
Native Mobile Apps with
Clojure(Script)

Chris Vermilion
chris@figlyinc.com

Boston Clojure Meetup 9/10/15

mailto:chris@figlyinc.com

Why Clojure for mobile?

• Maybe you like Clojure!

• Maybe you have a smartphone and want to use it!

• Something something functional something
immutability

• Code as data is an interesting model for a cloud-
updatable app!

Possible approaches

Pure Clojure/
ClojureScript

=
mobile web

ClojureScript
+

JS-native bridge
=

hybrid app

Clojure
+

(some kind of dark magic)
=

native app

Possible approaches

Pure Clojure/
ClojureScript

=
mobile web

ClojureScript
+

JS-native bridge
=

hybrid app

Clojure
+

(some kind of dark magic)
=

native app

Decreasing obviousness

Increasing difficulty

Possible approaches

Pure Clojure/
ClojureScript

=
mobile web

ClojureScript
+

JS-native bridge
=

hybrid app

Clojure
+

(some kind of dark magic)
=

native app

Not going to cover this one

Possible approaches

Pure Clojure/
ClojureScript

=
mobile web

ClojureScript
+
X
=

hybrid app

Clojure
+

(some kind of dark magic)
=

native app

Lots of choices for “X”:

PhoneGap, Cordova, etc.

New hotness: React Native

Possible approaches

Pure Clojure/
ClojureScript

=
mobile web

ClojureScript
+
X
=

hybrid app

Clojure
+

RoboVM (iOS)/
various (Android)

=
native app

Android’s already Java. On
iOS, compile Java bytecode to

clang somehow?

More on Clojure+Android

http://clojure-android.info/

Things I know about Clojure on Android:
1) It can be done.

http://clojure-android.info/

RoboVM

“Create truly native iOS apps in Java”

Two things make this possible:

• Java bytecode to x86/ARM compiler
• Objective-C -> Java bindings for Cocoa libraries

Cool story, Bro.

Bro: Java bindings to C/Objective-C code
http://docs.robovm.com/advanced-topics/bro.html

http://docs.robovm.com/advanced-topics/bro.html

Gets hairy quickly…

https://github.com/robovm/robovm/blob/master/cocoatouch/src/main/java/org/robovm/apple/foundation/NSArray.java

…

Whole NSArray wrapper is
~400 LOC (and only
covers the basic methods)

https://github.com/robovm/robovm/blob/master/cocoatouch/src/main/java/org/robovm/apple/foundation/NSArray.java

RoboPods should make this easier…
 — just drop a dependency in Gradle/Maven and you’re good to go

So what?

Bottom line: RoboVM lets you treat Android
and iOS as two (different!) JVM platforms.

This is a double-edged sword!

Great power:
• At the end of the day, you have a compiled app.
• Real native access to anything you want.
• 100% (in principle) native feature coverage, pretty

good JVM (and Clojure) feature coverage.

Great responsibility:
• Bindings are ugly and you might have to write some.
• UI code is all platform specific!

Parting thoughts

1. RoboVM is a really interesting way to get totally
native access with a JVM language.

2. It’s more about language portability that app
portability. RoboVM gives you Java access to iOS
libraries, not an abstraction on top of iOS/Android.

3. Dev cycle of edit/compile/test/simulate is pretty
slow and painful. May improve?

4. RoboVM as a product is young, immature. Maybe
growing?

“Hybrid”: web-like portability, native bindings
when you need them

“Hybrid”: web-like portability, native bindings
when you need them

Why React? Why React Native?

Why React? Why React Native?

Honest answer: This is my talk and that’s what I’ve used!

Why React? Why React Native?

• Virtual DOM, performance, Facebook backing, etc.

• Good Clojure uptake (Om/Reagent/Quiescent) [Why?
Immutability maps well to React model!]

• React Native then gives access to native bindings when
needed

• May or may not be a good tradeoff, depending on what
you want native for!

Why hybrid instead of compiled?

• Maybe you just like JavaScript!
• Threads are overrated anyway.

• Use JS, webby language for describing UI
• => UI code is actually portable
• => Flipside: UI code doesn’t nec. “feel native”

• Only need to go native when you need/want to
• => BUT “lowest common denominator” UI abstractions

• Way faster dev cycle: simple autorefresh, etc.

OK, shut up and show me something.

https://github.com/dmotz/natal

https://github.com/dmotz/natal

Final thoughts
The right tool for native development depends on why you want native in the first
place.

Reasons you might want compiled/Clojure

• Lots of complicated native functionality, in lots of places in your code

• Non-UI code dominates, want it to be performant (games, eg)

• Native controls/look-and-feel is a priority

Reasons you might want hybrid/ClojureScript

• UI is the most important/frequently changing code, want portability

• Web-like UI is what you want (maybe also you want a web client!)

• Dev speed/tooling is a priority

• Vendor-dependency makes you nervous

Resources

RoboVM:
http://robovm.com/

Clojure+Android links:
http://clojure-android.info/

React Native:
https://facebook.github.io/react-native/

ClojureScript+React Native bootstrapper:
https://github.com/dmotz/natal

ClojureScript + iOS REPL:
https://github.com/omcljs/ambly

ClojureScript + RN + Reagent example project:
https://github.com/mfikes/reagent-react-native

http://robovm.com/
http://clojure-android.info/
https://facebook.github.io/react-native/
https://github.com/dmotz/natal
https://github.com/omcljs/ambly
https://github.com/mfikes/reagent-react-native

