
GSOC-2106: Vaibhav Choudhary

Exposing the PRU as a SPI,I2C Master
controller

A Project under BeagleBoard.org Foundation for Google Summer of Code-2016
By-Vaibhav Choudhary(Chanakya_vc)

Introduction

This report is an effort to document the various stages of project development and what

I have learned while doing the project. It also attempts to document the improvements

that can be done to the present code base and tries to analyze the present limitations of

the code. The report also the documents my personal experiences with the linux kernel

and tries to present the difficulties that I faced as a beginner in Linux kernel

Development. At the outset, I would like to thank all my mentors, who gave me this

wonderful opportunity. This project not only exposed me to the field of Kernel

Development but also taught me a lot about the processes involved in real world

software development. I hope to continue being associated with BeagleBoard.org and

keep contributing to open source software development.

Experience With Kernel Development And The

Challenges That I Encountered

I had almost no experience with kernel development (or Linux for the matter) before i

got selected for GSOC. it has been a humbling and fascinating journey from there to

being able to write device drivers for SPI and I2C. I have come to appreciate linux better

and also gained a new perspective about Open Source Software development in general.

1

GSOC-2106: Vaibhav Choudhary

Open Source software is just not about writing free software that is available to all, it also

emphasizes that almost anyone, with or without any experience can contribute to the

community and learn in the process of doing so.

I have learnt a lot in these three months. Some things from my mentors ,some from my

fellow students in the program. Some of the major things that I have learnt/gained

experience about are as follows:

1. Git and version control system: Though I had some little idea about how to use

github before the program started, I really did not have much experience with it. I

must really thank all my mentors for introducing me to the various aspects of git

and version control. I would like to thank Wormo(don’t know her real name) for

introducing me to the basic commands of git. I would like to also thank my

mentors Andrew sir,Michael sir and Alex sir who taught me the basic conventions

of git and corrected me whenever I made mistakes.

2. I now have a very clear idea as to how write a SPI and I2C Master driver. I have

learnt about all the important functions and structures that are required in a SPI

Master and I2C Controller Driver. Thanks to my mentors, Matt sir and Hunyue sir, I

have a very clear picture as to how the drivers are paired or matched with the

device and how is their probe function is called. I am also clear on the role of the

platform bus.

3. I have also learnt a lot about PRU and compiling firmware for it. I had to read the

PRU-ICSS guide for finding the local addresses of the shared memory. In the

process, i gained a very clear idea of the the configuration registers, __R30, __R31

registers and also gained an understanding of the architecture of the PRU.

a. I have gained some idea about the working of the pru_rproc and rpmsg. As

I also explained in my proposal, I am completely clear about the working of

the RPMsg especially about how the Vring Data structures are allocated and

the message box in the memory.

b. I am also more clear on the working of the pru_rproc. I knew that pru_rproc

use the API published by the core remoteproc driver to load the firmware

to the PRU’s and also provide the additional resources as requested by the

firmware in the resource table. Over the period of three months, I have

achieved clarity on how this process actually happens.

2

GSOC-2106: Vaibhav Choudhary

i. Pru_rproc checks for PRU binaries in /lib/firmware/am335x-pru0-fw

and then uploads it to the PRU after pru_rproc is insmod. This goes

into the Instruction Ram of the PRU

ii. It also copies the resource table into the Data RAM of the PRU.

4. I also wrote a driver implementing ioctls and learnt how ioctls actually works in the

period just before GSOC. I also wrote a char driver and familiarized myself with all

the struct and functions to write a functional driver that can implement ioctls.

5. I also learnt about sshfs and it proved very helpful when I wanted to transfer cross

compiled binaries. It seems to a be a much better option than scp. This was taught

to me by one of my fellow students, Zubeen Tolani. He has been a very good

friend and has taught me a lot of useful things during the course of GSOC.

6. I also learnt HUGO, a static website generator written in the Go language. I used it

to code my website, www.vaibhavchoudhary.com

7. Apart from things related to the project, I also got a lot to learn a lot about linux

from my mentors. Andrew sir taught me a bit about init systems. I took it further

and learnt the difference between upstart and systemd. Another example would

be that I learnt a lot about the difference between SSDs and HDD’s and the

meaning class of an SD card when I was ordering one for burning the latest kernel

to my BBB. I also learnt a lot about Single Level Cell and Multi Level Cell in case of

SSD’s.

8. Planning and executing a project. This was one of the most important things that I

learnt. I learnt that one should be realistic about one’s project timeline and only

commit to what one could realistically achieve in the given time. This became

apparent when I had a shortage of time (what my mentors had warned during the

proposal submission period) towards the end. Luckily, i had listened to my

mentors and put UART as a reach goal in my proposal.

3

http://www.vaibhavchoudhary.com/

GSOC-2106: Vaibhav Choudhary

There were many challenges that I faced during the course of this project.

1. I do not have a oscilloscope in my house. And the saleae logic analyzer that I

ordered was unable to correctly capture the waveforms that the firmware was

generating. So I had to travel to a lab in my college which had a MSO to check the

output waveforms. My college is an hour’s ride by bus from my home and it

became pretty difficult to ride back and forth especially at night. I think that I

could have avoided this situation had I made previous arrangements in hostels in

my college. I had been of the opinion that Saleae would be sufficient to debug my

code. I think not being to test my code when I was home(during night time when I

was home and when most of the mentors were online) was probably the biggest

challenge. It became very difficult to write code, without getting an active feedback

from mentors on the results of the changes that I was making(as I was not able to

run the code myself and test it).

2. The next big challenge that I encountered was when I had to cross compile the

kernel source for cross-compiling the driver that I had written. It took me nearly a

4

GSOC-2106: Vaibhav Choudhary

week and a half to get the correct kernel source with the correct vermagic string

and revision number.

a. I was using the config file that is there in the BBB gunzip it and place in the

kernel source folder. This was allowing the driver to be compiled but not

allowing it to insmod as the vermagic strings were different.

b. I then downloaded the exact the kernel source as that was there on my

BBB and tried again. Now the kernel wasn’t compile again. Michael sir came

to my rescue and then told me that there were carriage returns in my

config file and that was probably causing the error in compilation. I tried

again after using dos2unix command, the kernel source compiled

successfully. However, the same problem arose again. The compiled driver

did not insmod successfully on the target.

c. After a lot of search, I finally realized that the kernel had to be compiled

with option of an extraversion(for specific revision numbers, in my case it

was ti-25). I again compiled the kernel and this time the driver insmod

perfectly.

3. Another place where I was stuck was when I was testing out the firmware for

multibyte transfer in SPI. I had looped back MISO to MOSI. However, I did not ever

get MOSI equal to MISO. Then my mentors confirmed that although a simple loop

-back should work in theory, it doesn’t actually work perfectly. I actually learnt one

very important lesson here, not discounting anything before properly research. I

was most probably going to delete my code and think of something new instead

of releasing that a loop-back would not be the most appropriate test in my case.

4. Another issue which I felt caused delay in my project was my limited background

with Operating Systems and Computer Architecture. I have not been taught these

subjects so far in my curriculum. And without a solid background in these

subjects, it became very difficult for me to appreciate many things in my

project.(like functions provided by ioread/iowrite). Although now at the end of

GSOC, I feel I have learnt a lot about these subjects, I feel things would have a lot

smoother had I got an understanding about these before GSOC. I also think that

my lack of exposure to SPI and I2C devices and using them also made things

difficult to appreciate and understand .On a theoretical level, I had understood the

objective of the project that it was giving us extra serial interfaces. However,

5

GSOC-2106: Vaibhav Choudhary

actually feeling the need of having extra serial interfaces and the facing the

problems that arose without them, would have probably gone a long way in

making things much clearer.

Basic Working of my code:

In this section, I will briefly explain the working of my code. I will do so using I2C.
However the same basic structure applies for the driver for SPI as well:

1. In the diagram above you can see the I2C core calling the master xfer function
which is a part of the driver that I have written.

2. The master xfer function receives the data from the userland (and in my case)
the xfer_one_message function. This function firsts write whether the master
wants to read or write data and the slave address to a certain memory location in
the shared memory location in the PRUICSS. This is read by the firmware which
is blocked by a while loop until this event takes place.

3. After this the firmware writes to the certain memory location polled by the driver
that it has successfully received the parameters and has bitbanged the address.

6

GSOC-2106: Vaibhav Choudhary

4. After this depending on whether the master wants to write or read data, the driver
either reads the data from another memory location or writes to it so that the
firmware can then bitbang it.

Project Timeline

● During the initial few weeks, I tried to first write a simple firmware that only

consisted of MOSI and clock. My aim was to observe the frequency at which this

firmware worked and also to familiarize myself with the registers and the

architecture of the PRU.

○ Initially I was stuck with understanding how to actually write expressions in

my code that would allow me to toggle bits on the __R30 and__R31 register.

I also spent some time studying the ARM TRM. I also followed PRU Hands

on Lab for examples of firmware for the PRU.

○ The next challenge was to compile the firmware and write a makefile for

the same. I adopted a makefile from the examples given in the PRU Code

Generation tools and modified it to compile the firmware that I had written

for the project.

● After successfully compiling the firmware, I started working on writing a simple

char driver in order to send data from the userland and have the firmware

successfully bitbang it.

○ I studied about ioremap function and understood iowrite8() and ioread8()

functions. I also researched on virtual and real memory.

○ I spent some time researching about the exact memory addresses of the

shared memory local to the PRU-ICSS.

● The next step was to write a driver using the SPI subsystem. I initially wrote the

driver for a single byte transfer per transaction and later added multibyte transfer.

The driver wrote the MOSI data along with parameters into memory locations

which was picked up by the firmware. Also, flags were set up in the memory which

were polled by the firmware and driver to let them know that data transfer had

occurred.

○ Another problem was to figure out a way to call the probe function of the

driver. The ideal way was to make the firmware virtio compliant and let

7

GSOC-2106: Vaibhav Choudhary

virtio subsystem do the job. However, my mentors suggested that due to

the time constraints of GSOC, I should hack the rproc and call the probe

function from there. Another option was to write a simple device tree file

and let it call the probe function. I chose the latter and with the help of my

mentors, wrote a device tree file.

● After completing the SPI , I started coding for I2C. The I2C driver implements most

of the features that I mentioned in my proposal. Since, I had figured out the basics

while coding for SPI, coding for I2C was mostly about getting the logic and the

transfer rate right.

○ 7 bit addressing mode: Since the slave address is a buffer of 16 bits, I had

to write code that only read bits 0-6 and ignored the rest.

○ I2C delay: The minimum time that the clock should hold so that the

changes are propagated and correctly detected by the slave is 4.7

microseconds. I took a base time of 5 microseconds and accordingly added

the delay loop.

SERIAL PERIPHERAL INTERFACE(SPI)

In my proposal, I had outlined the various features that I would be implementing in case

of SPI. The features that I was successful in implementing along with those I was not able

to achieve/need improvement are as follows:

Features:

1. All the four clock phases and polarity.

2. Option of MSB first transfer or LSB first transfer

3. Multibyte transfer in one transaction

4. Option of CS active high or active low

5. Transfer speeds up to 7 Mhz(limited by bitbanging)

Things that need improvement/that I did not do :

8

GSOC-2106: Vaibhav Choudhary

1. I had proposed that I would implement multi slave support by providing more

than one CS pins. This required me to design a dtc file and provide multiple CS

pins via the num cs parameter. I was not able to write such a dtc file(except for the

very basic one that just causes the spi driver to probe and gives it a spidev

registration) and then write the necessary code in the firmware due to time

constraints of GSOC. The future goal is to have the driver read nodes from a dtc

file.

2. I did not use RPMsg in order to transfer messages. I had researched a lot on

RPMsg before the coding period started. As I had explained in my proposal as

well, I think that in RPMsg, the data buffers are not assigned any fixed memory

addresses. Hence the only way to make it work would be to code additional logic

into the firmware that would tell that the first set of values it receives are the

parameters while all subsequent buffers would contain data to be bitbanged. I felt

that the time required and complexity of a such a code would be a lot more than

simply using ioread/iowrite to read/write data and flags in the shared memory in

the PRU-ICSS. Moreover since PRU had direct access to these addresses, it would

only be required to dereference a pointer in the firmware to access the data at

these locations. Hence I went ahead with coding my own buffers and set flag

locations and did not use RPMsg.

3. A future goal would be to shift to the entire data transfer mechanism to DMA.

Currently it is based on ioread/iowrite which pose serious limitations to the

amount of data that can transferred at a time from the driver to the

firmware.This is so as at one time , the maximum data that I can write to the

firmware is 64 bits(with iowrite64()). I had to code additional logic in the driver so

as to parse the input buffer and then write to the firmware. After that my driver

continuously polls and after getting confirmation then parses the input buffer

again to write to the firmware. I believe this is not a very efficient system and takes

a lot of processor resources. Moreover as my mentors have repeatedly told me, it

is best to avoid polling in the kernel. DMA on the other hand with its own clock,

would probably be more efficient and would not consume so many processor

resources. With DMA, I would probably pass the entire buffer to the firmware and

9

GSOC-2106: Vaibhav Choudhary

let it parse the buffer and bitbang it to MOSI. I did not get the time to research on

DMA otherwise I would have implemented DMA in the first place itself.

4. A future goal would be to optimize the algorithm and try to reach speeds of up to

10 Mhz. I believe that this can be done by not checking for MISO in between clock

transitions and write separate function for them. Anything in between the clock

transition will slow the clock down. Obviously, the clock speed is constrained by

the execution speed of the PRU. Also another addition to the project could be to

have configurable clock speeds. This could be done by adding appropriate delay in

clock transitions depending on parameters.

5. Currently the driver and firmware poll flags set up in the shared memory in the

PRU-ICSS to know when they should read the data buffer i.e when data transfer is

complete. A future goal would be to add interrupts so that continuous polling in

not required.

6. The multibyte transfer is still subject to some tests and improvements that I have

to do to the firmware. I have to still have to do some work on the chip selects in

order to make the multibyte transfer fully functional.

INTER INTEGRATED CIRCUIT (I2C)

I have accomplished almost all the features that I had proposed for I2C . They are listed

below along with future goals to this project:

Features:

1. Implemented master mode. An external NPN transistor would have to employed

to pull down SDA and SCL.

2. Implemented Clock stretching so as to allow the slaves to hold down SCL in case

they are unable to sample at the speed of the master.

3. Implemented 7 bit addressing mode.

4. Multiple Bytes can be transferred. The firmware implements repeated start

condition.

10

GSOC-2106: Vaibhav Choudhary

Things that need improvement/that have not been done:

1. I would try and implement 10 bit addressing mode in the future.

2. As with SPI, a future goal would be to shift the entire transfer mechanism to DMA.

3. A future goal would be to have multi-master support.

4. The code for I2C has not been tested on a slave device so far.

Apart from these , I had also mentioned UART as a reach goal in my proposal. I did not

get the time to focus on UART during the three months for GSOC. i will definitely try to

achieve it as a future goal post GSOC.

Conclusion

I would like to once again thank all my mentors for giving me this opportunity. It’s been a

pleasure learning from you all and being associated with the BeagleBoard Community. I

would also like to thank all my fellow students for helping me out. I think I am very lucky

to have found friends and seniors like you(I think I am the youngest amongst all the

students) to guide me.

This aim of this project was to provide extra serial interfaces to the BeagleBone without

the need to buy extra hardware controllers. This project would make it possible to

connect a variety of sensors/shift registers and EEPROM to the BeagleBone. I believe it

meets the most of the original aim and implements most of the features that I had

proposed. I hope that the project will be helpful to the community at large and cut down

on the cost of interfacing various sensors with BeagleBone Black. I hope to continue to

work on my project after GSOC ends and improve upon the code that I have written.

11

GSOC-2106: Vaibhav Choudhary

12

