Native Mobile Apps with
Clojure(Script)

Chris Vermilion
chris@figlyinc.com

Boston Clojure Meetup 9/10/15

mailto:chris@figlyinc.com

Why Clojure for mobile”

Maybe you like Clojure!
Maybe you have a smartphone and want to use it!

Something something functional something
immutabllity

Code as data is an interesting model for a cloud-
updatable app!

Possible approaches

Pure Clojure/ ClojureScript Clojure
ClojureScript T T .

B JS-native bridge (some kind of dark magic)
mobile web " =

hybrid app native app

Possible approaches

Decreasing obviousness
- - 00>

Pure Clojure/ ClojureScript Clojure
ClojureScript T . i .

B JS-native bridge (some kind of dark magic)
mobile web hybrid app native app

Increasing difficulty
—

Possible approaches

Pure Clojure/
ClojureScript

mobile web

Not going to cover this one

ClojureScript
+
JS-native bridge

hybrid app

Clojure
+
(some kind of dark magic)

native app

Possible approaches

Pure Clojure/ ClojuriSC”pt Cloiure
C|OJUF?SC”IOt X (some kind of dark magic)
mobile web hybrid app native app

Lots of choices for “X”:
PhoneGap, Cordova, etc.

New hotness: React Native

Possible approaches

. . Clojure
Pure Clojure/ C|OJUI’$SCI’ID’[N
ClojureScript % RoboVM (iOS)/
— B various (Android)
mobile web hybrid app -

native app

Android’s already Java. On
I0S, compile Java bytecode to
clang somehow?

More on Clojure+Android

http://clojure-android.info/

Things | know about Clojure on Android:
1) It can be done.

http://clojure-android.info/

RoboVM @

“Create truly native 105 apps in Java”

Two things make this possible:

» Java bytecode to x86/ARM compiler

* Objective-C -> Java bindings for Cocoa libraries

Cool story, Bro.

import org.robovm.rt.bro.x;
import org.robovm.rt.bro.annotation.x;

@Library("c") // [1]
public class Abs {
static {
Bro.bind(); // [3]
Iy
@Bridge private static native int abs(int 1i); // [2]
public static void main(String[] args) {
System.out.println(abs(-100));

¥

Bro: Java bindings to C/Objective-C code

http://docs.robovm.com/advanced-topics/bro.html

http://docs.robovm.com/advanced-topics/bro.html

Gets hairy quickly...

/*</javadoc>x/
/*<annotations>*/@Library("Foundation") @ativeClass/*x</annotations>x*/

/*<visibility>*/public/*</visibility>%/ class /*x<name>x/NSArray/*</name>%/ <T extends NSObject>
extends /x<extends>*/NSObject/x</extends>x/

/*<implements>%/implements NSFastEnumeration, NSPropertyList, List<T>/x</implements>%/ {

/*<properties>x/

@Property(selector = "count")

protected native @achineSizedUInt long getCount();

/%%

% @since Available in i0S 4.0 and later. Whole NSArray wrapper 1S
*/

@Property(selector = "firstObject") N4OO I—OC (and Only

public native T first();
@Property(selector = "lastObject")

public native T last();
@Property(selector = "sortedArrayHint")
public native NSData getSortedArrayHint();
/*</properties>x/
/*<members>x//x</members>x/

covers the basic methods)

https://github.com/robovm/robovm/blob/master/cocoatouch/src/main/java/org/robovm/apple/foundation/NSArray.java

https://github.com/robovm/robovm/blob/master/cocoatouch/src/main/java/org/robovm/apple/foundation/NSArray.java

RoboPods should make this easier. ..

— just drop a dependency in Gradle/Maven and you're good to go

List of available RoboPods for iOS

Name Version Dependency

Bolts 115 org.robovm:robopods-bolts-i0s:1.6.0

Chartboost 55.0 org.robovm:robopods-chartboost-i0s:1.6.0
Facebook 4.3.0 org.robovm:robopods-facebook-i0s:1.6.0

Flurry 6.6.0 org.robovm:robopods-flurry-ios:1.6.0

Google Analytics 312 org.robovm:robopods-google-analytics-i0s:1.6.0
Google APIs org.robovm:robopods-google-apis-ios:1.6.0

Google Mobile Ads 7.31 org.robovm:robopods-google-mobile-ads-i0s:1.6.0
Google Play Games 141 org.robovm:robopods-google-play-games-ios:1.6.0

Parse 1.7.4 org.robovm:robopods-parse-ios:1.6.0

So what?

Bottom line: RoboVM lets you treat Android
and i0S as two (different!) JVM platforms.

This Is a double-edged sword!

Great power:

* At the end of the day, you have a compiled app.

* Real native access to anything you want.

* 100% (in principle) native feature coverage, pretty

good JVM (and Clojure) feature coverage.

Great responsibility:
* Bindings are ugly and you might have to write some.

e Ul code is all platform specific!

radiator-1io0s.textrenderer
[radiator—-ios. ios-text text]
lorg.robovm.apple.uikit UIColor UILabel UIView])

rgba->UIColor rgba-vector

[[red green blue] (| rgba-vector
#(%
alpha (71 rgba-vector)]
(red) (green) (blue) (alpha)))

UIViewRenderer
"UIView [this uitree state event-channel]

TextRenderer
UIViewRenderer
~"UILabel [_this uitree _state _event-channel]
([label (UI)]
label (| uitree)))
color | Lh uitree
Label (1 |
alignment (get uitree .)
label (alignment)))
(when style (Ln uitree
label (t/s1

label))

Parting thoughts

1.

RoboVM is a really interesting way to get totally
native access with a JVM language.

lt's more about language portability that app
portability. RoboVM gives you Java access to i0S
ibraries, not an abstraction on top of I0OS/Android.

Dev cycle of edit/compile/test/simulate is pretty
slow and painful. May improve”?

RoboVM as a product is young, immature. Maybe
growing?

ﬂ\ere 1S &[w@g&

another w&gﬂ

"Hybrid": web-like portability, native bindings
when you need them

APACHE

Qﬂ CORDOVA"

Ph
OﬂeGap tltamum

W4 CROSSWALK (@) ionic

PROJECT

"Hybrid": web-like portability, native bindings
when you need them

%> React Native

React? Why

React Native?

Why React”? Why React Native?

onest answer: This is my talk and that's what I've used!

Why React”? Why React Native?

» Virtual DOM, performance, Facebook backing, etc.

* Good Clojure uptake (Om/Reagent/Quiescent) [Why?
Immutability maps well to React model!]

* React Native then gives access to native bindings when
needed

 May or may not be a good tradeoff, depending on what
you want native for!

Why hybrid instead of compiled?

 Maybe you just like JavaScript!
* Threads are overrated anyway.
e Use JS, webby language for describing Ul

* => Ul code is actually portable

* => Flipside: Ul code doesn't nec. “feel native”

* Only need to go native when you need/want to

e => BUT “lowest common denominator” Ul abstractions

e |Vay taster dev cycle: simple autorefresh, etc.

OK, shut up and show me something.

https://github.com/dmotz/natal

https://github.com/dmotz/natal

Final thoughts

The right tool for native development depends on why you want native in the first
place.

Reasons you might want compiled/Clojure
| ots of complicated native functionality, in lots of places in your code
* Non-Ul code dominates, want it to be performant (games, eQ)

e Native controls/look-and-feel is a priority

Reasons you might want hybrid/ClojureScript

» Ul is the most important/frequently changing code, want portability
« Web-like Ul is what you want (maybe also you want a web client!)
e Dev speed/tooling is a priority

e Vendor-dependency makes you nervous

Resources

RoboVM:
http://robovm.com/

Clojure+Android links:
http://clojure-android.info/

React Native:
https://facebook.qgithub.io/react-native/

ClojureScript+React Native bootstrapper:
https://github.com/dmotz/natal

ClojureScript + i0S REPL:
https://github.com/omcljs/ambly

ClojureScript + RN + Reagent example project:
https://github.com/mfikes/reagent-react-native

http://robovm.com/
http://clojure-android.info/
https://facebook.github.io/react-native/
https://github.com/dmotz/natal
https://github.com/omcljs/ambly
https://github.com/mfikes/reagent-react-native

