
The first part is mostly for ATS programmers that maybe come from a more
C-like background and the second part is more geared for newbie converts from
Haskell, like myself.

1 Monads and comonads in general

The role of monads in programming can be introduced in many ways, e.g., as a
way to simulate mutable state and/or side effects in a pure language with im-
mutable data, such as Haskell. While these perspectives do have merit, I instead
want to push the perspective that we use monads because we are interested in
Kleisli categories.

Consider something like

typedef M(a: type) = ...

and a function type a -> M b . The trick to understanding Kleisli categories
is to (in one’s mind) parse this expression as a (-> M) b, that is to say, to
think of M as annotating the arrow. (ATS has several arrow annotations, like
-<cloref1> or -<wrt>; perhaps we should write -<M>.) What this means more
concretely is that a term of type a -> Option(b), for example, is not to be
interpreted as an ordinary function from a to Option(b), but as a particular
flavor of function to b. If we insist on the “M-flavored” functions to behave like
ordinary functions (in particular, they should be possible to compose and to
compose associatively), then, clearly, M must carry some extra structure: that
of a monad. One definition is the following: there should be functions

fn bind{a, b: type}(x: M(a), f: a -> M(b)): M(b)

and

fn return{a: type}(x: a): M(a)

satisfying the three monad laws:

bind(return(x), f) = f(x)

bind(mx, return) = mx

bind(mx, lam(x) => bind(f(x), g)) = bind(bind(mx, f), g)

Then we can compose functions f: a -> M(b) and g: b -> M(c) to a func-
tion h: a -> M(c) by the formula h(x) = bind(f(x), g). Ok, so why would
one be interested in monads, or more to the point, why would one want to con-
sider “M-flavored” functions? The Option-monad offers an accessible example.
Taking the head of a list is sensibly interpreted as a function that possibly
returns “none”. Another example is that monads can be used to translate im-
pure functions into pure functions. Consider the function (in slight pseudocode)
which uses a single fixed memory cell l referencing an integer, given by

f(x) = let val y = !l in l := x; y end
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It depends on a “state” variable and has the side-effect that it updates the
state. A more transparent formulation would be to type the function as a
function of type int -> (int -> (int, int)), that maps a value x to the
“stateful computation” that takes an initial state s0 to a pair consisting of a
new state and value (y, s1), where s1 = x. This is the so-called “state passing
translation” and it is based on a monad. The state monad (with integers as state
values) has the following presentation:

typedef State(a: type) = int -> (a, int)

Hence, the (state passing translation of the) function f is a function

f: int -> State(int)

thus; a function of “State-flavour” from integers to integers.
Another example of a monad is the writer monad. It depends on a choice of

monoid type, i.e., something with an append-like function. If we choose string

as our monoid, then:

typedef Writer(a: type) = (a, string)

The bind operation concatenates strings. We can now define functions such as
(again pseudo-code)

fn add_two(x: int): Writer(int) =

(x+2, append("I added 2 to", to_string(x)))

This is a “Writer-function”. Kleisli composition will record a log of what the
functions “write”. There are numerous other, sometimes surprising examples,
of how monadic flavors of function occur naturally in functional programming.
Wether they really do make coding clearer or not can be argued. Before ending
this section, lets turn briefly to comonads. A comonad W is again a typecon-
structor, but now it is asked to flavor functions by putting it on the domain
rather than the codomain: W(a) -> b. For it to be possible to compose such
functions in a sensible way (the buzz word is “category theoretical way”) one
again needs two functions:

extend: (W(a) -> b, W(a)) -> W(b)

extract: W(a) -> a

Essentially, one just reverses the directions of function arrows in the opera-
tions and laws governing monads, e.g., extract is dual to return and so on.
Whereas monads give flavors of function that in some way enlarge the possible
function values (encoding things such as optional “none”-values, updating state
or writing a log), comonads enlarge the notion of input dependency. Briefly,
one could say that monads are for effectful functions and comonads are for
context-dependent functions.
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2 (Co)monads in ATS?

I do not believe there is any need for more monads in ATS. It is a language that
admits arbitrary effects and mutable data and as such it has no real reliance
on monadic solutions, the way a language like Haskell does. But note that the
expressive type system of ATS allows some monads to be better implemented
(both semantically better and with better optimization) than in Haskell, Scala
and most other functional languages. For example, state is probably in many
cases best regarded as irreversible, so that the state monad

State(a) = s -> (a, s)

would be modelled on a linear type s, with state actions lam(z) => (f(z),

g(z)) where g is a linear function.
However, it seems to me that comonads could potentially find better use in

ATS than in most other functional languages. Programming with views and
viewtypes can incur some expenditure, yet most of it is book-keeping – and
possibly book-keeping that can be automated by packaging it in comonadic
terms. Recall that comonads are for enlarging what counts as inputs: proof-
variables seem like just such a thing. In fact, every view v defines a comonad,
which is a sort of peculiar version of what one other languages is called the
writer comonad. Consider a type construction of the form W(a) = (v| a) for a
fixed view v, with extract operation given by projection onto a. (We want to
allow a to be a viewtype, so that, really, (v| a) = (v, w| b) where a = (w|

b) and b is nonlinear.) The extend function is given by the trivial formula:

extend(f, (pf| x)) = (pf| f(pf| x))

The caveat here, which seems philosophically wrong, is that the function call
f(pf| x) cannot destroy the view-term pf, or rather, that it must be dupli-
cated/cloned by extend. Note that the regular version of the writer comonad,
often called the Env-comonad is to some extent already implicitly incorporated
in ATS: a function Env(a) = (env, a) -> b is a function depending on an
implicitly passed “environment” type.

Let me give another basic example. (I am a total beginner at ATS and
haven’t come up with something fancier yet.)

vtypedef P(a: vt0ype) = [l: agz](a@l, mfree_gc_v(l)| ptr(l))

fn extract{a: vt0p}(xi: P(a)): a = let

val (pfat, pfgc| p) = xi

val x = !p

in ptr_free(pfgc, pfat| p); x

end

fn extend{a, b: vt0p}(f: P(a) -> b, xi: P(a)): P(b) = let

val (pfat, pfgc| p) = ptr_alloc<b>()

val y = f(xi)
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in $effmask_wrt(ptr_set<b>(pfat| p, y)); (pfat, pfgc| p)

end

These definitions constitute a comonad. The type P(a) is a viewtype, meaning
it is linear, and it parametrizes “safe pointers”. The syntax for its definition
can be read as saying that a term of this type is something “for which there
exists a nonzero memory address l (the syntax [l: agz] means existential
quantification over the dependent type agz = [l: addr | l > null]) such
that we have a triple (pfat, pfgc| p), where pfat is a (linear) proof variable
witnessing that the address points to something of type a (the syntax a@l),
pfgc is a witness that the memory can be deallocated, and p is a pointer to
the address. The function extract extracts the term of a pointed to (and frees
the pointer), while the function extend lifts a value to a pointer equipped with
corresponding proof-terms. Some remarks:

The function extract is a prime example of how I see comonadic functions
W(a) -> b entering in a uniquely ATS way. Instead of “just” the function
that maps a pointer to the value pointed to, extract requires extra input en-
capsulated in proof-terms. Indeed, proof-terms are erased after compilation,
solidifying the justification for regarding them as “flavoring” what is meant by
function rather than as truly changing the type of input.

The formula

W_map(f)(wx) = extend(lam(wy) => f(extract(wy)), wx)

shows that every comonad W is a functor. By using the induced functoriality
of P one lift operations on base types to pointers, thereby reducing the need
to unpack and repackage the pointers and proof-terms. Admittedly, the ATS
compiler can accomplish many implicit such conversions on its own.

The type P can also be made into a monad. However, this seems less natural
to me, because, as explained earlier, proof-terms extend what we consider as
inputs to functions (indeed, some functions require them!); thus the Kleisli
arrows should be comonadic.
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