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localization, compound effects, and mechanistic details) for each 
interaction as available. To provide guidelines for users from dif-
ferent fields, we grouped the resources on the basis of their features 
and provided notes to assist in selecting the most suitable resources 
(Supplementary Table 2).

A comparison of the resources highlighted inconsistencies between 
them at frequencies ranging from 2% to 7% in the direction and sign 
of interactions. This might be due to curation errors (Supplementary 
Figs. 1–3), but it may also represent important bidirectional connec-
tions and feedback loops that regulate signaling and are not yet cap-
tured by a single resource (Supplementary Results 4). We also found 
that while literature-based resources are enriched for disease-related 
and druggable proteins as well as for kinase–substrate interactions 
(Supplementary Fig. 4), they have low overlap with each other (Fig. 
1b, Supplementary Tables 3 and 4), and individually they provide 
limited coverage of the human proteome (maximum of 13%).

Since coverage is essential to capture biological information, and 
our analysis pointed to the highly complementary nature of existing 
resources (Supplementary Figs. 4a–g and 5a,b), we developed a 
high-confidence combined resource called OmniPath. From the 34 
literature-based resources that were analyzed, we included interac-
tions from 27 interaction resources, some causal and some undi-
rected, based on specific criteria (see Supplementary Methods). 
The conversion of reactions from process description resources 
into binary interactions resulted in many indirect relationships, 
for which it was often not possible to assign references unambigu-
ously (Supplementary Methods); hence, we kept these resources 
in separate categories.

OmniPath covers approximately three times more proteins 
(7,984) and four times more interactions (36,557) than the larg-
est causal resource it contains. It covers ~39% of the human 
proteome, 61% of disease–gene associations, >80% of cancer-
related genes and 54% of druggable proteins (as compared 
to 13%, 42%, 55% and 22%, respectively, in the largest casual 
resource; Supplementary Fig. 4, Supplementary Results 2 
and Supplementary Methods). OmniPath encompasses 41,237 
references from 1,132 journals. On average, each interaction is 
supported by 2.88 references. OmniPath integrates additional 
information on the structure and mechanism of the interactions, 
drug targets, functional annotation, tissue-specific expression and 
mutations to increase its applicability (Fig. 1a).

We provide a free, annually updated and ready-to-use web 
resource (http://omnipathdb.org/), as well as a complemen-
tary open-source, feature-rich Python module called pypath 
(Supplementary Software and http://github.com/saezlab/pypath), 
which offers advanced possibilities for pathway analysis with 
unprecedented coverage and detail. pypath automatically updates 
its content, which is dynamically gathered from the resources. 
pypath is also capable of compiling networks from custom sets of 
interaction resources and can integrate additional annotations.

Previous comparisons of consistency, coverage, network topol-
ogy and biological properties (for example, refs. 2–4) cover fewer 
aspects than our analysis, while other integrative efforts5,6 include 
fewer literature-based resources than OmniPath and lack our 
detailed data structure, in particular the integrated information 
about directionality and references (Supplementary Note 2) that 
enables analyses such as those presented here.

Our analysis and guidelines (see Supplementary Note 1) are 
 provided to help researchers find the most appropriate set of 
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OmniPath: guidelines and gateway for 
literature-curated signaling pathway 
resources

To the Editor: Resources that capture information about signaling 
pathways from the literature are essential for the experimental design 
and analysis of many biological studies. Multiple resources are avail-
able that have different focuses and levels of granularity1, making it 
often unclear which should be used, either alone or in combination, 
in a given situation (Supplementary Results 1–3).

We performed a systematic analysis of public resources contain-
ing literature-curated human signaling interactions (Supplementary 
Table 1, Supplementary Results 4 and Supplementary Note 
1) and also generated a large integrated resource, OmniPath  
(http://omnipathdb.org/, Supplementary Results 5).

From the 55 relevant resources that we identified in our analysis, 
we selected 34 (see Supplementary Methods for selection criteria): 
20 that provide causal interactions (12 activity flow and 8 enzyme–
substrate), 8 that deliver undirected interactions from both literature 
curation and high-throughput screens, and 6 that capture biochemi-
cal reactions (process description). Of the causal resources, 16 pro-
vide information on the direction and 9 on the effect sign (stimu-
lation or inhibition) of interactions (Fig. 1a and Supplementary 
Table 2). We focused a great deal of effort on integration in order 
to develop a  uniform representation of the data that includes ref-
erences, directionality, sign and additional details (for example, 
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resources for their research. While we did our best to include all 
relevant resources, any that were missed, as well as future resourc-
es, can be easily added to OmniPath and to the pypath tool.
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Figure 1 | Resources featured in OmniPath and pypath. (a) Overview of OmniPath and pypath. Causal resources (including activity-flow and enzyme–substrate 
resources) can provide direction (*) or sign and direction (+) of interactions. Data types provided by the listed resources can be integrated with pathways 
in different ways (Supplementary Results 1, Supplementary Methods). GO, Gene Ontology; HPA, Human Protein Atlas; HPM, Human Proteome Map; 
PhosphoNetw, PhosphoNetworks; Prot.DB, ProteomicsDB. (b) Overlap of interactions across causal resources. Circle size denotes the number of interactions 
per resource, and line widths show the overlap of interactions between them, as measured by the Simpson index (see equation S3 in Supplementary 
Methods). For clarity, only links with Simpson index >0.05 are shown. MatrixDB and TRIP are not shown because they have no overlaps above this threshold.
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