatingService):

> cd C:\ orabpel \samples\tutorials\102.InvokingProcesses

> obant

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 10

7 Point a browser at the URL:
http://localhost:9700/InvokingProcessesUI/invokeHelloWorld.jsp

http://localhost:9700/InvokingProcessesUI/invokeHelloWorld.jsp

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 11

8 Again, you could now connect to the BPEL Console to see that a new instance of the
HelloWorld process has now been created.

Retrieving Status/Results from Asynchronous BPEL Processes
If you use the Java API to initiate an asynchronous BPEL process, then you often have to
consider how to receive the result of the process since a Java client cannot be called back
the same way a Web service can be. Of course, in some cases, this is not an issue. For
example, the LoanFlowPlus BPEL demo application (located in
C:\orabpel\samples\demos\LoanDemoPlus) avoids this issue by informing users of
process progress through a user task where the user can manually approve the final loan
offer. In some cases, the process will send some sort of notification, such as an email
message or a JMS message, when it completes – see the samples

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 12

C:\orabpel\samples\tutorials\116.SendEmails and
C:\orabpel\samples\tutorials\118.JMSService\buyer for examples of how to send email or
JMS messages from BPEL processes.

Also, a Java client can poll for the result of an asynchronous BPEL process. In this case,
the client will need a handle to be able to fetch status information for a particular
instance. And while the post() method does not automatically return such a handle, it
does support the client specifying a “conversation ID” which can be any unique identifier
that the client can later use to identify a specific instance and retrieve status information
for it. See the JavaDocs for the com.oracle.bpel.client.NormalizedMessage class to see
the specific field name for the conversation ID and other properties, which can be set at
the time a BPEL process, is instantiated via the Java API. And also see the
com.oracle.bpel.client.Locator.lookupInstance(String key) method to be able to locate
a specific instance based on a conversation ID.

Finally it is possible using the supported NormalizedMessage properties to even specify
the address of a Web service for the callback and therefore to initiate an asynchronous
BPEL process from Java, but receive a SOAP/XML callback to a Web service listener.
This is a more advanced use-case, so you should contact your Oracle support
representative for more information on how to accomplish this in your specific
environment.

Using the Java API from a Remote Client
The code examples as described above are executed within the same application server
container as the BPEL Process Manager is running in. These APIs are remotable,
however, and can be used via RMI from a remote application server. We do not currently
ship code examples for this use-case - in part because the RMI client code is different
based on which application server the client is running in. You should work with your
Oracle support representative regarding how to use the BPEL Process Manager Java API
over RMI for your specific client configuration/environment.

Invoking a BPEL Process with the WebService/SOAP Interface

Once deployed to an Oracle BPEL Process Manager, a BPEL process is automatically
published as a Web service. This means that the process can be accessed via its
XML/SOAP/WSDL interface without any additional developer effort.

Supporting a standard Web services interface means that BPEL processes can be invoked
from any client technology which supports Web services – including Microsoft .NET™,
Sun’s JAX-RPC implementation, Apache Axis, Oracle JDeveloper and the many other
Web services toolkits available. In addition it means that BPEL and the Oracle BPEL
Process Manager can be used to publish Web services and those services, both
synchronous and asynchronous, can be invoked from applications and services
implemented with nearly any technology and language.

You access a BPEL process through its Web service interface in the standard way you
would access any Web service – by writing a client which uses the BPEL process’
WSDL interface definition and SOAP as a protocol.

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 13

Here we will describe how to invoke a BPEL process from a Web service client
developed with the open source Apache Axis toolkit. For other Web service toolkits, you
should consult the documentation for that toolkit and/or contact your Oracle
representative.

These examples use the UseStockReviewSheet BPEL process as a building block so you
should make sure that this process has been deployed to your server using the following
steps.

To compile and deploy the UseStockReviewSheet process from the command-
line:

1 Open up a command prompt if you do not already have one open.

2 Compile and deploy the UseStockReviewSheet process as follows:

> cd C:\orabpel\samples\tutorials\103.XMLDocuments

> obant

View the WSDL for the Deployed BPEL Process
The Oracle BPEL Process Manager automatically adds binding information to the WSDL
for a BPEL process and publishes it at a standard location. In addition, the BPEL Process
Manager provides a SOAP listener endpoint for the deployed BPEL processes so they
can be invoked through SOAP from any Web service client.

Once you have deployed a BPEL process, you can find the location of its WSDL by
connecting to the BPEL Console, selecting the process and then clicking the WSDL tab.
For example, for the UseStockReviewSheet process:

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 14

Building, Deploying and Testing the SOAP Client
An example of a SOAP client, which invokes (initiates) the UseStockReviewSheet BPEL
process, is provided with the Oracle BPEL Process Manager samples. As mentioned, this
sample is build with the open source Apache Axis toolkit (which provides a fairly mature
and commercially viable JAX-RPC implementation), however it should be possible to
accomplish the same thing with any Web service-enabled technology. Also keep in mind
that this client just initiates an asynchronous BPEL process and does not receive its
resulting callback. This issue is discussed further in the next section of this tutorial.

Sample location: C:\orabpel\samples\tutorials\102.InvokingProcesses\ws
Follow the steps below to invoke and test the Axis client for the UseStockReviewSheet
BPEL process:

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 15

1 You will need to have Apache Axis and Ant installed somewhere on your system.
These instructions have been tested with the 1.1 Axis release
(http://ws.apache.org/axis/) and Jakarta Ant release 1.5.1
(http://archive.apache.org/dist/ant/binaries/).

2 Open up the file
C:\orabpel\samples\tutorials\102.InvokingProcesses\ws\setenv.bat (or
setenv.sh for Unix/Linux) in a text editor and fill in the correct locations for the
AXIS_HOME and ANT_HOME variables.

3 Run ant.cmd (or ant.sh) as shown below to compile the AXIS Java client classes

> cd C:\orabpel\samples\tutorials\102.InvokingProcesses\ws
> ant.cmd

4 Make sure your BPEL Process Manager is running and execute the
runUseStockReviewSheetClient.cmd (.sh) script to run the Axis client and invoke
the BPEL process via SOAP.

> runUseStockReviewSheetClient.cmd

http://ws.apache.org/axis/
http://archive.apache.org/dist/ant/binaries/

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 16

5 You can now connect to the BPEL Console to see that a new instance of the BPEL
process has been created (and in this case completed, since this process runs to
completion fairly quickly)

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 17

SOAP Request Content
If you use a TCP Tunnel or other tool for viewing the on-the-wire content of the SOAP
request sent by the Axis client to the BPEL Process Manager, it would look as follows.
For more information on TCP tunneling with the Oracle BPEL Process Manager, see the
technote available at http://otn.oracle.com/bpel (note that to change the endpoint for the
client to be your TCP tunnel, you would edit the runUseStockReviewSheet.cmd script).

http://otn.oracle.com/bpel

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 18

Review the Implementation of the Axis Client
Axis supports two mechanisms for writing Web service/SOAP clients:

1) Coding against Axis API “by hand”
2) The wsdl2java tool which will generate client stubs for a specific service’s

WSDL

The UseStockReviewSheet process client was implemented with the first approach
(which results in somewhat cleaner code). While not intended to be a complete Axis
tutorial, here we review this implementation quickly. The next section provides a tutorial
for using the Axis wsdl2java tool to build a BPEL process client from scratch.

Files in C:\orabpel\samples\tutorials\102.InvokingProcesses\ws:

• setenv.bat [.sh]: Sets up system-dependent environment for compiling and
running Axis client

• build.xml: Ant build script for compiling Axis client
• ant.cmd [.sh]: Just a wrapper around Ant which sets up the environment (per

setenv.bat) and then invokes the standard Ant build tool
• runUseStockReviewSheet.cmd [.sh]: A simple script which sets up the

environment and then instantiates the Java client which invokes the BPEL process
• src\com\otn\samples\UseStockReviewSheetClient.java: Source code for Java

class which uses the Apache API to invoke the UseStockReviewSheet BPEL
process as a Web service

The most pertinent code from the UseStockReviewSheetClient.java implementation is
shown here:

import javax.xml.rpc.ServiceFactory;
import org.apache.axis.client.Call;
...

 SERVICE_NAME = new QName(THIS_NAMESPACE,"UseStockReviewSheet");
 PORT_TYPE = new QName(THIS_NAMESPACE,"UseStockReviewSheet") ;
 OPERATION_NAME =
 new QName(THIS_NAMESPACE,"useStockReviewSheetRequest");
 SOAP_ACTION = "initiate";
 STYLE = "wrapped";
...

public void initiate(String symbol)
{
 try
 {
 /* Create Service and Call object */
 /**/
 ServiceFactory serviceFactory = ServiceFactory.newInstance();

 Service service = serviceFactory.createService(SERVICE_NAME);

 Call call = (Call)service.createCall(PORT_TYPE);

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 19

 /* Set all of the stuff that would normally come from WSDL */
 /***/
 call.setTargetEndpointAddress(location);

 call.setProperty(Call.SOAPACTION_USE_PROPERTY, Boolean.TRUE);
 call.setProperty(Call.SOAPACTION_URI_PROPERTY, SOAP_ACTION);

 call.setProperty(Call.OPERATION_STYLE_PROPERTY , STYLE);

 call.setOperationName(OPERATION_NAME);

 call.addParameter(new QName(PARAMETER_NAMESPACE,"symbol"),
 XMLType.XSD_STRING, ParameterMode.IN);
 call.addParameter(new QName(PARAMETER_NAMESPACE,"targetPrice"),
 XMLType.XSD_FLOAT, ParameterMode.IN);
 call.addParameter(new QName(PARAMETER_NAMESPACE,"currentPrice"),
 XMLType.XSD_FLOAT, ParameterMode.IN);

 Object[] params = new Object[3];

 params[0] = symbol;
 params[1] = new Float(30.0f);
 params[2] = new Float(33.0f);

 /* Invoke the service */

 call.invokeOneWay(params);

 System.out.println(
 "UseStockReviewSheet BPEL process initiated");
 }
 catch (SOAPFaultException e)
 // ... Handle exceptions ...

}

This code is written using as much of the generic JAX-RPC API as possible, minimizing
the effort to port it to other JAX-RPC implementations. On the other hand, writing clients
like this requires a decent understanding of the Apache Axis APIs as well as the ability to
understand the WSDL for the service. For example, the invocation style above
(“wrapped”) may not be obvious to developers who do not have a deep understanding of
WSDL. This is exactly why tools like wsdl2java have been created which will generate
stubs for invoking services like the above based on automated parsing of a service
WSDL. In the next section, we describe how to use wsdl2java to automatically generate
Web service client code for a BPEL process.

Creating a BPEL Process Web Service Client “from Scratch” with Axis
Here we describe how to use the Axis wsdl2java tool to generate Web service client
stubs to invoke the LoanFlowPlus BPEL process, followed by example of a Java class
which uses the stubs.

1 Make sure the LoanFlowPlus process is deployed to your local BPEL Process
Manager:

> cd C:\orabpel\samples\demos\LoanDemoPlus

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 20

> obant
2 Add your Axis jars to your CLASSPATH

> set AXIS_HOME= <wherever you installed Axis>

> set ANT_HOME= <wherever you installed Ant>

> set
CLASSPATH=%CLASSPATH%;%AXIS_HOME%\lib\axis.jar;%AXIS_
HOME%\lib\wsdl4j.jar; %AXIS_HOME%\lib\commonslogging.jar;
%AXIS_HOME%\lib\commons-
discovery.jar;%AXIS_HOME%\lib\jaxrpc.jar;
%AXIS_HOME%\lib\saaj.jar

3 Create a new directory <somewhere> and invoke the wsdl2java tool from there

> java org.apache.axis.wsdl.WSDL2Java
http://localhost:9700/orabpel/default/LoanFlowPlus/LoanFlowPlus?wsdl

This will generate the Axis client stubs as Java classes and also create Java beans for
serialization and deserialization when possible.

You can now use the Axis User’s Guide docs on the wsdl2java tool to see how to
write a Java client which uses the stubs generated by wsdl2java
(http://ws.apache.org/axis/java/user-guide.html)

4 Create a Java class for invoking the generated stub classes. The code shown below
presumes you create a class named “Tester.java” and is based on the sample
Tester.java code described in the Apache Axis User’s Guide’s wsdl2java section.

import com.otn.samples.*;
import com.autoloan.www.ns.autoloan.*;

public class Tester
{
 public static void main(String [] args) throws Exception {
 // Make a service
 LoanFlowPlus_Service service =
 new LoanFlowPlus_ServiceLocator();

 // Use the service to get a stub which implements the SDI.
 LoanFlowPlus_Port port = service.getLoanFlowPlusPort();

 // Set up the object which will be the input message
 // Note that this Java bean is generated by wsdl2java
 LoanApplicationType loanApplication =
 new LoanApplicationType();

 loanApplication.setSSN("123456789");
 loanApplication.setEmail("demo1@otn.com");
 loanApplication.setCustomerName("Jane Doe");
 loanApplication.setLoanAmount(10000);
 loanApplication.setCarModel("Buick");
 loanApplication.setCarYear("1968");

 // Make the actual call
 port.initiate(loanApplication);

http://localhost:9700/orabpel/default/LoanFlowPlus/LoanFlowPlus?wsdl
http://ws.apache.org/axis/java/user-guide.html

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 21

 System.out.println(
 "LoanFlowPlus BPEL process initiated!");
 }
}

5 Compile your Java tester class along with the generated Java stubs. You could create
a simple Ant build script to make this easy, placing the below in a build.xml file in
the same directory as where you ran wsdl2java:

<?xml version="1.0"?>
<project name="InvokingWSClient" default="main" basedir=".">

 <target name="main">
 <mkdir dir="${basedir}/classes"/>
 <javac srcdir="${basedir}" destdir="${basedir}/classes"/>
 </target>

</project>

 And then invoke:

> %ANT_HOME%\bin\ant.cmd
6 Finally, you can initiate the BPEL process with:

> java -classpath "./classes;%CLASSPATH%" Tester

Note that wsdl2java will actually generate some extra classes here in com\cxdn\samples
for the callback portType. These classes are not really useful but there is no way to tell
wsdl2java which portTypes to create stubs for so you could just delete them manually. In
particular, they would not be helpful to implement an asynchronous callback listener, as
is described in more detail in the following section.

Receiving Asynchronous Callbacks via SOAP
Both of the Web service client examples above illustrate how to initiate an asynchronous
BPEL process via its SOAP/Web services interface. However, additional work is
required if you want to be able to implement a SOAP endpoint which listens for a
callback from the BPEL process. This may not be required, as was discussed in the
section on invoking BPEL processes from Java, but if it is then two main steps must be
followed:

1) WS-Addressing information must be passed in the SOAP header request to
indicate correlation information and the address of the callback endpoint.

2) A listener must be deployed at the client end which implements the callback
interface.

A sample is provided illustrating how to accomplish this with the Apache Axis toolkit in:
 C:\orabpel\samples\interop\axis\AXISCallingAsyncBPEL

BPEL Tutorial 3: Manipulating XML Documents in BPEL Page 22

For more information regarding this functionality or to accomplish this with other Web
service toolkit clients, please contact your Oracle BPEL Process Manager support
representative or http://otn.oracle.com/bpel.

http://otn.oracle.com/bpel

