
AudioStellar, an open source corpus-based musical instrument for latent sound
structure discovery and sonic experimentation

Leandro Garber
UNTREF

lgarber@untref.edu.ar

Tomás Ciccola
UNTREF

tciccola@untref.edu.ar

Juan Cruz Amusategui
UNTREF

jcamusategui@untref.edu.ar

ABSTRACT

Generating a visual representation of short audio clips’
similarities is not only useful for organizing and exploring
an audio sample library but it also opens up a new range
of possibilities for sonic experimentation. We present Au-
dioStellar, an open source software that enables creative
practitioners to create AI generated 2D visualizations of
their own audio corpus without programming or machine
learning knowledge. Sound artists can play their input cor-
pus by interacting with learned latent space using a user
interface that provides built-in modes to experiment with.
AudioStellar can interact with other software by MIDI sync-
ing, sequencing, adding audio effects, and more. Creat-
ing novel forms of interaction is encouraged through OSC
communication or writing custom C++ code using pro-
vided framework. AudioStellar has also proved useful as
an educational strategy in courses and workshops for teach-
ing concepts of programming, digital audio, machine learn-
ing and networks to young students in the digital art field.

1. INTRODUCTION

Low dimensional representations of a high-dimensional cor-
pus of data allows us to discover latent relations (i.e. pat-
terns) that are difficult or impossible to grasp with other
methods [1, 2]. Using machine learning (ML) for accom-
plishing this task is a common practice nowadays and it is
done with all kinds of high dimensional data.

Short audio clips can also be represented this way result-
ing in a 2D point map where similar audio clips are clus-
tered together (Figure 1).

We found that this representation is not only useful for
organizing and exploring an audio sample library but when
combining it with an user interface can also be used as a
musical instrument. The concept of a 2D space (i.e latent
space) where sounds lie is an interesting abstraction that
redefines the artist relation with the sonic material and a
fertile terrain for research. An intuition on this topic can
be found in section 2.1.

We are studying the possibilities for playing and compos-
ing music that arises from thinking in this direction hence
we created a software that is geared around this idea. Au-
dioStellar is free and open source, available for Linux, Mac

Copyright: c©2020 Leandro Garber et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

and Windows and it allows users without ML or program-
ming knowledge to experiment with these concepts. We
provide three initial modes that lets the user interact with
latent space in different ways. In section 2 we describe the
software and expand on this idea.

While ML is becoming part of everyday life, fundamen-
tal concepts and concerns are still out of reach for the gen-
eral public. AudioStellar aims to introduce some of these
topics while proposing new ideas related to sonic experi-
mentation for creative practitioners. We are including the
use of this software as an educational strategy in courses,
talks and workshops for teaching initial concepts of pro-
gramming, digital audio processing, machine learning and
computer networks to young students and enthusiasts in
the digital art field. AudioStellar can also be used in en-
gaging experiences in the context of jams and hackatons.

Accordingly, AudioStellar is free, open source and com-
pletely hackable, meaning that studying, modifying, dis-
tributing and building upon is not only encouraged but an
essential part of this project.

This paper is organized as follows: Section 2 describes
the software capabilities, Section 3 offers a short insight
on our experiences with different sound corpus, Section
4 is about our experiences using the software in different
educational contexts and finally in Section 5 we discuss
future work.

1.1 Related software

Various software has been developed around audio simi-
larity and corpus-based sound creation. Early examples
include soundspotting [3] systems like Caterpillar (2000),
Musaicing (2001) and SoundSpotter (2004).

Unlike AudioStellar, these programs were mainly focused
on experimenting different techniques for concatenative syn-
thesis.

CataRT (2006) introduced an interactive 2D visualiza-
tion which allowed to browse and play audio impulses us-
ing two user-selectable descriptors[4]. In our software and
in the same way as FluidCorpusMap [5], the user doesn’t
have to select which two descriptors work best for the se-
lected dataset since X and Y axis are data-driven and learned
by the dimensionality reduction algorithm (more on this in
2.5).

Recent software like Infinite Drum Machine [6], klustr
[7] and XO [8] make use of dimensionality reduction tech-
niques like t-SNE [1] to render a 2D map where similar
sounding audio clips are placed near each other. The first
one is a web experiment, the second one is for exploration
only and doesn’t feature novel ways of interacting with the

mailto:lgarber@untref.edu.ar
mailto:tciccola@untref.edu.ar
mailto:jcamusategui@untref.edu.ar
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Figure 1. Screenshot. Similar audios are clustered together in latent space. Some human labeled groups found in default dataset.

Figure 2. Screenshot. Using different modes to interact with latent space.



visualization and the third one is a commercial software
not available for Linux centered around rythmic patterns
creation.

Wekinator [9] is about supervised learning and live per-
formance. Users without programming or ML skills can
train models that output a signal for controlling any OSC
compatible system (e.g. synths, DAWs or custom appli-
cations). While Wekinator is being used for sonic exper-
imentation [10, 11], it is also an interesting tool for ML
education [12]. This twofold aim inspires us to develop
our unsupervised, sound specific approach.

2. SOFTWARE DESCRIPTION

We have put together an unsupervised learning pipeline to
generate an interactive 2D point map that allows to browse
and play audio samples in novel ways using various inno-
vative sonic exploration modes.

The software requires no programming or ML skills and
can process a user-selectable folder containing audio files
to generate a sound map placing each audio file as a point
in a 2D space. Nearby points correspond to spectrally sim-
ilar sounds while far away points are dissimilar ones. This
enables the creative practitioner to explore a sound library
or field recording aided by AI that reveals a latent structure
present in the input sound files.

Current version is 0.10.0.
It is free, open source, cross-platform and can be down-

loaded at http://audiostellar.xyz
Source code can be found at http://gitlab.com/
ayrsd/audiostellar.

2.1 Latent space

The space learned by the ML pipeline (i.e where 2D points
representing the audio clips lie) is called latent space. It is a
representation of the input audio clips that are encoded for
achieving a semantically (e.g dark, resonant, noisy) mean-
ingful space. Computer suggested semantics are data-driven
and will adapt for each set of audios. X and Y axis are
usually hard to interpret but audios with similar timbre,
pitch, amplitude, envelope or a mix of these will cluster
together forming groups that the user can interpret. As can
be seen, complex sound characteristics that are relevant to
each dataset are learned, unveiling a structure of relations
between the sounds that was already present in the data
itself but hard to grasp.

2.2 Sampling as a journey

Visual artists using other ML systems (e.g. GAN architec-
tures [13]) are discussing heuristics on how to traverse la-
tent space in a meaningful, creative way [14, 15]. Travers-
ing latent space in this context means generating sequences
of images from an input trajectory in an infinite often high-
dimensional space.

Although in our context only points generated from the
input corpus are playable (see 5) similar considerations
apply to AudioStellar as multiple trajectories can also be
defined. Playing samples becomes a journey through la-
tent space as the user experiments with included modes for
traversing it. Custom heuristics are possible through OSC
or coding a custom mode in C++ (see 2.4.2).

2.3 Modes

AudioStellar features three modes, an exploration mode
for analysing the generated map and listening to the learned
relations, a particle mode that lets the user cast config-
urable moving particles that play the samples as they move
in 2D space resembling granular synthesis, and finally a
sequence mode that lets the user draw constellations made
from the points on the map and play them in a sequenced
fashion using distance as rhythm. Figure 2 is a screenshot
of these modes operating all at once.

2.3.1 Explorer mode

This is the default mode. Dragging the mouse through
the screen will play sounds and explore the sound corpus.
In this mode, sounds can be mapped to MIDI notes to be
played by a MIDI controller or software. It also supports
touchscreens that allows an expressive way to interact with
the software using the fingers.

2.3.2 Particle mode

This mode allows to cast particles that traverse space and
play nearby sounds (when the distance between a particle
and a sound is below a threshold it will play). Its basic
parameters are: the lifetime (how much time until particles
disappear) and an individual volume (independent from the
master volume).

This mode offers different models to choose from, which
change how particles move in space:

• Swarm model: particles display random walk-style
erratic behaviour. Additional parameters include the
magnitude of the resulting jiggle and its velocity (di-
rection and speed of movement).

• Explosion model: particles are cast in an explosion-
like radial expansion. Additional parameters include
the density (number of particles that are cast with
each emission) and speed in which particles radiate
from the center point.

Using the MIDI protocol, one can assign a region of the
space to a MIDI note and thus, cast particles using a MIDI
controller. This, paired up with the possibility of assigning
mode parameters to MIDI Control Change (CC) messages,
opens up different possibilities for live performing.

This mode is specially suitable to create sound textures
and clouds, specially when setting particle groups to move
slowly through space, thus generating slowly evolving sounds
due to timbrical similarities in nearby points.

2.3.3 Sequence mode

This mode allows to create space aware rhythmic sequences.
Using the mouse cursor you can select sounds and form a
constellation. This will be interpreted by the software as a
rhythmic sequence where the timing is defined as a quanti-
zation of the distance between the sounds forming it. You
can have multiple sequences running in parallel. Each se-
quence have multiple parameters to control: Volume, Bars
(defining overall sequence length relative to a global clock
in Beats Per Minute), offset (offsets the sequence forward
by a sixteenth note), probability (of the next sound being
played or not). This set of parameters can all be controlled
via MIDI.

http://audiostellar.xyz
http://gitlab.com/ayrsd/audiostellar
http://gitlab.com/ayrsd/audiostellar


2.4 Interaction with hardware and software

2.4.1 MIDI

Users can plug their hardware controllers or connect with
other software using the MIDI protocol. Tempo syncing is
also available via MIDI clock.

Sounds can be mapped to a MIDI note and faders to CC
messages using built-in MIDI Learn feature. Particle Mode
allows to map MIDI notes to regions in space where parti-
cles will be emitted (see Section 2.3.2).

2.4.2 OSC

Mobile devices can be connected as surface controllers us-
ing popular apps like TouchOSC. Nearly all faders can be
easily controlled this way. We provide a TouchOSC tem-
plate to get started.

Another interesting range of possibilities comes from tak-
ing advantage of other existing programming languages to
control the software through its OSC API. This allows any
user to develop new and interesting ways of traversing the
latent space and controlling existing parameters. We pro-
vide PureData, Max, Python and Processing examples to
get started but any language that has an implementation of
OSC can be used. We have seen artists using this feature
for creating their own physical musical interface, sound
object but also installations, generative works and perfor-
mances.

Another good example that has an early support in the
last version of the software is the live coding environment
TidalCycles 1 . Since the language itself and its sound en-
gine (a custom made library programmed in SuperCollider)
are totally decoupled, it was possible to replace it with Au-
dioStellar. This early implementation takes advantage of
the possibility of naming clusters and then, from TidalCy-
cles, treat them as sample folders. The idea is to be able
to control other parameters of sounds in the future (gain,
speed of playback, pan, effects, etc).

2.4.3 Routing audio output

Linux users can use JACK audio connection kit to connect
its audio output to any DAW or effect rack to record and
add effects. Similarly, Mac users can use SoundFlower and
for Windows, Voicemeeter . It is possible to route individ-
ual sounds or clusters to specific outputs so as to assign
different effects to each.

2.4.4 Ableton Link

We are considering adding Ableton Link support for sync-
ing with other popular software. In the meantime, it is pos-
sible to MIDI sync AudioStellar with other software that
already support Ableton Link.

2.5 Machine learning pipeline

The user selects a folder and the program will search for
MP3 or WAV files in that folder and any subfolder. The
audio data from each file is truncated to a user selectable
length (or zero-padded if it is shorter). For stereo files
the right channel is discarded. Feature extraction stage
is executed for each audio file and the resulting matrix is
vectorized, converted to a long vector. User can choose

1 https://tidalcycles.org/

any combination between Short-term Fourier Transforma-
tion, Mel Frequency Cepstral Coecients, spectral centroid,
chromagram and Root Mean Squared amplitude. Vectors
are stacked together obtaining a matrix where rows repre-
sents audio files. The first dimensionality reduction stage is
performed using principal component analysis (PCA). The
program keeps as many components as needed for explain-
ing 98% of the variance. The software then apply a second
dimensionality reduction stage for obtaining just 2 vari-
ables for each audio file. Options are t-SNE[1], UMAP[2]
or PCA. The result is then saved to a JSON file that will
also contain user’s session information.

Clustering is performed in 2-dimensional space and it is
used for coloring the points. We are using DBScan [16]
algorithm and it is possible to modify its parameters from
the main application.

Figure 3. Machine learning pipeline.

Current pipeline runs well on any modern laptop and it
doesn’t require GPU. Refer to Figure 3 for a descriptive
diagram.

2.6 Help

The software features a basic tutorial to get users started
quickly and all buttons and faders have a corresponding
help tooltip. Video tutorials will be available on YouTube.

We started a community on Facebook 2 to share experi-
ences about AudioStellar, ask questions, keep in touch for
new releases and discuss new features. Also, a mailing
list 3 is available.

2.7 Programming specifications

We have chosen to build our application using C++ frame-
work openFrameworks 4 to use a tool that is already famil-
iar in the digital arts field. We are also using following ad-
dons: ofxAudioFile, ofxConvexHull, ofxImGui, ofxJSON,
ofxMidi, ofxOsc, ofxPDSP, ofxSimpleTimer and ofxTweener.

The ML pipeline is written in Python using libraries sklearn
[17], scipy [18] and librosa [19] among others. Everything
is packed together using pyinstaller [20].

3. CORPUS BASED SONIC EXPERIMENTATION

The sonic result that a user can hear from the software will
be in part defined by the heuristics used to traverse latent
space but it is evident that the sound corpus being used will
be the main factor.

The first approximation to test the software was using
short percussive sounds from a drum machine sample pack.
This is the default dataset that is shipped with AudioStellar
and it gives a clear understanding of how the ML pipeline
is performing. This kind of corpus is great for rhythmic

2 https://www.facebook.com/groups/audiostellar/
3 audiostellar@googlegroups.com
4 http://openframeworks.cc/

https://tidalcycles.org/
https://www.facebook.com/groups/audiostellar/
http://openframeworks.cc/


experimentation assisted by the computer but it puts out
much of AudioStellar’s possibilities.

As our understanding grew, we started experimenting with
other types of corpus. Choosing a long recording and cut-
ting it by a fixed length (or on its onsets) and then using
the resulting bits as a new corpus is one of our favorites.
Constellations of similar sounds unveil and it is possible to
analyze any piece timbre and learn from it. Of course using
this material for a remix is also great. For example chop-
ping a singing track into short samples will result in a map
that separates vowels, consonants, breathing, empty spaces
and micro noise. One can then use sequence mode for a ry-
thmic base or particle mode for getting a sonic cloud.

Other experiments include using a corpus of different acous-
tic instruments playing a scale and create musical phrases
or pitched clouds, etc.

Much of this kind of experimentation is yet to be done
and this is definitely part of our future research.

4. EDUCATION

Last year we included AudioStellar in courses, workshops
and talks. One of our motivations for including AudioStel-
lar in these is to introduce hard science topics and technical
skills in a creative, ludic, hands-on manner.

We would like to encourage people from artistic fields to
appropriate this new technology from a critical perspective
for new ideas to emerge. Likewise, we are interested in
people from hard sciences fields to use the tools they are
currently using from a new perspective.

In this sense, our AI & Art course was a perfect place for
students from both types of disciplines to meet and work
together.

4.0.1 AI & Art course

It was an 8-days weekly crash course 5 that we gave twice
last year where students learn the fundamentals of ML and
we offer tools and ideas to apply this concepts to art.

Assistants were from very differents fields: electronic
arts undergraduates, contemporary artists, electroacustic mu-
sic composers but also physics and computer science un-
dergraduates, graduates and professors.

In the third day we used AudioStellar to introduce top-
ics of unsupervised learning (dimensionality reduction and
clustering but also bias and fairness), audio features and
signal processing (STFT, spectral centroid, visualization),
jupyter notebook and python libraries numpy, librosa, mat-
plotlib and sklearn.

At the end of the course students presented work-in-progress
pieces at the WIP festival 6 we hosted with other teachers.

4.0.2 Workshop at DuraznoConf

We gave a 4-hours workshop at DuraznoConf 7 in Uruguay
where we introduced some of the concepts of the AI &
Art course but in a very reduced manner. We recorded
the assistants in a series of tasks involving saying their
name, numbers, clapping and such and then we analyze
that corpus using the software. Discussions around very

5 https://i3a.gitlab.io/curso/
6 http://ccmatienzo.com.ar/wp/events/wip-2/
7 http://https://duraznoconf.uy

basic characteristics of audio arised like envelope, timbre
and pitch that were easily exemplify using the software.

At the end of the workshop we made a (quite noisy) note-
book jam.

4.0.3 Talks

We gave a talk at Museo de Arte Latinoamericano de Buenos
Aires for a general public. We provided intuitions on ma-
chine learning topics centered around the concept of mod-
els, latent space, bias and fairness. Assistants downloaded
the software and could grasp some these ideas in a hands-
on manner.

We also gave several talks at Universidad de Tres de Febrero
for electronic arts undergraduates to encourage the use of
the software and introduce some basic unsupervised learn-
ing concepts.

5. FUTURE WORK

We consider AudioStellar is still in an early development
stage although completely usable and stable. We encour-
age artists and programmers to try it out and collaborate by
giving feedback, writing code and uploading tutorials and
examples.

We have started a series of video tutorials that will be
available in YouTube and will first cover the basics for
using the software but will also feature related topics for
hacking it.

We are moving forward adding flexibility and usability by
introducing the concept of units. Units will replace modes
and will be similar to tracks in a DAW: every unit will have
its own volume, effects, inputs and outputs and there will
be a type of unit for each mode, for example the user will
be able to have several particle swarms with different ef-
fects.

We are studying generative ML algorithms [21, 22] with
the goal of generating samples in the empty spaces of the
latent space.

We found that for our current pipeline audio clips lengths
are very relevant. The result tends to cluster sounds to-
gether giving too much importance to the length, even when
they are timbrically different. We are studying ways of en-
coding audio features to a fixed length vector that were
successful in speech technology [23] in order to remove
length from the criteria.

We would like to incorporate an easy-to-use tool for chop-
ping large audios into smaller ones by a fixed length or by
its onsets.

Acknowledgments

We would like to thank interns Sofia Efrón and Sabrina
Garcia, whom have recently joined our research group, for
their collaboration. Also, the whole MUNTREF Arte y
Ciencia 8 core team for helping us disseminating our activ-
ities. Miguela Garcı́a Pannelli for her support and graphic
design. Last but not least, Mariano Sardón for making our
research group a reality.

8 http://arteyciencia.untref.edu.ar/

https://i3a.gitlab.io/curso/
http://ccmatienzo.com.ar/wp/events/wip-2/
http://https://duraznoconf.uy
http://arteyciencia.untref.edu.ar/


6. REFERENCES

[1] L. v. d. Maaten and G. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9,
no. Nov, pp. 2579–2605, 2008.

[2] L. McInnes, J. Healy, N. Saul, and L. Gross-
berger, “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction,” The Jour-
nal of Open Source Software, vol. 3, no. 29, p.
861, 2018, arXiv: 1802.03426. [Online]. Available:
http://arxiv.org/abs/1802.03426

[3] M. Casey, “Soundspotting: A New Kind of Process?”
in The Oxford Handbook of Computer Music, Apr.
2011.

[4] D. Schwarz, G. Beller, B. Verbrugghe, and S. Brit-
ton, “Real-Time Corpus-Based Concatenative Synthe-
sis with CataRT,” 9th International Conference on Dig-
ital Audio Effects (DAFx), pp. pp.279–282, 2006.

[5] G. Roma, O. Green, and P. A. Tremblay, “Adaptive
Mapping of Sound Collections for Data-driven Musi-
cal Interfaces,” in NIME’19, 2019.

[6] M. Tan and K. McDonald, “The Infinite Drum Machine
| Experiments with Google.” [Online]. Available:
https://experiments.withgoogle.com/drum-machine

[7] L. H. Hantrakul, “lamtharnhantrakul/klustr,” Aug.
2019, original-date: 2017-12-07T03:11:55Z. [Online].
Available: https://github.com/lamtharnhantrakul/klustr

[8] “XO - XLN Audio.” [Online]. Available: https:
//www.xlnaudio.com/products/xo

[9] R. Fiebrink, D. Trueman, and P. Cook, “A Meta-
Instrument for Interactive, On-the-Fly Machine Learn-
ing,” in NIME09, 2009.

[10] M. Schedel, P. Perry, and R. Fiebrink, “Wekinating
000000Swan : Using Machine Learning to Create and
Control Complex Artistic Systems,” 2011.

[11] M. Schedel and R. Fiebrink, “A Demonstration of Bow
Articulation Recognition with Wekinator and K-Bow,”
2011.

[12] R. Fiebrink, “Machine Learning Education for Artists,
Musicians, and Other Creative Practitioners,” ACM
Transactions on Computing Education, 2019.

[13] T. Karras, S. Laine, and T. Aila, “A Style-Based
Generator Architecture for Generative Adversarial
Networks,” arXiv:1812.04948 [cs, stat], Mar. 2019,
arXiv: 1812.04948. [Online]. Available: http://arxiv.
org/abs/1812.04948

[14] M. Grierson, M. Akten, and R. Fiebrink, “Deep Medi-
tations: Controlled navigation of latent space,” in 32nd
Conference on Neural Information Processing Systems
(NeurIPS 2018), Montréal, Canada., 2018.

[15] J. Elwes, “Latent Space.” [Online]. Available: https:
//www.jakeelwes.com/project-latentSpace.html

[16] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek,
“Density-based clustering,” WIREs Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 231–240,
2011. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/widm.30

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and Duches-
nay, “Scikit-learn: Machine Learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, no. Oct, pp.
2825–2830, 2011.

[18] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der
Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey, Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . .
Contributors, “SciPy 1.0–Fundamental Algorithms for
Scientific Computing in Python,” arXiv:1907.10121
[physics], Jul. 2019, arXiv: 1907.10121. [Online].
Available: http://arxiv.org/abs/1907.10121

[19] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis,
M. McVicar, E. Battenberg, and O. Nieto, “librosa:
Audio and Music Signal Analysis in Python,” in 13th
Python in science conference, 2015.

[20] “PyInstaller.” [Online]. Available: https://www.
pyinstaller.org/

[21] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Don-
ahue, and A. Roberts, “GANSynth: Adversarial Neural
Audio Synthesis,” in ICLR 2019, 2019, p. 17.

[22] A. Marafioti, N. Holighaus, N. Perraudin, and P. Maj-
dak, “Adversarial Generation of Time-Frequency Fea-
tures with application in audio synthesis,” in 36th Inter-
national Conference on Machine Learning, Feb. 2019.

[23] Y.-A. Chung, C.-C. Wu, C.-H. Shen, H.-Y. Lee, and
L.-S. Lee, “Audio Word2Vec: Unsupervised Learning
of Audio Segment Representations using Sequence-to-
sequence Autoencoder,” Sep. 2016.

http://arxiv.org/abs/1802.03426
https://experiments.withgoogle.com/drum-machine
https://github.com/lamtharnhantrakul/klustr
https://www.xlnaudio.com/products/xo
https://www.xlnaudio.com/products/xo
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://www.jakeelwes.com/project-latentSpace.html
https://www.jakeelwes.com/project-latentSpace.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
http://arxiv.org/abs/1907.10121
https://www.pyinstaller.org/
https://www.pyinstaller.org/

	 1. Introduction
	1.1 Related software

	 2. Software description
	2.1 Latent space
	2.2 Sampling as a journey
	2.3 Modes
	2.3.1 Explorer mode
	2.3.2 Particle mode
	2.3.3 Sequence mode

	2.4 Interaction with hardware and software
	2.4.1 MIDI
	2.4.2 OSC
	2.4.3 Routing audio output
	2.4.4 Ableton Link

	2.5 Machine learning pipeline
	2.6 Help
	2.7 Programming specifications

	 3. Corpus based sonic experimentation
	 4. Education
	4.0.1 AI & Art course
	4.0.2 Workshop at DuraznoConf
	4.0.3 Talks


	 5. Future work
	 6. References

