

Introduction to
JavaScript
DroidScript - Language

A basic introduction to the JavaScript language with the most useful and commonly used parts

of the JavaScript language. This manual is a resume offline of the web site

http://droidscript.org/javascript/index.html

9/18/2022

DroidScript - Languaje Page 1

INTRODUCTION TO THE JAVASCRIPT
Transcribed by Gustavo Puelma – gpuelma@gmail.com

DroidScript - Languaje Page 2

INTRODUCTION TO THE JAVASCRIPT

PREFACE

This book is a basic introduction to the JavaScript language with the most useful and commonly

used parts of the JavaScript language. This manual is a resume offline of the web site

http://droidscript.org/javascript/index.html

JavaScript is now one of the most popular and useful computer languages on the planet. It can be

used to create web pages, web servers, mobile Apps and even inside embedded micro-controllers!

Statements

JavaScript 'Apps' are computer programs written as lines of text. Each line of text is made up of one

or more statements, which are separated by a ';' (semi-colon) character like this:-

 statement1;

 statement2;

 statement3;

These statements contain instructions for the computer to perform (execute) and the ';' character at

the end tells the computer where each statement ends and the next one starts.

We usually place statements on separate lines as this can help when looking for bugs (problems).

Here's a simple JavaScript program made using two statements. It displays the word "Hello" in a

popup box:

 var s = "Hello";

 alert(s);

Comments

You should also add comments to your programs, which are ignored by the computer but help you

and others understand what the program is supposed to be doing. To do this you use the '//' (double

forward slash) characters.

For example we can add a comment line to the program above:

DroidScript - Languaje Page 3

 //This shows a popup message.

 var s = "Hello";

 alert(s);

Variables

Variables are declared using the 'var' keyword and allow us to store data such as text, numbers and

objects in the computer's memory using a name of our choosing. We can then read and change the

stored data later by using the name we have given to the variable.

We can store text and display it like this:

 //This shows the message 'Hi'.

 var myText = "Hi";

 alert(myText);

Note: Text data should always be enclosed in quotes or the computer will think it's a variable name.

We can store a number and then display it like this:

 //This shows the message '7'.

 var myNum = 7;

 alert(myNum);

We can change the contents of our variables like this:

 //This shows the message '6'.

 var myNum = 3;

 myNum = myNum * 2;

 alert(myNum);

Note: JavaScript is case sensitive, so myNum is not the same MyNum.

Expressions
A statement such as myNum = myNum + 2 is an expression and we can perform various maths

and text operations on our variables using expressions.

For example:

DroidScript - Languaje Page 4

 //This shows the message 'Answer: 17'.

 var myNum = 7;

 var myText = "";

 myNum = myNum * 2 + 3;

 myText = "Answer: " + myNum;

 alert(myText);

Note: When you add a number to text, the number is automatically converted to text.

Data Types

In JavaScript, we can store and use these data types:

 String - Text data.

 Number - Numbers.

 Boolean - True or false values.

 Array - Lists of data.

 Object - Complex data types.

We can store all of these types in variables and also use them in expressions, but

the Array and Object data types are special 'reference' types, which means variables containing

these types actually hold a reference (or pointer) to the original data rather than the actual data.

When you copy reference types from one variable to another, you will not get a separate copy of the

data in the computer's memory, but rather a copy of the reference.

Here are a few examples of using various data types:

 //This shows the message 'true'.

 var isGood = true;

 alert(isGood);

 //This calculates a circle's circumference.

 var pi = 3.14;

 var r = 5;

 alert(2 * pi * r);

 //This shows the message 'Hello World'.

 var s = "Hello";

 alert(s + " World");

DroidScript - Languaje Page 5

 //This shows the message 'First item: 3'.

 var myArray = [3,4,5];

 var firstItem = myArray[0];

 alert("First item: " + firstItem);

 //This shows the message 'First item: fred'.

 //(Arrays are reference types).

 var myArray1 = ["a","b","c"];

 var myArray2 = myArray1;

 myArray1[0] = "fred";

 alert("First item: " + myArray2[0]);

Conditional Statements
We often want to take different actions in our program depending on certain conditions and the

easiest way to do this is using an 'if' statement like this:

 if(x > 1000) splat = true;

The line of code above would set the variable 'splat' to true if the variable 'x' contains a value greater

than 1000. We can also use the 'else' statement in combination with 'if' statement to do one thing or

the other:

 if(splat) image = "splat.jpg";

 else image = "bird.jpg";

If we want to check a whole lot of conditions, we can do something like this:

 //Find the correct photo.

 if(name=="Sam" && male) image = "Samuel.jpg";

 else if(name=="Sam") image = "Samanther.jpg";

 else if(name=="Bill") image = "William.jpg";

 else image = "Anyone.jpg";

Note: We use the double equals sign when we comparing variables and the single equals sign when

we are assigning (setting) variables.

In order to execute more than one statement after an 'if' or 'else' clause, we can use the '{}' (brace)

characters to group statements into a 'block' of code:

For example, in a game we might have some statements like this to check if the character has

crashed and the game is over:

DroidScript - Languaje Page 6

 if(splat)

 {

 imageName = "splat.jpg";

 gameOver = true;

 }

 else

 {

 imageName = "bird.jpg";

 gameOver = false;

 count++;

 }

Operators

We can perform various mathematical, logical and text operations in JavaScript such as add,

subtract, divide and multiply but you will often see a statement like this:

 num += 2;

This may look confusing at first, but this '+=' operation simply adds 2 to the contents of variable

'num'. This is a shorter and more efficient way of writing the following:

 num = num + 2;

Here are some examples of the most common operations and their meanings:

 z = x * y; //z = x multiplied by y

 z = x / y; //z = x divided by y

 z = x % y; //z = remainder of x divided by y

 num++; //add 1 to the contents of num

 num--; //subtract 1 from contents of num

 num += 3; //add 3 to the contents of num

 num -= x; //subtract x from contents of num

 num *= 9; //multiply the contents of num by 9

 num /= 9; //divide the contents of num by 9

 b = 7; //set b to the value 7

 if(b == 4) //if b is equal to 4

 if(b != c) //if b is not equal to c

DroidScript - Languaje Page 7

 if(b > c) //if b is greater than c

 if(b < c) //if b is less than c

 if(b >= c) //if b is greater or equal to c

 if(b <= c) //if b is less than or equal to c

 if(b || c) //if b or c is true

 if(b && c) //if b and c are true

 if(b && !c) //if b is true and c is false

Another very useful operation is the ?: or 'Ternary' operation. This allows us to conditionally get one

of two possible values using a single line of code. For example:

 adult = (age > 18 ? true : false);

This is the same as writing:

 if(age > 18) adult = true;

 else adult = false;

You can use this in expressions too. Here's another example:

 meals = 7 * (name=="Sam" ? 6 : 3);

Loops

In JavaScript we often want to repeat a block of statements many times and the two most common

ways of doing this are with the 'while' and 'for' statements.

A 'while' statement will keep repeating a block of statements while a given expression is true. For

example, the following code will keep asking the user if they are ready until they answer "yes".

 var answer;

 while(answer != "yes")

 {

 answer = prompt("Are you ready?");

 }

DroidScript - Languaje Page 8

A 'for' statement is usually used to repeat a block of statements until a counter has reached a

certain value. The following code will add the letter 'O' to the letter "G" ten times, followed by the

letters "GLE".

 var txt = "G";

 for(var i=0; i<10; i++)

 {

 txt += "O";

 }

 txt += "GLE"

 alert(txt);

In the above sample, the counter variable 'i' starts at zero and increases by 1 each time the block of

code is complete, but only while 'i' contains a value less than 10. So the variable 'i' will range from

zero to nine.

Functions
If we find that we need to execute the same (or a similar) group of statements from various parts of

our program, then instead of copying and pasting the same group of statements all over our

program, it is far more efficient and much neater to 'wrap' a block of code up using

the 'function' statement. We can then use a single line of code to 'call' our function and execute the

block of code.

For example, if we needed to show a random number to the user and we expect to do that more

than once in our program, then we could define a function called 'ShowRandom' and call it like this:

 //Show a random number.

 function ShowRandom()

 {

 var num = Math.random();

 alert(num);

 }

 ShowRandom();

If we want the function to behave slightly differently each time we call it, then we can pass input

values to the function. These are known as input 'parameters'.

DroidScript - Languaje Page 9

So for example we might want to change the range of the random numbers produced by our

'ShowRandom' function by providing a 'range' parameter like this:

 //Show a random number in a given range.

 function ShowRandom(range)

 {

 var num = Math.random() * range;

 alert(num);

 }

 ShowRandom(10);

 ShowRandom(100);

As well as using input values, we can also get an output ('return') value from our function too, by

using the 'return' statement. This allows our function to do calculations based on the input

parameters and return a result afterwards.

We could for example create our own function to calculate the area of a circle like this:

 //Get the area of a circle.

 //(to two decimal places)

 function GetAreaOfCircle(radius)

 {

 var area = Math.PI * radius * radius;

 return area.toFixed(2);

 }

 //Show area of a circle with radius 4.8cm

 var area = GetAreaOfCircle(4.8);

 alert("Area = " + area + " cm");

In Javascript we don't have to place our function before the statement which uses it, so we can put it

at the bottom of our script if we prefer, like this:

 //Show volume of box 4cm x 4cm x 2cm

 var vol = GetVolumeOfBox(4 ,4, 2);

 alert("Volume = " + vol);

DroidScript - Languaje Page 10

 //Get the volume of a box.

 function GetVolumeOfBox(width, height, depth)

 {

 var volume = width * height * depth;

 return volume;

 }

String Handling

We often want to manipulate strings (text) in JavaScript and there are a number of useful methods

available to us for doing this. Note that the position of characters within a string (known as their

'index') always starts at zero.

One of the most useful string methods is the 'split' method. This allows us to split the string into

parts and store each part in an array. The split method takes a single parameter which tells the

computer which character to look for while splitting the string.

For example if we want to get the first and third names in a comma separated list of names, we do

the following:

 //Get the first and third list items.

 var names = "Fred,Bill,Amy,Sally";

 var namesArray = names.split(",");

 var firstName = namesArray[0];

 var thirdName = namesArray[2];

Another very useful string method is the 'indexOf' method. This allows us to find the index (position)

of a string within another string.

For example, we might want to check if a file is a text file by searching for the string '.txt' in its file

name like this:

 //Check for text files.

 var isTextFile = false;

 if(fileName.indexOf(".txt") > -1)

 isTextFile = true;

DroidScript - Languaje Page 11

Here are some more examples of the many string manipulation methods available to us in

JavaScript:

 //Set our test string

 var txt = "Big Friendly Giant";

 //Get the number of characters in the string.

 var numLetters = txt.length;

 //Get a copy the first character.

 var firstLetter = txt.slice(0, 1);

 //Get a copy the last character.

 var lastLetter = txt.slice(-1);

 //Get a copy the first word.

 var firstWord = txt.substring(0, 3);

 //Get a copy of the second word.

 var secondWord = txt.substring(4, 12);

 //Get the start index of the word 'Giant'.

 var indexOfGiant = txt.indexOf("Giant");

 //Get the start index of the word 'Big'.

 var indexOfBig = txt.indexOf("Big");

 //Get the index of the last space.

 var indexOfLastSpace = txt.lastIndexOf(" ");

 //Get a copy of string with word replaced.

 var changed = txt.replace("Big", "Little");

 //Get a lower case copy of the string.

 var lowerCase = txt.toLowerCase();

DroidScript - Languaje Page 12

 //Get an upper case copy of the string.

 var upperCase = txt.toUpperCase();

Statements

JavaScript applications consist of statements with an appropriate syntax. A single statement may

span multiple lines. Multiple statements may occur on a single line if each statement is separated by

a semicolon. This isn't a keyword, but a group of keywords.

Statements and declarations by category

For an alphabetical listing see the sidebar on the left.

Control flow
Block A block statement is used to group zero or more statements. The block is delimited by a pair

of curly brackets.

break Terminates the current loop, switch, or label statement and transfers program control to the

statement following the terminated statement.

continue

Terminates execution of the statements in the current iteration of the current or labeled loop,

and continues execution of the loop with the next iteration.

Empty An empty statement is used to provide no statement, although the JavaScript syntax would

expect one.

if...else

Executes a statement if a specified condition is true. If the condition is false, another

statement can be executed.

switch Evaluates an expression, matching the expression's value to a case clause, and executes

statements associated with that case.

throw Throws a user-defined exception.

try...catch

Marks a block of statements to try, and specifies a response, should an exception be thrown.

http://droidscript.org/javascript/Statements/block.html
http://droidscript.org/javascript/Statements/break.html
http://droidscript.org/javascript/Statements/continue.html
http://droidscript.org/javascript/Statements/Empty.html
http://droidscript.org/javascript/Statements/if...else.html
http://droidscript.org/javascript/Statements/switch.html
http://droidscript.org/javascript/Statements/throw.html
http://droidscript.org/javascript/Statements/try...catch.html

DroidScript - Languaje Page 13

Declarations
var Declares a variable, optionally initializing it to a value.

Functions and classes
function

Declares a function with the specified parameters.

return Specifies the value to be returned by a function.

Iterations
do...while

Creates a loop that executes a specified statement until the test condition evaluates to false.

The condition is evaluated after executing the statement, resulting in the specified statement

executing at least once.

for Creates a loop that consists of three optional expressions, enclosed in parentheses and

separated by semicolons, followed by a statement executed in the loop.

for...in

Iterates over the enumerable properties of an object, in arbitrary order. For each distinct

property, statements can be executed.

for...of

Iterates over iterable objects (including arrays, array-like objects, iterators and generators),

invoking a custom iteration hook with statements to be executed for the value of each distinct

property.

while Creates a loop that executes a specified statement as long as the test condition evaluates to

true. The condition is evaluated before executing the statement.

Operators

This chapter documents many of the JavaScript language operators, expressions and keywords.

Expressions and operators by category

For an alphabetical listing see the sidebar on the left.

http://droidscript.org/javascript/Statements/var.html
http://droidscript.org/javascript/Statements/function.html
http://droidscript.org/javascript/Statements/return.html
http://droidscript.org/javascript/Statements/do...while.html
http://droidscript.org/javascript/Statements/for.html
http://droidscript.org/javascript/Statements/for...in.html
http://droidscript.org/javascript/Statements/for...of.html
https://developer.mozilla.org/en-US/docs/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators
http://droidscript.org/javascript/Statements/while.html

DroidScript - Languaje Page 14

Primary expressions

Basic keywords and general expressions in JavaScript.

function

The function keyword defines a function expression.

[] Array initializer/literal syntax.

{} Object initializer/literal syntax.

/ab+c/i

Regular expression literal syntax.

() Grouping operator.

Left-hand-side expressions

Left values are the destination of an assignment.

Property accessors

Member operators provide access to a property or method of an object

(object.property and object["property"]).

new The new operator creates an instance of a constructor.

Increment and decrement

Postfix/prefix increment and postfix/prefix decrement operators.

A++ Postfix increment operator.

A-- Postfix decrement operator.

++A Prefix increment operator.

--A Prefix decrement operator.

Unary operators

A unary operation is operation with only one operand.

http://droidscript.org/javascript/Operators/function.html
http://droidscript.org/javascript/Operators/Global_Objects/Array.html
http://droidscript.org/javascript/Operators/Object_initializer.html
http://droidscript.org/javascript/Operators/Global_Objects/RegExp.html
http://droidscript.org/javascript/Operators/Grouping.html
http://droidscript.org/javascript/Operators/Property_accessors.html
http://droidscript.org/javascript/Operators/new.html
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Increment
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Decrement
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Increment
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Decrement

DroidScript - Languaje Page 15

delete The delete operator deletes a property from an object.

void The void operator discards an expression's return value.

typeof The typeof operator determines the type of a given object.

+ The unary plus operator converts its operand to Number type.

- The unary negation operator converts its operand to Number type and then negates it.

~ Bitwise NOT operator.

! Logical NOT operator.

Arithmetic operators

Arithmetic operators take numerical values (either literals or variables) as their operands and return

a single numerical value.

+ Addition operator.

- Subtraction operator.

/ Division operator.

* Multiplication operator.

% Remainder operator.

Relational operators

A comparison operator compares its operands and returns a Boolean value based on whether the

comparison is true.

in The in operator determines whether an object has a given property.

instanceof

The instanceof operator determines whether an object is an instance of another object.

< Less than operator.

> Greater than operator.

http://droidscript.org/javascript/Operators/delete.html
http://droidscript.org/javascript/Operators/void.html
http://droidscript.org/javascript/Operators/typeof.html
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Unary_plus
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Unary_negation
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Bitwise_NOT
http://droidscript.org/javascript/Operators/Logical_Operators.html#Logical_NOT
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Addition
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Subtraction
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Division
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Multiplication
http://droidscript.org/javascript/Operators/Arithmetic_Operators.html#Remainder
http://droidscript.org/javascript/Operators/in.html
http://droidscript.org/javascript/Operators/instanceof.html
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Less_than_operator
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Greater_than_operator

DroidScript - Languaje Page 16

<= Less than or equal operator.

>= Greater than or equal operator.

Equality operators

The result of evaluating an equality operator is always of type Boolean based on whether the

comparison is true.

== Equality operator.

!= Inequality operator.

=== Identity operator.

!== Nonidentity operator.

Bitwise shift operators

Operations to shift all bits of the operand.

<< Bitwise left shift operator.

>> Bitwise right shift operator.

>>> Bitwise unsigned right shift operator.

Binary bitwise operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones) and return standard

JavaScript numerical values.

& Bitwise AND.

| Bitwise OR.

^ Bitwise XOR.

Binary logical operators

Logical operators are typically used with boolean (logical) values, and when they are, they return a

boolean value.

http://droidscript.org/javascript/Operators/Comparison_Operators.html#Less_than_or_equal_operator
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Greater_than_or_equal_operator
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Equality
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Inequality
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Identity
http://droidscript.org/javascript/Operators/Comparison_Operators.html#Nonidentity
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Left_shift
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Right_shift
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Unsigned_right_shift
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Bitwise_AND
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Bitwise_OR
http://droidscript.org/javascript/Operators/Bitwise_Operators.html#Bitwise_XOR

DroidScript - Languaje Page 17

&& Logical AND.

|| Logical OR.

Conditional (ternary) operator
(condition ? ifTrue : ifFalse)

The conditional operator returns one of two values based on the logical value of the

condition.

Assignment operators

An assignment operator assigns a value to its left operand based on the value of its right operand.

= Assignment operator.

*= Multiplication assignment.

/= Division assignment.

%= Remainder assignment.

+= Addition assignment.

-= Subtraction assignment

<<= Left shift assignment.

>>= Right shift assignment.

>>>= Unsigned right shift assignment.

&= Bitwise AND assignment.

^= Bitwise XOR assignment.

|= Bitwise OR assignment.

Comma operator
, The comma operator allows multiple expressions to be evaluated in a single statement and

returns the result of the last expression.

http://droidscript.org/javascript/Operators/Logical_Operators.html#Logical_AND
http://droidscript.org/javascript/Operators/Logical_Operators.html#Logical_OR
http://droidscript.org/javascript/Operators/Conditional_Operator.html
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Multiplication_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Division_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Remainder_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Addition_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Subtraction_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Left_shift_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Right_shift_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Unsigned_right_shift_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Bitwise_AND_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Bitwise_XOR_assignment
http://droidscript.org/javascript/Operators/Assignment_Operators.html#Bitwise_OR_assignment
http://droidscript.org/javascript/Operators/Comma_Operator.html

DroidScript - Languaje Page 18

Global Objects

This chapter documents the most useful JavaScript built-in objects, including their methods and

properties.

Standard objects by category

Value properties

These global properties return a simple value; they have no properties or methods.

 Infinity

 NaN

 undefined

 null literal

Function properties

These global functionsâ€”functions which are called globally rather than on an objectâ€”directly

return their results to the caller.

 eval()

 isFinite()

 isNaN()

 parseFloat()

 parseInt()

 decodeURI()

 decodeURIComponent()

 encodeURI()

 encodeURIComponent()

Numbers and dates

These are the base objects representing numbers, dates, and mathematical calculations.

 Number

 Math

 Date

http://droidscript.org/javascript/Global_Objects/Infinity.html
http://droidscript.org/javascript/Global_Objects/NaN.html
http://droidscript.org/javascript/Global_Objects/undefined.html
http://droidscript.org/javascript/Global_Objects/null.html
http://droidscript.org/javascript/Global_Objects/eval.html
http://droidscript.org/javascript/Global_Objects/isFinite.html
http://droidscript.org/javascript/Global_Objects/isNaN.html
http://droidscript.org/javascript/Global_Objects/parseFloat.html
http://droidscript.org/javascript/Global_Objects/parseInt.html
http://droidscript.org/javascript/Global_Objects/decodeURI.html
http://droidscript.org/javascript/Global_Objects/decodeURIComponent.html
http://droidscript.org/javascript/Global_Objects/encodeURI.html
http://droidscript.org/javascript/Global_Objects/encodeURIComponent.html
http://droidscript.org/javascript/Global_Objects/Number.html
http://droidscript.org/javascript/Global_Objects/Math.html
http://droidscript.org/javascript/Global_Objects/Date.html

DroidScript - Languaje Page 19

Text processing

These objects represent strings and support manipulating them.

 String

 RegExp

block

A block statement (or compound statement in other languages) is used to group zero or more

statements. The block is delimited by a pair of curly brackets.

Syntax
{

 statement_1;

 statement_2;

 ...

 statement_n;

}

statement_1, statement_2, statement_n

Statements grouped within the block statement.

Description

This statement is commonly used with control flow statements (e.g. if...else, for, while). For

example:

while (x < 10) {

 x++;

}

Note that the block statement does not end with a semicolon.

The block statement is often called compound statement in other languages. It allows you to use

multiple statements where JavaScript expects only one statement. Combining statements into blocks

http://droidscript.org/javascript/Global_Objects/String.html
http://droidscript.org/javascript/Global_Objects/RegExp.html

DroidScript - Languaje Page 20

is a common practice in JavaScript. The opposite behavior is possible using an empty statement,

where you provide no statement, although one is required.

No block scope

Important: Variables declared with var do not have block scope. Variables introduced with a block

are scoped to the containing function or script, and the effects of setting them persist beyond the

block itself. In other words, block statements do not introduce a scope. Although "standalone" blocks

are valid syntax, you do not want to use standalone blocks in JavaScript, because they don't do what

you think they do, if you think they do anything like such blocks in C or Java. For example:

var x = 1;

{

 var x = 2;

}

console.log(x); // logs 2

This logs 2 because the var x statement within the block is in the same scope as the var

x statement before the block. In C or Java, the equivalent code would have outputted 1.

break

The break statement terminates the current loop, switch, or label statement and transfers program

control to the statement following the terminated statement.

Syntax
break [label];

label

Optional. Identifier associated with the label of the statement. If the statement is not a loop

or switch, this is required.

Description

The break statement includes an optional label that allows the program to break out of a labeled

statement. The break statement needs to be nested within the referenced label. The labeled

statement can be any block statement; it does not have to be preceded by a loop statement.

DroidScript - Languaje Page 21

Examples

The following function has a break statement that terminates the while loop when i is 3, and then

returns the value 3 * x.

function testBreak(x) {

 var i = 0;

 while (i < 6) {

 if (i == 3) {

 break;

 }

 i += 1;

 }

 return i * x;

}

The following code uses break statements with labeled blocks. A break statement must be nested

within any label it references. Notice that inner_block is nested within outer_block.

outer_block: {

 inner_block: {

 console.log('1');

 break outer_block; // breaks out of both inner_block and outer_block

 console.log(':-('); // skipped

 }

 console.log('2'); // skipped

}

The following code also uses break statements with labeled blocks but generates a Syntax Error

because its break statement is within block_1 but references block_2. A break statement must

always be nested within any label it references.

block_1: {

 console.log('1');

 break block_2; // SyntaxError: label not found

DroidScript - Languaje Page 22

}

block_2: {

 console.log('2');

}

continue

The continue statement terminates execution of the statements in the current iteration of the

current or labeled loop, and continues execution of the loop with the next iteration.

Syntax
continue [label];

label

Identifier associated with the label of the statement.

Description

In contrast to the break statement, continue does not terminate the execution of the loop entirely:

instead,

 In a while loop, it jumps back to the condition.

 In a for loop, it jumps to the update expression.

The continue statement can include an optional label that allows the program to jump to the next

iteration of a labeled loop statement instead of the current loop. In this case, the continue statement

needs to be nested within this labeled statement.

Examples

Using continue with while

The following example shows a while loop that has a continue statement that executes when the

value of i is 3. Thus, n takes on the values 1, 3, 7, and 12.

var i = 0;

DroidScript - Languaje Page 23

var n = 0;

while (i < 5) {

 i++;

 if (i === 3) {

 continue;

 }

 n += i;

}

Using continue with a label

In the following example, a statement labeled checkiandj contains a statement labeled checkj.

If continue is encountered, the program continues at the top of the checkj statement. Each

time continue is encountered, checkj reiterates until its condition returns false. When false is

returned, the remainder of the checkiandj statement is completed.

If continue had a label of checkiandj, the program would continue at the top of

the checkiandj statement.

See also label.

var i = 0;

var j = 8;

checkiandj: while (i < 4) {

 console.log("i: " + i);

 i += 1;

 checkj: while (j > 4) {

 console.log("j: "+ j);

 j -= 1;

 if ((j % 2) == 0)

 continue checkj;

DroidScript - Languaje Page 24

 console.log(j + " is odd.");

 }

 console.log("i = " + i);

 console.log("j = " + j);

}

Output:

"i: 0"

// start checkj

"j: 8"

"7 is odd."

"j: 7"

"j: 6"

"5 is odd."

"j: 5"

// end checkj

"i = 1"

"j = 4"

"i: 1"

"i = 2"

"j = 4"

"i: 2"

"i = 3"

"j = 4"

"i: 3"

"i = 4"

"j = 4"

DroidScript - Languaje Page 25

Empty

An empty statement is used to provide no statement, although the JavaScript syntax would expect

one.

Syntax
;

Description

The empty statement is a semicolon (;) indicating that no statement will be executed, even if

JavaScript syntax requires one. The opposite behavior, where you want multiple statements, but

JavaScript only allows a single one, is possible using a block statement; it combines several

statements into a single one.

Examples

The empty statement is sometimes used with loop statements. See the following example with an

empty loop body:

var arr = [1, 2, 3];

// Assign all array values to 0

for (i = 0; i < arr.length; arr[i++] = 0) /* empty statement */ ;

console.log(arr)

// [0, 0, 0]

Note: It is a good idea to comment the intentional use of the empty statement, as it is not really

obvious to distinguish between a normal semicolon. In the following example the usage is probably

not intentional:

if (condition); // Caution, this "if" does nothing!

 killTheUniverse() // So this gets always executed!!!

Another Example: An if...else statement without curly braces ({}). If three is true, nothing will

happen, four does not matter, and also the launchRocket() function in the else case will not be

executed.

DroidScript - Languaje Page 26

if (one)

 doOne();

else if (two)

 doTwo();

else if (three)

 ; // nothing here

else if (four)

 doFour();

else

 launchRocket();

if...else

The if statement executes a statement if a specified condition is true. If the condition is false,

another statement can be executed.

Syntax
if (condition)

 statement1

[else

 statement2]

condition

An expression that evaluates to true or false.

statement1

Statement that is executed if condition evaluates to true. Can be any statement, including

further nested if statements. To execute multiple statements, use a block statement ({ ... })

to group those statements, to execute no statements, use an empty statement.

statement2

Statement that is executed if condition evaluates to false and the else clause exists. Can

be any statement, including block statements and further nested if statements.

DroidScript - Languaje Page 27

Description

Multiple if...else statements can be nested to create an else if clause. Note that there is

no elseif (in one word) keyword in JavaScript.

if (condition1)

 statement1

else if (condition2)

 statement2

else if (condition3)

 statement3

...

else

 statementN

To see how this works, this is how it would look like if the nesting were properly indented:

if (condition1)

 statement1

else

 if (condition2)

 statement2

 else

 if (condition3)

...

To execute multiple statements within a clause, use a block statement ({ ... }) to group those

statements. In general, it is a good practice to always use block statements, especially in code

involving nested if statements:

if (condition) {

 statements1

} else {

 statements2

}

DroidScript - Languaje Page 28

Do not confuse the primitive boolean values true and false with the true and false values of the

Boolean object. Any value that is not undefined, null, 0, NaN, or the empty string (""), and any

object, including a Boolean object whose value is false, evaluates to true when passed to a

conditional statement. For example:

var b = new Boolean(false);

if (b) // this condition evaluates to true

Examples

Using if...else

if (cipher_char === from_char) {

 result = result + to_char;

 x++;

} else {

 result = result + clear_char;

}

Using else if

Note that there is no elseif syntax in JavaScript. However, you can write it with a space

between else and if:

if (x > 5) {

} else if (x > 50) {

} else {

}

Assignment within the conditional expression

It is advisable to not use simple assignments in a conditional expression, because the assignment

can be confused with equality when glancing over the code. For example, do not use the following

code:

DroidScript - Languaje Page 29

if (x = y) {

 /* do the right thing */

}

If you need to use an assignment in a conditional expression, a common practice is to put additional

parentheses around the assignment. For example:

if ((x = y)) {

 /* do the right thing */

}

switch

The switch statement evaluates an expression, matching the expression's value to a case clause,

and executes statements associated with that case.

Syntax
switch (expression) {

 case value1:

 //Statements executed when the result of expression matches value1

 [break;]

 case value2:

 //Statements executed when the result of expression matches value2

 [break;]

 ...

 case valueN:

 //Statements executed when the result of expression matches valueN

 [break;]

 default:

 //Statements executed when none of the values match the value of the

expression

 [break;]

}

expression

An expression whose result is matched against each case clause.

case valueN

DroidScript - Languaje Page 30

A case clause used to match against expression.

Description

A switch statement first evaluates its expression. It then looks for the first case clause whose

expression evaluates to the same value as the result of the input expression (using strict

comparison, ===) and transfers control to that clause, executing the associated statements. (If

multiple cases match the provided value, the first case that matches is selected, even if the cases

are not equal to each other.) If no matching case clause is found, the program looks for the

optional default clause, and if found, transfers control to that clause, executing the associated

statements. If no default clause is found, the program continues execution at the statement

following the end of switch. By convention, the default clause is the last clause, but it does not

need to be so.

The optional break statement associated with each case label ensures that the program breaks out

of switch once the matched statement is executed and continues execution at the statement

following switch. If break is omitted, the program continues execution at the next statement in

the switch statement.

Examples

Using switch

In the following example, if expr evaluates to "Bananas", the program matches the value with case

"Bananas" and executes the associated statement. When break is encountered, the program breaks

out of switch and executes the statement following switch. If break were omitted, the statement for

case "Cherries" would also be executed.

switch (expr) {

 case "Oranges":

 console.log("Oranges are $0.59 a pound.");

 break;

 case "Apples":

 console.log("Apples are $0.32 a pound.");

 break;

 case "Bananas":

 console.log("Bananas are $0.48 a pound.");

DroidScript - Languaje Page 31

 break;

 case "Cherries":

 console.log("Cherries are $3.00 a pound.");

 break;

 case "Mangoes":

 case "Papayas":

 console.log("Mangoes and papayas are $2.79 a pound.");

 break;

 default:

 console.log("Sorry, we are out of " + expr + ".");

}

console.log("Is there anything else you'd like?");

What happens if I forgot a break?

If you forget a break then script will run from the case where criteria is met, and will run the case

after that regardless if criteria was met. See example here:

var foo = 0;

switch (foo) {

 case -1:

 console.log('negative 1');

 break;

 case 0: // foo is 0 so criteria met here so this block will run

 console.log(0);

 // NOTE: the forgotten break would have been here

 case 1: // no break statement in 'case 0:' so this case will run as well

 console.log(1);

 break; // it encounters this break so will not continue into 'case 2:'

 case 2:

 console.log(2);

 break;

 default:

 console.log('default');

}

DroidScript - Languaje Page 32

Methods for multi-criteria case

Source for this technique is here:

Switch statement multiple cases in JavaScript (Stack Overflow)

Multi-case - single operation

This method takes advantage of the fact that if there is no break below a case statement it will

continue to execute the next case statement regardless if the case meets the criteria. See the

section title "What happens if I forgot a break?"

This is an example of a single operation sequential switch statement, where four different values

perform exactly the same.

var Animal = 'Giraffe';

switch (Animal) {

 case 'Cow':

 case 'Giraffe':

 case 'Dog':

 case 'Pig':

 console.log('This animal will go on Noah\'s Ark.');

 break;

 case 'Dinosaur':

 default:

 console.log('This animal will not.');

}

Multi-case - chained operations

This is an example of a multiple-operation sequential switch statement, where, depending on the

provided integer, you can receive different output. This shows you that it wil traverse in the order that

you put the case statements, and it does not have to be numerically sequential. In JavaScript, you

can even mix in definitions of strings into these case statements as well.

var foo = 1;

var output = 'Output: ';

switch (foo) {

DroidScript - Languaje Page 33

 case 10:

 output += 'So ';

 case 1:

 output += 'What ';

 output += 'Is ';

 case 2:

 output += 'Your ';

 case 3:

 output += 'Name';

 case 4:

 output += '?';

 console.log(output);

 break;

 case 5:

 output += '!';

 console.log(output);

 break;

 default:

 console.log('Please pick a number from 0 to 6!');

}

throw

The throw statement throws a user-defined exception. Execution of the current function will stop

(the statements after throw won't be executed), and control will be passed to the first catch block in

the call stack. If no catch block exists among caller functions, the program will terminate.

Syntax
throw expression;

expression

The expression to throw.

Description

Use the throw statement to throw an exception. When you throw an exception, expression specifies

the value of the exception. Each of the following throws an exception:

DroidScript - Languaje Page 34

throw "Error2"; // generates an exception with a string value

throw 42; // generates an exception with the value 42

throw true; // generates an exception with the value true

Also note that the throw statement is affected by automatic semicolon insertion (ASI) as no line

terminator between the throw keyword and the expression is allowed.

Examples

Throw an object

You can specify an object when you throw an exception. You can then reference the object's

properties in the catch block. The following example creates an object of type UserException and

uses it in a throw statement.

function UserException(message) {

 this.message = message;

 this.name = "UserException";

}

function getMonthName(mo) {

 mo = mo-1; // Adjust month number for array index (1=Jan, 12=Dec)

 var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

 "Aug", "Sep", "Oct", "Nov", "Dec"];

 if (months[mo] !== undefined) {

 return months[mo];

 } else {

 throw new UserException("InvalidMonthNo");

 }

}

try {

 // statements to try

 var myMonth = 15; // 15 is out of bound to raise the exception

 monthName = getMonthName(myMonth);

} catch (e) {

 monthName = "unknown";

 logMyErrors(e.message, e.name); // pass exception object to err handler

DroidScript - Languaje Page 35

}

Another example of throwing an object

The following example tests an input string for a U.S. zip code. If the zip code uses an invalid format,

the throw statement throws an exception by creating an object of type ZipCodeFormatException.

/*

 * Creates a ZipCode object.

 *

 * Accepted formats for a zip code are:

 * 12345

 * 12345-6789

 * 123456789

 * 12345 6789

 *

 * If the argument passed to the ZipCode constructor does not

 * conform to one of these patterns, an exception is thrown.

 */

function ZipCode(zip) {

 zip = new String(zip);

 pattern = /[0-9]{5}([-]?[0-9]{4})?/;

 if (pattern.test(zip)) {

 // zip code value will be the first match in the string

 this.value = zip.match(pattern)[0];

 this.valueOf = function() {

 return this.value

 };

 this.toString = function() {

 return String(this.value)

 };

 } else {

 throw new ZipCodeFormatException(zip);

 }

}

DroidScript - Languaje Page 36

function ZipCodeFormatException(value) {

 this.value = value;

 this.message = "does not conform to the expected format for a zip

code";

 this.toString = function() {

 return this.value + this.message;

 };

}

/*

 * This could be in a script that validates address data

 * for US addresses.

 */

const ZIPCODE_INVALID = -1;

const ZIPCODE_UNKNOWN_ERROR = -2;

function verifyZipCode(z) {

 try {

 z = new ZipCode(z);

 } catch (e) {

 if (e instanceof ZipCodeFormatException) {

 return ZIPCODE_INVALID;

 } else {

 return ZIPCODE_UNKNOWN_ERROR;

 }

 }

 return z;

}

a = verifyZipCode(95060); // returns 95060

b = verifyZipCode(9560); // returns -1

c = verifyZipCode("a"); // returns -1

d = verifyZipCode("95060"); // returns 95060

e = verifyZipCode("95060 1234"); // returns 95060 1234

DroidScript - Languaje Page 37

Rethrow an exception

You can use throw to rethrow an exception after you catch it. The following example catches an

exception with a numeric value and rethrows it if the value is over 50. The rethrown exception

propagates up to the enclosing function or to the top level so that the user sees it.

try {

 throw n; // throws an exception with a numeric value

} catch (e) {

 if (e <= 50) {

 // statements to handle exceptions 1-50

 } else {

 // cannot handle this exception, so rethrow

 throw e;

 }

}

try...catch

The try...catch statement marks a block of statements to try, and specifies a response, should an

exception be thrown.

Syntax
try {

 try_statements

}

[catch (exception_var_1 if condition_1) { // non-standard

 catch_statements_1

}]

...

[catch (exception_var_2) {

 catch_statements_2

}]

[finally {

 finally_statements

}]

try_statements

DroidScript - Languaje Page 38

The statements to be executed.

catch_statements_1, catch_statements_2

Statements that are executed if an exception is thrown in the try block.

exception_var_1, exception_var_2

An identifier to hold an exception object for the associated catch clause.

condition_1

A conditional expression.

finally_statements

Statements that are executed after the try statement completes. These statements execute

regardless of whether or not an exception was thrown or caught.

Description

The try statement consists of a try block, which contains one or more statements, and at least

one catch clause or a finally clause, or both. That is, there are three forms of the try statement:

1. try...catch

2. try...finally

3. try...catch...finally

A catch clause contain statements that specify what to do if an exception is thrown in the try block.

That is, you want the try block to succeed, and if it does not succeed, you want control to pass to

the catch block. If any statement within the try block (or in a function called from within

the try block) throws an exception, control immediately shifts to the catch clause. If no exception is

thrown in the try block, the catch clause is skipped.

The finally clause executes after the try block and catch clause(s) execute but before the

statements following the try statement. It always executes, regardless of whether or not an

exception was thrown or caught.

You can nest one or more try statements. If an inner try statement does not have a catch clause,

the enclosing try statement's catch clause is entered.

DroidScript - Languaje Page 39

You also use the try statement to handle JavaScript exceptions. See the JavaScript Guide for more

information on JavaScript exceptions.

Unconditional catch clause

When a single, unconditional catch clause is used, the catch block is entered when any exception is

thrown. For example, when the exception occurs in the following code, control transfers to

the catch clause.

try {

 throw "myException"; // generates an exception

}

catch (e) {

 // statements to handle any exceptions

 logMyErrors(e); // pass exception object to error handler

}

Conditional catch clauses

You can also use one or more conditional catch clauses to handle specific exceptions. In this case,

the appropriate catch clause is entered when the specified exception is thrown. In the following

example, code in the try block can potentially throw three exceptions: TypeError, RangeError,

and EvalError. When an exception occurs, control transfers to the appropriate catch clause. If the

exception is not one of the specified exceptions and an unconditional catch clause is found, control

transfers to that catch clause.

If you use an unconditional catch clause with one or more conditional catch clauses, the

unconditional catch clause must be specified last. Otherwise, the unconditional catch clause will

intercept all types of exception before they can reach the conditional ones.

Reminder: this functionality is not part of the ECMAScript specification.

try {

 myroutine(); // may throw three types of exceptions

} catch (e if e instanceof TypeError) {

 // statements to handle TypeError exceptions

DroidScript - Languaje Page 40

} catch (e if e instanceof RangeError) {

 // statements to handle RangeError exceptions

} catch (e if e instanceof EvalError) {

 // statements to handle EvalError exceptions

} catch (e) {

 // statements to handle any unspecified exceptions

 logMyErrors(e); // pass exception object to error handler

}

And here is how to do implement the same "Conditional catch clauses" using only simple JavaScript

conforming to the ECMAScript specification (obviously it's more verbose, but works everywhere):

try {

 myroutine(); // may throw three types of exceptions

} catch (e) {

 if (e instanceof TypeError) {

 // statements to handle TypeError exceptions

 } else if (e instanceof RangeError) {

 // statements to handle RangeError exceptions

 } else if (e instanceof EvalError) {

 // statements to handle EvalError exceptions

 } else {

 // statements to handle any unspecified exceptions

 logMyErrors(e); // pass exception object to error handler

 }

}

The exception identifier

When an exception is thrown in the try block, exception_var (e.g. the e in catch (e)) holds the

value specified by the throw statement. You can use this identifier to get information about the

exception that was thrown.

This identifier is local to the catch clause. That is, it is created when the catch clause is entered,

and after the catch clause finishes executing, the identifier is no longer available.

The finally clause

DroidScript - Languaje Page 41

The finally clause contains statements to execute after the try block and catch clause(s) execute,

but before the statements following the try statement. The finally clause executes regardless of

whether or not an exception is thrown. If an exception is thrown, the statements in

the finally clause execute even if no catch clause handles the exception.

You can use the finally clause to make your script fail gracefully when an exception occurs; for

example, you may need to release a resource that your script has tied up. The following example

opens a file and then executes statements that use the file (server-side JavaScript allows you to

access files). If an exception is thrown while the file is open, the finally clause closes the file

before the script fails. The code in finally also executes upon explicitly returning

from try or catch block.

openMyFile()

try {

 // tie up a resource

 writeMyFile(theData);

}

finally {

 closeMyFile(); // always close the resource

}

Examples

Nested try-blocks

First let's see what happens with this:

try {

 try {

 throw new Error("oops");

 }

 finally {

 console.log("finally");

 }

}

catch (ex) {

 console.error("outer", ex.message);

DroidScript - Languaje Page 42

}

// Output:

// "finally"

// "outer" "oops"

Now, if we already caught the exception in the inner try-block by adding a catch block

try {

 try {

 throw new Error("oops");

 }

 catch (ex) {

 console.error("inner", ex.message);

 }

 finally {

 console.log("finally");

 }

}

catch (ex) {

 console.error("outer", ex.message);

}

// Output:

// "inner" "oops"

// "finally"

And now, lets re-throw the error.

try {

 try {

 throw new Error("oops");

 }

 catch (ex) {

 console.error("inner", ex.message);

 throw ex;

 }

DroidScript - Languaje Page 43

 finally {

 console.log("finally");

 }

}

catch (ex) {

 console.error("outer", ex.message);

}

// Output:

// "inner" "oops"

// "finally"

// "outer" "oops"

Any given exception will be caught only once by the nearest enclosing catch-block, unless it is re-

thrown. Of course, any new exceptions raised in the "inner" block (because code in catch-block may

do something that throws), will be caught by the "outer" block.

Returning from a finally block

If the finally block returns a value, this value becomes the return value of the entire try-catch-

finally production, regardless of any return statements in the try and catch blocks. This includes

exceptions thrown inside of the catch block:

try {

 try {

 throw new Error("oops");

 }

 catch (ex) {

 console.error("inner", ex.message);

 throw ex;

 }

 finally {

 console.log("finally");

 return;

 }

}

catch (ex) {

DroidScript - Languaje Page 44

 console.error("outer", ex.message);

}

// Output:

// "inner" "oops"

// "finally"

The outer "oops" is not thrown because of the return in the finally block. The same would apply to

any value returned from the catch block.

var

The variable statement declares a variable, optionally initializing it to a value.

Syntax
var varname1 [= value1 [, varname2 [, varname3 ... [, varnameN]]]];

varnameN

Variable name. It can be any legal identifier.

valueN

Initial value of the variable. It can be any legal expression.

Description

Variable declarations, wherever they occur, are processed before any code is executed. The scope

of a variable declared with var is its current execution context, which is either the enclosing function

or, for variables declared outside any function, global.

Assigning a value to an undeclared variable implicitly creates it as a global variable (it becomes a

property of the global object) when the assignment is executed. The differences between declared

and undeclared variables are:

1. Declared variables are constrained in the execution context in which they are declared.

Undeclared variables are always global.

function x() {

 y = 1; // Throws a ReferenceError in strict mode

DroidScript - Languaje Page 45

 var z = 2;

}

x();

console.log(y); // logs "1"

console.log(z); // Throws a ReferenceError: z is not defined outside x

2. Declared variables are created before any code is executed. Undeclared variables do not exist

until the code assigning to them is executed.

console.log(a); // Throws a ReferenceError.

console.log('still going...'); // Never executes.

var a;

console.log(a); // logs "undefined" or "" depending on

browser.

console.log('still going...'); // logs "still going...".

3. Declared variables are a non-configurable property of their execution context (function or global).

Undeclared variables are configurable (e.g. can be deleted).

var a = 1;

b = 2;

delete this.a; // Throws a TypeError in strict mode. Fails silently

otherwise.

delete this.b;

console.log(a, b); // Throws a ReferenceError.

// The 'b' property was deleted and no longer exists.

Because of these three differences, failure to declare variables will very likely lead to unexpected

results. Thus it is recommended to always declare variables, regardless of whether they are in

a function or global scope. And in ECMAScript 5 strict mode, assigning to an undeclared variable

throws an error.

var hoisting

DroidScript - Languaje Page 46

Because variable declarations (and declarations in general) are processed before any code is

executed, declaring a variable anywhere in the code is equivalent to declaring it at the top. This also

means that a variable can appear to be used before it's declared. This behavior is called "hoisting",

as it appears that the variable declaration is moved to the top of the function or global code.

bla = 2

var bla;

// ...

// is implicitly understood as:

var bla;

bla = 2;

For that reason, it is recommended to always declare variables at the top of their scope (the top of

global code and the top of function code) so it's clear which variables are function scoped (local) and

which are resolved on the scope chain.

Examples

Declaring and initializing two variables

var a = 0, b = 0;

Assigning two variables with single string value

var a = "A";

var b = a;

// Equivalent to:

var a, b = a = "A";

Be mindful of the order:

var x = y, y = 'A';

console.log(x + y); // undefinedA

DroidScript - Languaje Page 47

Here, x and y are declared before any code is executed, the assignments occur later. At the time "x

= y" is evaluated, y exists so no ReferenceError is thrown and its value is 'undefined'. So, x is

assigned the undefined value. Then, y is assigned a value of 'A'. Consequently, after the first line, x

=== undefined && y === 'A', hence the result.

Initialization of several variables

var x = 0;

function f(){

 var x = y = 1; // x is declared locally. y is not!

}

f();

console.log(x, y); // 0, 1

// x is the global one as expected

// y leaked outside of the function, though!

Implicit globals and outer function scope

Variables that appear to be implicit globals may be references to variables in an outer function

scope:

var x = 0; // x is declared global, then assigned a value of 0

console.log(typeof z); // undefined, since z doesn't exist yet

function a() { // when a is called,

 var y = 2; // y is declared local to function a, then assigned a value

of 2

 console.log(x, y); // 0 2

 function b() { // when b is called

 x = 3; // assigns 3 to existing global x, doesn't create a new global

var

DroidScript - Languaje Page 48

 y = 4; // assigns 4 to existing outer y, doesn't create a new global

var

 z = 5; // creates a new global variable z and assigns a value of 5.

 } // (Throws a ReferenceError in strict mode.)

 b(); // calling b creates z as a global variable

 console.log(x, y, z); // 3 4 5

}

a(); // calling a also calls b

console.log(x, z); // 3 5

console.log(typeof y); // undefined as y is local to function a

function

The function declaration defines a function with the specified parameters.

You can also define functions using the Function constructor and a function expression.

Syntax
function name([param,[, param,[..., param]]]) {

 [statements]

}

Name The function name.

Param The name of an argument to be passed to the function. A function can have up to 255

arguments.

statements

The statements which comprise the body of the function.

Description

A function created with a function declaration is a Function object and has all the properties,

methods and behavior of Function objects. See Function for detailed information on functions.

A function can also be created using an expression (see function expression).

DroidScript - Languaje Page 49

By default, functions return undefined. To return any other value, the function must have

a return statement that specifies the value to return.

Conditionally created functions

Functions can be conditionally declared, that is, a function statement can be nested within

an if statement. Most browsers other than Mozilla will treat such conditional declarations as an

unconditional declaration and create the function whether the condition is true or not, see this article

for an overview. Therefore they should not be used, for conditional creation use function

expressions.

Function declaration hoisting

Function declarations in JavaScript are hoisting the function definition. You can use the function

before you declared it:

hoisted(); // logs "foo"

function hoisted() {

 console.log("foo");

}

Note that function expressions are not hoisted:

notHoisted(); // TypeError: notHoisted is not a function

var notHoisted = function() {

 console.log("bar");

};

Examples

Using function

The following code declares a function that returns the total amount of sales, when given the number

of units sold of products a, b, and c.

DroidScript - Languaje Page 50

function calc_sales(units_a, units_b, units_c) {

 return units_a*79 + units_b * 129 + units_c * 699;

}

return

The return statement ends function execution and specifies a value to be returned to the function

caller.

Syntax
return [[expression]];

expression

The expression to return. If omitted, undefined is returned instead.

Description

When a return statement is called in a function, the execution of this function is stopped. If

specified, a given value is returned to the function caller. If the expression is omitted, undefined is

returned instead. The following return statements all break the function execution:

return;

return true;

return false;

return x;

return x + y / 3;

Automatic Semicolon Insertion

The return statement is affected by automatic semicolon insertion (ASI). No line terminator is

allowed between the return keyword and the expression.

return

a + b;

is transformed by ASI into:

return;

DroidScript - Languaje Page 51

a + b;

The console will warn "unreachable code after return statement".

Starting with Gecko 40 , a warning is shown in the console if unreachable code is found after a

return statement.

Examples

return

The following function returns the square of its argument, x, where x is a number.

function square(x) {

 return x * x;

}

Interrupt a function

A function immediately stops at the point where return is called.

function counter() {

 for (var count = 1; ; count++) { // infinite loop

 console.log(count + "A"); // until 5

 if (count === 5) {

 return;

 }

 console.log(count + "B"); // until 4

 }

 console.log(count + "C"); // never appears

}

counter();

// Output:

// 1A

// 1B

DroidScript - Languaje Page 52

// 2A

// 2B

// 3A

// 3B

// 4A

// 4B

// 5A

Returning a function

See also the article about Closures.

function magic(x) {

 return function calc(x) { return x * 42 };

}

var answer = magic();

answer(1337); // 56154

do...while

The do...while statement creates a loop that executes a specified statement until the test

condition evaluates to false. The condition is evaluated after executing the statement, resulting in the

specified statement executing at least once.

Syntax
do

 statement

while (condition);

statement

A statement that is executed at least once and is re-executed each time the condition

evaluates to true. To execute multiple statements within the loop, use a block statement ({

... }) to group those statements.

condition

DroidScript - Languaje Page 53

An expression evaluated after each pass through the loop. If condition evaluates to true,

the statement is re-executed. When condition evaluates to false, control passes to the

statement following the do...while.

Examples

Using do...while

In the following example, the do...while loop iterates at least once and reiterates until i is no

longer less than 5.

var i = 0;

do {

 i += 1;

 console.log(i);

} while (i < 5);

for

The for statement creates a loop that consists of three optional expressions, enclosed in

parentheses and separated by semicolons, followed by a statement or a set of statements executed

in the loop.

Syntax
for ([initialization]; [condition]; [final-expression])

 statement

initialization

An expression (including assignment expressions) or variable declaration. Typically used to

initialize a counter variable. This expression may optionally declare new variables with

the var keyword. These variables are not local to the loop, i.e. they are in the same scope

the for loop is in. The result of this expression is discarded.

condition

An expression to be evaluated before each loop iteration. If this expression evaluates to

true, statement is executed. This conditional test is optional. If omitted, the condition always

DroidScript - Languaje Page 54

evaluates to true. If the expression evaluates to false, execution skips to the first expression

following the for construct.

final-expression

An expression to be evaluated at the end of each loop iteration. This occurs before the next

evaluation of condition. Generally used to update or increment the counter variable.

statement

A statement that is executed as long as the condition evaluates to true. To execute multiple

statements within the loop, use a block statement ({ ... }) to group those statements. To

execute no statement within the loop, use an empty statement (;).

Examples

Using for

The following for statement starts by declaring the variable i and initializing it to 0. It checks that i is

less than nine, performs the two succeeding statements, and increments i by 1 after each pass

through the loop.

for (var i = 0; i < 9; i++) {

 console.log(i);

 // more statements

}

Optional for expressions

All three expressions in the head of the for loop are optional.

For example, in the initialization block it is not required to initialize variables:

var i = 0;

for (; i < 9; i++) {

 console.log(i);

 // more statements

}

DroidScript - Languaje Page 55

Like the initialization block, the condition block is also optional. If you are omitting this expression,

you must make sure to break the loop in the body in order to not create an infinite loop.

for (var i = 0;; i++) {

 console.log(i);

 if (i > 3) break;

 // more statements

}

You can also omit all three blocks. Again, make sure to use a break statement to end the loop and

also modify (increase) a variable, so that the condition for the break statement is true at some point.

var i = 0;

for (;;) {

 if (i > 3) break;

 console.log(i);

 i++;

}

Using for with an empty statement

The following for cycle calculates the offset position of a node in the [final-expression] section, and

therefore it does not require the use of a statement or block statement section, an empty

statement is used instead.

function showOffsetPos (sId) {

 var nLeft = 0, nTop = 0;

 for (var oItNode = document.getElementById(sId); // initialization

 oItNode; // condition

 nLeft += oItNode.offsetLeft, nTop += oItNode.offsetTop, oItNode =

oItNode.offsetParent) // final-expression

 /* empty statement */ ;

 console.log("Offset position of \"" + sId + "\" element:\n left: " +

nLeft + "px;\n top: " + nTop + "px;");

DroidScript - Languaje Page 56

}

// Example call:

showOffsetPos("content");

// Output:

// "Offset position of "content" element:

// left: 0px;

// top: 153px;"

Note: In this case, when you do not use the statement section, a semicolon is put immediately

after the declaration of the cycle.

for...in

The for...in statement iterates over the enumerable properties of an object, in arbitrary order. For

each distinct property, statements can be executed.

Syntax
for (variable in object) {...

}

variable

A different property name is assigned to variable on each iteration.

object

Object whose enumerable properties are iterated.

Description

A for...in loop only iterates over enumerable properties. Objects created from builtâ€“in

constructors like Array and Object have inherited nonâ€“enumerable properties

from Object.prototype and String.prototype, such as String's indexOf() method

or Object's toString() method. The loop will iterate over all enumerable properties of the object itself

and those the object inherits from its constructor's prototype (properties closer to the object in the

prototype chain override prototypes' properties).

DroidScript - Languaje Page 57

Deleted, added or modified properties

A for...in loop iterates over the properties of an object in an arbitrary order (see

the delete operator for more on why one cannot depend on the seeming orderliness of iteration, at

least in a cross-browser setting). If a property is modified in one iteration and then visited at a later

time, its value in the loop is its value at that later time. A property that is deleted before it has been

visited will not be visited later. Properties added to the object over which iteration is occurring may

either be visited or omitted from iteration. In general it is best not to add, modify or remove properties

from the object during iteration, other than the property currently being visited. There is no guarantee

whether or not an added property will be visited, whether a modified property (other than the current

one) will be visited before or after it is modified, or whether a deleted property will be visited before it

is deleted.

Array iteration and for...in

Note: for...in should not be used to iterate over an Array where the index order is important.

Array indexes are just enumerable properties with integer names and are otherwise identical to

general Object properties. There is no guarantee that for...in will return the indexes in any

particular order and it will return all enumerable properties, including those with nonâ€“integer

names and those that are inherited.

Because the order of iteration is implementation-dependent, iterating over an array may not visit

elements in a consistent order. Therefore it is better to use a for loop with a numeric index

(or Array.prototype.forEach() or the for...of loop) when iterating over arrays where the order of

access is important.

Iterating over own properties only

If you only want to consider properties attached to the object itself, and not its prototypes,

use getOwnPropertyNames() or perform a hasOwnProperty() check (propertyIsEnumerable can

also be used). Alternatively, if you know there won't be any outside code interference, you can

extend built-in prototypes with a check method.

DroidScript - Languaje Page 58

Examples

The following function takes as its argument an object. It then iterates over all the object's

enumerable properties and returns a string of the property names and their values.

var obj = {a:1, b:2, c:3};

for (var prop in obj) {

 console.log("obj." + prop + " = " + obj[prop]);

}

// Output:

// "obj.a = 1"

// "obj.b = 2"

// "obj.c = 3"

The following function illustrates the use of hasOwnProperty(): the inherited properties are not

displayed.

var triangle = {a:1, b:2, c:3};

function ColoredTriangle() {

 this.color = "red";

}

ColoredTriangle.prototype = triangle;

var obj = new ColoredTriangle();

for (var prop in obj) {

 if(obj.hasOwnProperty(prop)) {

 console.log("obj." + prop + " = " + obj[prop]);

 }

}

// Output:

// "obj.color = red"

DroidScript - Languaje Page 59

Compatibility: Initializer expressions

Prior to SpiderMonkey 40 , it was possible to use an initializer expression (i=0) in a for...in loop:

var obj = {a:1, b:2, c:3};

for(var i=0 in obj) {

 console.log(obj[i]);

}

// 1

// 2

// 3

This non-standard behavior is now ignored in version 40 and later and will present

a SyntaxError ("for-in loop head declarations may not have initializers") warning in the console (and

).

Other engines like v8 (Chrome), Chakra (IE/Edge), and JSC (WebKit/Safari) are investigating to

remove the non-standard behavior as well.

for...of

The for...of statement creates a loop Iterating over iterable objects

(including Array, Map, Set, arguments object and so on), invoking a custom iteration hook with

statements to be executed for the value of each distinct property.

Syntax
for (variable of object) {

 statement

}

variable

On each iteration a value of a different property is assigned to variable.

object

Object whose enumerable properties are iterated.

DroidScript - Languaje Page 60

Examples

Difference between for...of and for...in

The following example shows the difference between a for...of loop and a for...in loop.

While for...in iterates over property names, for...of iterates over property values:

let arr = [3, 5, 7];

arr.foo = "hello";

for (let i in arr) {

 console.log(i); // logs "0", "1", "2", "foo"

}

for (let i of arr) {

 console.log(i); // logs "3", "5", "7"

}

Using Array.prototype.forEach()

To get the same property values the for...of loop would return, you can also use

the Array.prototype.forEach() method:

let arr = [3, 5, 7];

arr.foo = "hello";

arr.forEach(function (element, index) {

 console.log(element); // logs "3", "5", "7"

 console.log(index); // logs "0", "1", "2"

});

// or with Object.keys()

Object.keys(arr).forEach(function (element, index) {

 console.log(arr[element]); // logs "3", "5", "7", "hello"

 console.log(arr[index]); // logs "3", "5", "7", undefined

DroidScript - Languaje Page 61

});

Iterating over DOM collections

Iterating over DOM collections like : the following example adds a read class to paragraphs that are

direct descendants of an article:

// Note: This will only work in platforms that have

// implemented NodeList.prototype[Symbol.iterator]

let articleParagraphs = document.querySelectorAll("article > p");

for (let paragraph of articleParagraphs) {

 paragraph.classList.add("read");

}

Iterating over generators

You can also iterate over generators:

function* fibonacci() { // a generator function

 let [prev, curr] = [0, 1];

 while (true) {

 [prev, curr] = [curr, prev + curr];

 yield curr;

 }

}

for (let n of fibonacci()) {

 console.log(n);

 // truncate the sequence at 1000

 if (n >= 1000) {

 break;

 }

}

DroidScript - Languaje Page 62

while

The while statement creates a loop that executes a specified statement as long as the test

condition evaluates to true. The condition is evaluated before executing the statement.

Syntax
while (condition) {

 statement

}

condition

An expression evaluated before each pass through the loop. If this condition evaluates to

true, statement is executed. When condition evaluates to false, execution continues with the

statement after the while loop.

statement

A statement that is executed as long as the condition evaluates to true. To execute multiple

statements within the loop, use a block statement ({ ... }) to group those statements.

Examples

The following while loop iterates as long as n is less than three.

var n = 0;

var x = 0;

while (n < 3) {

 n++;

 x += n;

}

Each iteration, the loop increments n and adds it to x. Therefore, x and n take on the following

values:

 After the first pass: n = 1 and x = 1

 After the second pass: n = 2 and x = 3

 After the third pass: n = 3 and x = 6

DroidScript - Languaje Page 63

After completing the third pass, the condition n < 3 is no longer true, so the loop terminates.

function

The function keyword can be used to define a function inside an expression.

Syntax
function [name]([param1[, param2[, ..., paramN]]]) {

 statements

}

Parameters

Name The function name. Can be omitted, in which case the function is anonymous. The name is

only local to the function body.

paramN The name of an argument to be passed to the function.

statements

The statements which comprise the body of the function.

Description

A function expression is very similar to and has almost the same syntax as a function statement (see

function statement for details). The main difference between a function expression and a function

statement is the function name, which can be omitted in function expressions to

create anonymous functions. See also the chapter about functions for more information.

Examples

The following example defines an unnamed function and assigns it to x. The function returns the

square of its argument:

var x = function(y) {

 return y * y;

};

DroidScript - Languaje Page 64

Named function expression

If you want to refer to the current function inside the function body, you need to create a named

function expression. This name is then local only to the function body (scope). This also avoids using

the non-standard arguments.callee property.

var math = {

 'factorial': function factorial(n) {

 if (n <= 1)

 return 1;

 return n * factorial(n - 1);

 }

};

Array

Summary

The JavaScript Array object is a global object that is used in the construction of arrays; which are

high-level, list-like objects.

Create an Array

var fruits = ["Apple", "Banana"];

console.log(fruits.length);

// 2

Access (index into) an Array item

var first = fruits[0];

// Apple

var last = fruits[fruits.length - 1];

// Banana

Loop over an Array

DroidScript - Languaje Page 65

fruits.forEach(function (item, index, array) {

 console.log(item, index);

});

// Apple 0

// Banana 1

Add to the end of an Array

var newLength = fruits.push("Orange");

// ["Apple", "Banana", "Orange"]

Remove from the end of an Array

var last = fruits.pop(); // remove Orange (from the end)

// ["Apple", "Banana"];

Remove from the front of an Array

var first = fruits.shift(); // remove Apple from the front

// ["Banana"];

Add to the front of an Array

var newLength = fruits.unshift("Strawberry") // add to the front

// ["Strawberry", "Banana"];

Find the index of an item in the Array

fruits.push("Mango");

// ["Strawberry", "Banana", "Mango"]

var pos = fruits.indexOf("Banana");

// 1

Remove an item by Index Position

var removedItem = fruits.splice(pos, 1); // this is how to remove an item

// ["Strawberry", "Mango"]

DroidScript - Languaje Page 66

Copy an Array

var shallowCopy = fruits.slice(); // this is how to make a copy

// ["Strawberry", "Mango"]

Syntax
[element0, element1, ..., elementN]

new Array(element0, element1[, ...[, elementN]])

new Array(arrayLength)

elementN

A JavaScript array is initialized with the given elements, except in the case where a single

argument is passed to the Array constructor and that argument is a number. (See below.)

Note that this special case only applies to JavaScript arrays created with

the Array constructor, not array literals created with the bracket syntax.

arrayLength

If the only argument passed to the Array constructor is an integer between 0 and 2
32

-1

(inclusive), this returns a new JavaScript array with length set to that number. If the argument

is any other number, a RangeError exception is thrown.

Description

Arrays are list-like objects whose prototype has methods to perform traversal and mutation

operations. Neither the length of a JavaScript array nor the types of its elements are fixed. Since an

array's size length grow or shrink at any time, JavaScript arrays are not guaranteed to be dense. In

general, these are convenient characteristics; but if these features are not desirable for your

particular use, you might consider using typed arrays.

Some people think that you shouldn't use an array as an associative array. In any case, you can use

plain objects instead, although doing so comes with its own caveats. See the post Lightweight

JavaScript dictionaries with arbitrary keys as an example.

Accessing array elements

JavaScript arrays are zero-indexed: the first element of an array is at index 0, and the last element is

at the index equal to the value of the array's length property minus 1.

DroidScript - Languaje Page 67

var arr = ['this is the first element', 'this is the second element'];

console.log(arr[0]); // logs 'this is the first element'

console.log(arr[1]); // logs 'this is the second element'

console.log(arr[arr.length - 1]); // logs 'this is the second element'

Array elements are object properties in the same way that toString is a property, but trying to

access an element of an array as follows throws a syntax error, because the property name is not

valid:

console.log(arr.0); // a syntax error

There is nothing special about JavaScript arrays and the properties that cause this. JavaScript

properties that begin with a digit cannot be referenced with dot notation; and must be accessed

using bracket notation. For example, if you had an object with a property named '3d', it can only be

referenced using bracket notation. E.g.:

var years = [1950, 1960, 1970, 1980, 1990, 2000, 2010];

console.log(years.0); // a syntax error

console.log(years[0]); // works properly

renderer.3d.setTexture(model, 'character.png'); // a syntax error

renderer['3d'].setTexture(model, 'character.png'); // works properly

Note that in the 3d example, '3d' had to be quoted. It's possible to quote the JavaScript array

indexes as well (e.g., years['2'] instead of years[2]), although it's not necessary. The 2

in years[2] is coerced into a string by the JavaScript engine through an

implicit toString conversion. It is for this reason that '2' and '02' would refer to two different slots

on the years object and the following example could be true:

console.log(years['2'] != years['02']);

Similarly, object properties which happen to be reserved words(!) can only be accessed as string

literals in bracket notation(but it can be accessed by dot notation in firefox 40.0a2 at least):

var promise = {

 'var' : 'text',

 'array': [1, 2, 3, 4]

};

DroidScript - Languaje Page 68

console.log(promise['array']);

Relationship between length and numerical properties

A JavaScript array's length property and numerical properties are connected. Several of the built-in

array methods (e.g., join, slice, indexOf, etc.) take into account the value of an

array's length property when they're called. Other methods (e.g., push, splice, etc.) also result in

updates to an array's length property.

var fruits = [];

fruits.push('banana', 'apple', 'peach');

console.log(fruits.length); // 3

When setting a property on a JavaScript array when the property is a valid array index and that

index is outside the current bounds of the array, the engine will update the array's length property

accordingly:

fruits[5] = 'mango';

console.log(fruits[5]); // 'mango'

console.log(Object.keys(fruits)); // ['0', '1', '2', '5']

console.log(fruits.length); // 6

Increasing the length.

fruits.length = 10;

console.log(Object.keys(fruits)); // ['0', '1', '2', '5']

console.log(fruits.length); // 10

Decreasing the length property does, however, delete elements.

fruits.length = 2;

console.log(Object.keys(fruits)); // ['0', '1']

console.log(fruits.length); // 2

This is explained further on the Array.length page.

Creating an array using the result of a match

DroidScript - Languaje Page 69

The result of a match between a regular expression and a string can create a JavaScript array. This

array has properties and elements which provide information about the match. Such an array is

returned by RegExp.exec, String.match, and String.replace. To help explain these properties and

elements, look at the following example and then refer to the table below:

// Match one d followed by one or more b's followed by one d

// Remember matched b's and the following d

// Ignore case

var myRe = /d(b+)(d)/i;

var myArray = myRe.exec('cdbBdbsbz');

The properties and elements returned from this match are as follows:

Property/Element Description Example

input
A read-only property that reflects the original string against which

the regular expression was matched.
cdbBdbsbz

index
A read-only property that is the zero-based index of the match in

the string.
1

[0] A read-only element that specifies the last matched characters. dbBd

[1], ...[n]

Read-only elements that specify the parenthesized substring

matches, if included in the regular expression. The number of

possible parenthesized substrings is unlimited.

[1]: bB

[2]: d

Properties
Array.length

The Array constructor's length property whose value is 1.

Array.prototype

Allows the addition of properties to all array objects.

DroidScript - Languaje Page 70

Methods
Array.isArray()

Returns true if a variable is an array, if not false.

Array instances

All Array instances inherit from Array.prototype. The prototype object of the Array constructor can

be modified to affect all Array instances.

Properties

Methods

Mutator methods

Accessor methods

Iteration methods

Array generic methods

Array generics are non-standard, deprecated and will get removed near future. Note that you

can not rely on them cross-browser. However, there is a shim available on GitHub.

Sometimes you would like to apply array methods to strings or other array-like objects (such as

function arguments). By doing this, you treat a string as an array of characters (or otherwise treat a

non-array as an array). For example, in order to check that every character in the variable str is a

letter, you would write:

function isLetter(character) {

 return character >= 'a' && character <= 'z';

}

if (Array.prototype.every.call(str, isLetter)) {

 console.log("The string '" + str + "' contains only letters!");

}

DroidScript - Languaje Page 71

This notation is rather wasteful and JavaScript 1.6 introduced a generic shorthand:

if (Array.every(str, isLetter)) {

 console.log("The string '" + str + "' contains only letters!");

}

Generics are also available on String.

These are not part of ECMAScript standards (though the ES6 Array.from() can be used to achieve

this). The following is a shim to allow its use in all browsers:

// Assumes Array extras already present (one may use polyfills for these

as well)

(function() {

 'use strict';

 var i,

 // We could also build the array of methods with the following, but

the

 // getOwnPropertyNames() method is non-shimable:

 // Object.getOwnPropertyNames(Array).filter(function(methodName) {

 // return typeof Array[methodName] === 'function'

 // });

 methods = [

 'join', 'reverse', 'sort', 'push', 'pop', 'shift', 'unshift',

 'splice', 'concat', 'slice', 'indexOf', 'lastIndexOf',

 'forEach', 'map', 'reduce', 'reduceRight', 'filter',

 'some', 'every', 'find', 'findIndex', 'entries', 'keys',

 'values', 'copyWithin', 'includes'

],

 methodCount = methods.length,

 assignArrayGeneric = function(methodName) {

 if (!Array[methodName]) {

 var method = Array.prototype[methodName];

 if (typeof method === 'function') {

 Array[methodName] = function() {

 return method.call.apply(method, arguments);

DroidScript - Languaje Page 72

 };

 }

 }

 };

 for (i = 0; i < methodCount; i++) {

 assignArrayGeneric(methods[i]);

 }

}());

Examples

Creating an array

The following example creates an array, msgArray, with a length of 0, then assigns values

to msgArray[0] and msgArray[99], changing the length of the array to 100.

var msgArray = [];

msgArray[0] = 'Hello';

msgArray[99] = 'world';

if (msgArray.length === 100) {

 console.log('The length is 100.');

}

Creating a two-dimensional array

The following creates a chess board as a two dimensional array of strings. The first move is made by

copying the 'p' in (6,4) to (4,4). The old position (6,4) is made blank.

var board = [

 ['R','N','B','Q','K','B','N','R'],

 ['P','P','P','P','P','P','P','P'],

 [' ',' ',' ',' ',' ',' ',' ',' '],

 [' ',' ',' ',' ',' ',' ',' ',' '],

 [' ',' ',' ',' ',' ',' ',' ',' '],

 [' ',' ',' ',' ',' ',' ',' ',' '],

DroidScript - Languaje Page 73

 ['p','p','p','p','p','p','p','p'],

 ['r','n','b','q','k','b','n','r']];

console.log(board.join('\n') + '\n\n');

// Move King's Pawn forward 2

board[4][4] = board[6][4];

board[6][4] = ' ';

console.log(board.join('\n'));

Here is the output:

R,N,B,Q,K,B,N,R

P,P,P,P,P,P,P,P

 , , , , , , ,

 , , , , , , ,

 , , , , , , ,

 , , , , , , ,

p,p,p,p,p,p,p,p

r,n,b,q,k,b,n,r

R,N,B,Q,K,B,N,R

P,P,P,P,P,P,P,P

 , , , , , , ,

 , , , , , , ,

 , , , ,p, , ,

 , , , , , , ,

p,p,p,p, ,p,p,p

r,n,b,q,k,b,n,r

Object initializer

Objects can be initialized using new Object(), Object.create(), or using the literal notation

(initializer notation). An object initializer is a list of zero or more pairs of property names and

associated values of an object, enclosed in curly braces ({}).

DroidScript - Languaje Page 74

Syntax
var o = {};

var o = { a: "foo", b: 42, c: {} };

var a = "foo", b = 42, c = {};

var o = { a: a, b: b, c: c };

var o = {

 property: function ([parameters]) {},

 get property() {},

 set property(value) {},

};

New notations in ECMAScript 6

Please see the compatibility table for support for these notations. In non-supporting environments,

these notations will lead to syntax errors.

// Shorthand property names (ES6)

var a = "foo", b = 42, c = {};

var o = { a, b, c };

// Shorthand method names (ES6)

var o = {

 property([parameters]) {},

 get property() {},

 set property(value) {},

 * generator() {}

};

// Computed property names (ES6)

var prop = "foo";

var o = {

 [prop]: "hey",

 ["b" + "ar"]: "there",

};

DroidScript - Languaje Page 75

Description

An object initializer is an expression that describes the initialization of an Object. Objects consist

of properties, which are used to describe an object. Values of object properties can either contain

primitive data types or other objects.

Creating objects

An empty object with no properties can be created like this:

var object = {};

However, the advantage of the literal or initializer notation is, that you are able to quickly create

objects with properties inside the curly braces. You simply notate a list of key: value pairs delimited

by comma. The following code creates an object with three properties and the keys are "foo", "age"

and "baz". The values of these keys are a string "bar", a number 42 and the third property has

another object as its value.

var object = {

 foo: "bar",

 age: 42,

 baz: { myProp: 12 },

}

Accessing properties

Once you have created an object, you might want to read or change them. Object properties can be

accessed by using the dot notation or the bracket notation. See property accessors for detailed

information.

object.foo; // "bar"

object["age"]; // 42

object.foo = "baz";

Property definitions

DroidScript - Languaje Page 76

We have already learned how to notate properties using the initializer syntax. Oftentimes, there are

variables in your code that you would like to put into an object. You will see code like this:

var a = "foo",

 b = 42,

 c = {};

var o = {

 a: a,

 b: b,

 c: c

};

With ECMAScript 6, there is a shorter notation available to achieve the same:

var a = "foo",

 b = 42,

 c = {};

// Shorthand property names (ES6)

var o = { a, b, c };

Duplicate property names

When using the same name for your properties, the second property will overwrite the first.

var a = {x: 1, x: 2};

console.log(a); // { x: 2}

In ECMAScript 5 strict mode code, duplicate property names were considered a SyntaxError. With

the introduction of computed property names making duplication possible at runtime, ECMAScript 6

has removed this restriction.

function haveES6DuplicatePropertySemantics(){

 "use strict";

 try {

 ({ prop: 1, prop: 2 });

DroidScript - Languaje Page 77

 // No error thrown, duplicate property names allowed in strict mode

 return true;

 } catch (e) {

 // Error thrown, duplicates prohibited in strict mode

 return false;

 }

}

Method definitions

A property of an object can also refer to a function or a getter or setter method.

var o = {

 property: function ([parameters]) {},

 get property() {},

 set property(value) {},

};

In ECMAScript 6, a shorthand notation is available, so that the keyword "function" is no longer

necessary.

// Shorthand method names (ES6)

var o = {

 property([parameters]) {},

 get property() {},

 set property(value) {},

 * generator() {}

};

In ECMAScript 6 There is a way to concisely define properties whose values are generator

functions:

var o = {

 * generator() {

 }

};

DroidScript - Languaje Page 78

In ECMAScript 5 you would write it like this (but note that ES5 has no generators):

var o = {

 generatorMethod: function *() {

 }

};

For more information and examples about methods, see method definitions.

Computed property names

Starting with ECMAScript 6, the object initializer syntax also supports computed property names.

That allows you to put an expression in brackets [], that will be computed as the property name.

This is symmetrically to the bracket notation of the property accessor syntax, which you might have

used to read and set properties already. Now you can use the same syntax in object literals, too:

// Computed property names (ES6)

var i = 0;

var a = {

 ["foo" + ++i]: i,

 ["foo" + ++i]: i,

 ["foo" + ++i]: i

};

console.log(a.foo1); // 1

console.log(a.foo2); // 2

console.log(a.foo3); // 3

var param = 'size';

var config = {

 [param]: 12,

 ["mobile" + param.charAt(0).toUpperCase() + param.slice(1)]: 4

};

console.log(config); // { size: 12, mobileSize: 4 }

DroidScript - Languaje Page 79

Prototype mutation

A property definition of the form __proto__: value or "__proto__": value does not create a

property with the name __proto__. Instead, if the provided value is an object or null, it changes

the [[Prototype]] of the created object to that value. (If the value is not an object or null, the object

is not changed.)

var obj1 = {};

assert(Object.getPrototypeOf(obj1) === Object.prototype);

var obj2 = { __proto__: null };

assert(Object.getPrototypeOf(obj2) === null);

var protoObj = {};

var obj3 = { "__proto__": protoObj };

assert(Object.getPrototypeOf(obj3) === protoObj);

var obj4 = { __proto__: "not an object or null" };

assert(Object.getPrototypeOf(obj4) === Object.prototype);

assert(!obj4.hasOwnProperty("__proto__"));

Only a single prototype mutation is permitted in an object literal: multiple prototype mutations are a

syntax error.

Property definitions that do not use "colon" notation are not prototype mutations: they are property

definitions that behave identically to similar definitions using any other name.

var __proto__ = "variable";

var obj1 = { __proto__ };

assert(Object.getPrototypeOf(obj1) === Object.prototype);

assert(obj1.hasOwnProperty("__proto__"));

assert(obj1.__proto__ === "variable");

var obj2 = { __proto__() { return "hello"; } };

assert(obj2.__proto__() === "hello");

DroidScript - Languaje Page 80

var obj3 = { ["__prot" + "o__"]: 17 };

assert(obj3.__proto__ === 17);

Object literal notation vs JSON

The object literal notation is not the same as the JavaScript Object Notation (JSON). Although they

look similar, there are differences between them:

 JSON permits only property definition using "property": value syntax. The property name

must be double-quoted, and the definition cannot be a shorthand.

 In JSON the values can only be strings, numbers, arrays, true, false, null, or another

(JSON) object.

 A function value (see "Methods" above) can not be assigned to a value in JSON.

 Objects like Date will be a string after JSON.parse().

 JSON.parse() will reject computed property names and an error will be thrown.

RegExp

The RegExp constructor creates a regular expression object for matching text with a pattern.

For an introduction to regular expressions, read the Regular Expressions chapter in the JavaScript

Guide.

Constructor

Literal and constructor notations are possible:

/pattern/flags

new RegExp(pattern[, flags])

Parameters

pattern

The text of the regular expression.

Flags If specified, flags can have any combination of the following values:

g

DroidScript - Languaje Page 81

global match

i

ignore case

m

multiline; treat beginning and end characters (^ and $) as working over multiple lines (i.e.,

match the beginning or end of each line (delimited by \n or \r), not only the very beginning or

end of the whole input string)

Description

There are 2 ways to create a RegExp object: a literal notation and a constructor. To indicate strings,

the parameters to the literal notation do not use quotation marks while the parameters to the

constructor function do use quotation marks. So the following expressions create the same regular

expression:

/ab+c/i;

new RegExp('ab+c', 'i');

new RegExp(/ab+c/, 'i');

The literal notation provides compilation of the regular expression when the expression is evaluated.

Use literal notation when the regular expression will remain constant. For example, if you use literal

notation to construct a regular expression used in a loop, the regular expression won't be recompiled

on each iteration.

The constructor of the regular expression object, for example, new RegExp('ab+c'), provides

runtime compilation of the regular expression. Use the constructor function when you know the

regular expression pattern will be changing, or you don't know the pattern and are getting it from

another source, such as user input.

Starting with ECMAScript 6, new RegExp(/ab+c/, 'i') no longer throws a TypeError ("can't supply

flags when constructing one RegExp from another") when the first argument is a RegExp and the

second flags argument is present. A new RegExp from the arguments is created instead.

When using the constructor function, the normal string escape rules (preceding special characters

with \ when included in a string) are necessary. For example, the following are equivalent:

DroidScript - Languaje Page 82

var re = /\w+/;

var re = new RegExp('\\w+');

Special characters meaning in regular expressions

 Character Classes

 Character Sets

 Boundaries

 Grouping and back references

 Quantifiers

Character Classes

Character Meaning

.

(The dot, the decimal point) matches any single character except line

terminators: \n, \r, \u2028 or \u2029.

Inside character class, the dot loses its special meaning and matches a literal

dot.

Note that the m multiline flag doesn't change the dot behavior. So to match a

pattern across multiple lines, the character set [^] can be used (if you don't

mean an old version of IE, of course), it will match any character including

newlines.

For example, /.y/ matches "my" and "ay", but not "yes", in "yes make my

day".

\d
Matches a digit character in the basic Latin alphabet. Equivalent to [0-9].

For example, /\d/ or /[0-9]/ matches "2" in "B2 is the suite number".

\D

Matches any character that is not a digit in the basic Latin alphabet.

Equivalent to [^0-9].

For example, /\D/ or /[^0-9]/ matches "B" in "B2 is the suite number".

DroidScript - Languaje Page 83

\w

Matches any alphanumeric character from the basic Latin alphabet, including

the underscore. Equivalent to [A-Za-z0-9_].

For example, /\w/ matches "a" in "apple", "5" in "$5.28", and "3" in "3D".

\W

Matches any character that is not a word character from the basic Latin

alphabet. Equivalent to [^A-Za-z0-9_].

For example, /\W/ or /[^A-Za-z0-9_]/ matches "%" in "50%".

\s

Matches a single white space character, including space, tab, form feed, line

feed and other Unicode spaces. Equivalent to [

\f\n\r\t\vâ€‹\u00a0\u1680â€‹\u180e\u2000â€‹-

\u200aâ€‹\u2028\u2029\u202f\u205fâ€‹\u3000\ufeff].

For example, /\s\w*/ matches " bar" in "foo bar".

\S

Matches a single character other than white space. Equivalent to [^

\f\n\r\t\vâ€‹\u00a0\u1680â€‹\u180e\u2000â€‹-

\u200aâ€‹\u2028\u2029\u202f\u205fâ€‹\u3000\ufeff].

For example, /\S\w*/ matches "foo" in "foo bar".

\t Matches a horizontal tab.

\r Matches a carriage return.

\n Matches a linefeed.

\v Matches a vertical tab.

\f Matches a form-feed.

[\b] Matches a backspace. (Not to be confused with \b)

\0 Matches a NUL character. Do not follow this with another digit.

\cX Where X is a letter from A - Z. Matches a control character in a string.

DroidScript - Languaje Page 84

For example, /\cM/ matches control-M in a string.

\xhh Matches the character with the code hh (two hexadecimal digits).

\uhhhh Matches the character with the Unicode value hhhh (four hexadecimal digits).

\

For characters that are usually treated literally, indicates that the next

character is special and not to be interpreted literally.

For example, /b/ matches the character "b". By placing a backslash in front of

"b", that is by using /\b/, the character becomes special to mean match a

word boundary.

or

For characters that are usually treated specially, indicates that the next

character is not special and should be interpreted literally.

For example, "*" is a special character that means 0 or more occurrences of

the preceding character should be matched; for example, /a*/ means match

0 or more "a"s. To match * literally, precede it with a backslash; for

example, /a*/ matches "a*".

Character Sets

Character Meaning

[xyz]

A character set. Matches any one of the enclosed characters. You can

specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a-d]. They match the "b" in "brisket" and

the "c" in "chop".

[^xyz]

A negated or complemented character set. That is, it matches anything that is

not enclosed in the brackets. You can specify a range of characters by using

a hyphen.

DroidScript - Languaje Page 85

For example, [^abc] is the same as [^a-c]. They initially match "o" in "bacon"

and "h" in "chop".

Alternation

Character Meaning

x|y

Matches either x or y.

For example, /green|red/ matches "green" in "green apple" and "red" in "red

apple".

Boundaries

Character Meaning

^

Matches beginning of input. If the multiline flag is set to true, also matches

immediately after a line break character.

For example, /^A/ does not match the "A" in "an A", but does match the first

"A" in "An A".

$

Matches end of input. If the multiline flag is set to true, also matches

immediately before a line break character.

For example, /t$/ does not match the "t" in "eater", but does match it in "eat".

\b

Matches a zero-width word boundary, such as between a letter and a space.

(Not to be confused with [\b])

For example, /\bno/ matches the "no" in "at noon"; /ly\b/ matches the "ly" in

"possibly yesterday".

\B

Matches a zero-width non-word boundary, such as between two letters or

between two spaces.

For example, /\Bon/ matches "on" in "at noon", and /ye\B/ matches "ye" in

"possibly yesterday".

DroidScript - Languaje Page 86

Grouping and back references

Character Meaning

(x)

Matches x and remembers the match. These are called capturing groups.

For example, /(foo)/ matches and remembers "foo" in "foo bar".

The capturing groups are numbered according to the order of left parentheses

of capturing groups, starting from 1. The matched substring can be recalled

from the resulting array's elements [1], ..., [n] or from the

predefined RegExp object's properties $1, ..., $9.

Capturing groups have a performance penalty. If you don't need the matched

substring to be recalled, prefer non-capturing parentheses (see below).

\n

Where n is a positive integer. A back reference to the last substring matching

the n parenthetical in the regular expression (counting left parentheses).

For example, /apple(,)\sorange\1/ matches "apple, orange," in "apple,

orange, cherry, peach". A more complete example follows this table.

(?:x)

Matches x but does not remember the match. These are called non-capturing

groups. The matched substring can not be recalled from the resulting array's

elements [1], ..., [n] or from the predefined RegExp object's properties $1, ...,

$9.

Quantifiers

Character Meaning

x*

Matches the preceding item x 0 or more times.

For example, /bo*/ matches "boooo" in "A ghost booooed" and "b" in "A bird

warbled", but nothing in "A goat grunted".

x+ Matches the preceding item x 1 or more times. Equivalent to {1,}.

DroidScript - Languaje Page 87

For example, /a+/ matches the "a" in "candy" and all the "a"'s in

"caaaaaaandy".

x*?

x+?

Matches the preceding item x like * and + from above, however the match is

the smallest possible match.

For example, /".*?"/ matches '"foo"' in '"foo" "bar"' and does not match '"foo"

"bar"' as without the ? behind the *.

x?

Matches the preceding item x 0 or 1 time.

For example, /e?le?/ matches the "el" in "angel" and the "le" in "angle."

If used immediately after any of the quantifiers *, +, ?, or {}, makes the

quantifier non-greedy (matching the minimum number of times), as opposed

to the default, which is greedy (matching the maximum number of times).

x{n}

Where n is a positive integer. Matches exactly n occurrences of the preceding

item x.

For example, /a{2}/ doesn't match the "a" in "candy", but it matches all of the

"a"'s in "caandy", and the first two "a"'s in "caaandy".

x{n,}

Where n is a positive integer. Matches at least n occurrences of the preceding

item x.

For example, /a{2,}/ doesn't match the "a" in "candy", but matches all of the

a's in "caandy" and in "caaaaaaandy".

x{n,m}

Where n and m are positive integers. Matches at least n and at

most m occurrences of the preceding item x.

For example, /a{1,3}/ matches nothing in "cndy", the "a" in "candy", the two

"a"'s in "caandy", and the first three "a"'s in "caaaaaaandy". Notice that when

matching "caaaaaaandy", the match is "aaa", even though the original string

had more "a"'s in it.

DroidScript - Languaje Page 88

Assertions

Character Meaning

x(?=y)

Matches x only if x is followed by y.

For example, /Jack(?=Sprat)/ matches "Jack" only if it is followed by "Sprat".

/Jack(?=Sprat|Frost)/ matches "Jack" only if it is followed by "Sprat" or

"Frost". However, neither "Sprat" nor "Frost" is part of the match results.

x(?!y)

Matches x only if x is not followed by y.

For example, /\d+(?!\.)/ matches a number only if it is not followed by a

decimal point.

/\d+(?!\.)/.exec('3.141') matches "141" but not "3.141".

Properties
RegExp.prototype

Allows the addition of properties to all objects.

RegExp.length

The value of RegExp.length is 2.

RegExp.lastIndex

The index at which to start the next match.

Methods

The global RegExp object has no methods of its own, however, it does inherit some methods through

the prototype chain.

RegExp prototype objects and instances

Properties

Methods

DroidScript - Languaje Page 89

Examples

Using a regular expression to change data format

The following script uses the replace() method of the String instance to match a name in the

format first last and output it in the format last, first. In the replacement text, the script

uses $1 and $2 to indicate the results of the corresponding matching parentheses in the regular

expression pattern.

var re = /(\w+)\s(\w+)/;

var str = 'John Smith';

var newstr = str.replace(re, '$2, $1');

console.log(newstr);

This displays "Smith, John".

Using regular expression to split lines with different line endings/ends of

line/line breaks

The default line ending varies depending on the platform (Unix, Windows, etc.). The line splitting

provided in this example works on all platforms.

var text = 'Some text\nAnd some more\r\nAnd yet\rThis is the end';

var lines = text.split(/\r\n|\r|\n/);

console.log(lines); // logs ['Some text', 'And some more', 'And yet',

'This is the end']

Note that the order of the patterns in the regular expression matters.

Using regular expression on multiple lines

var s = 'Please yes\nmake my day!';

s.match(/yes.*day/);

// Returns null

s.match(/yes[^]*day/);

// Returns 'yes\nmake my day'

DroidScript - Languaje Page 90

Using a regular expression with the "sticky" flag

This example demonstrates how one could use the sticky flag on regular expressions to match

individual lines of multiline input.

var text = 'First line\nSecond line';

var regex = /(\S+) line\n?/y;

var match = regex.exec(text);

console.log(match[1]); // logs 'First'

console.log(regex.lastIndex); // logs '11'

var match2 = regex.exec(text);

console.log(match2[1]); // logs 'Second'

console.log(regex.lastIndex); // logs '22'

var match3 = regex.exec(text);

console.log(match3 === null); // logs 'true'

One can test at run-time whether the sticky flag is supported, using try { â€¦ } catch { â€¦ }.

For this, either an eval(â€¦) expression or the RegExp(regex-string, flags-string) syntax must

be used (since the /regex/flags notation is processed at compile-time, so throws an exception

before the catch block is encountered). For example:

var supports_sticky;

try { RegExp('', 'y'); supports_sticky = true; }

catch(e) { supports_sticky = false; }

console.log(supports_sticky); // logs 'true'

Regular expression and Unicode characters

As mentioned above, \w or \W only matches ASCII based characters; for example, "a" to "z", "A" to

"Z", "0" to "9" and "_". To match characters from other languages such as Cyrillic or Hebrew,

use \uhhhh, where "hhhh" is the character's Unicode value in hexadecimal. This example

demonstrates how one can separate out Unicode characters from a word.

var text = 'ÐžÐ±Ñ€Ð°Ð·ÐµÑ† text Ð½Ð° Ñ€ÑƒÑ�Ñ�ÐºÐ¾Ð¼ Ñ�Ð·Ñ‹ÐºÐµ';

DroidScript - Languaje Page 91

var regex = /[\u0400-\u04FF]+/g;

var match = regex.exec(text);

console.log(match[0]); // logs 'ÐžÐ±Ñ€Ð°Ð·ÐµÑ†'

console.log(regex.lastIndex); // logs '7'

var match2 = regex.exec(text);

console.log(match2[0]); // logs 'Ð½Ð°' [did not log 'text']

console.log(regex.lastIndex); // logs '15'

// and so on

Here's an external resource for getting the complete Unicode block range for different scripts:

Regexp-unicode-block.

Extracting sub-domain name from URL

var url = 'http://xxx.domain.com';

console.log(/[^.]+/.exec(url)[0].substr(7)); // logs 'xxx'

[1] Behind a flag.

Gecko-specific notes

Starting with Gecko 34 , in the case of a capturing group with quantifiers preventing its exercise, the

matched text for a capturing group is now undefined instead of an empty string:

// Firefox 33 or older

'x'.replace(/x(.)?/g, function(m, group) {

 console.log("'group:" + group + "'");

}); // 'group:'

// Firefox 34 or newer

'x'.replace(/x(.)?/g, function(m, group) {

 console.log("'group:" + group + "'");

}); // 'group:undefined'

DroidScript - Languaje Page 92

Note that due to web compatibility, RegExp.$N will still return an empty string instead of undefined ().

Grouping

The grouping operator () controls the precedence of evaluation in expressions.

Syntax
 ()

Description

The grouping operator consists of a pair of parentheses around an expression or sub-expression to

override the normal operator precedence so that expressions with lower precedence can be

evaluated before an expression with higher priority.

Examples

Overriding multiplication and division first, then addition and subtraction to evaluate addition first.

var a = 1;

var b = 2;

var c = 3;

// default precedence

a + b * c // 7

// evaluated by default like this

a + (b * c) // 7

// now overriding precedence

// addition before multiplication

(a + b) * c // 9

// which is equivalent to

a * c + b * c // 9

DroidScript - Languaje Page 93

Property accessors

Property accessors provide access to an object's properties by using the dot notation or the bracket

notation.

Syntax
object.property

object["property"]

Description

One can think of an object as an associative array (a.k.a. map, dictionary, hash, lookup table).

The keys in this array are the names of the object's properties. It's typical when speaking of an

object's properties to make a distinction between properties and methods. However, the

property/method distinction is little more than a convention. A method is simply a property that can

be called, for example if it has a reference to a Function instance as its value.

There are two ways to access properties: dot notation and bracket notation.

Dot notation

get = object.property;

object.property = set;

In this code, property must be a valid JavaScript identifier, i.e. a sequence of alphanumerical

characters, also including the underscore ("_") and dollar sign ("$"), that cannot start with a number.

For example, object.$1 is valid, while object.1 is not.

document.createElement('pre');

Here, the method named "createElement" is retrieved from document and is called.

Bracket notation

get = object[property_name];

object[property_name] = set;

DroidScript - Languaje Page 94

property_name is a string. The string does not have to be a valid identifier; it can have any value,

e.g. "1foo", "!bar!", or even " " (a space).

document['createElement']('pre');

This does the exact same thing as the previous example.

Property names

Property names must be strings. This means that non-string objects cannot be used as keys in the

object. Any non-string object, including a number, is typecasted into a string via the toString method.

var object = {};

object['1'] = 'value';

console.log(object[1]);

This outputs "value", since 1 is type-casted into '1'.

var foo = {unique_prop: 1}, bar = {unique_prop: 2}, object = {};

object[foo] = 'value';

console.log(object[bar]);

This also outputs "value", since both foo and bar are converted to the same string. In the

SpiderMonkey JavaScript engine, this string would be "['object Object']".

Method binding

A method is not bound to the object that it is a method of. Specifically, this is not fixed in a method,

i.e., this does not necessarily refer to an object containing the method. this is instead "passed" by

the function call. See method binding.

Note on eval

JavaScript novices often make the mistake of using eval where the bracket notation can be used

instead. For example, the following syntax is often seen in many scripts.

x = eval('document.forms.form_name.elements.' + strFormControl +

'.value');

DroidScript - Languaje Page 95

eval is slow and should be avoided whenever possible. Also, strFormControl would have to hold

an identifier, which is not required for names and IDs of form controls. It is better to use bracket

notation instead:

x = document.forms["form_name"].elements[strFormControl].value;

new

The new operator creates an instance of a user-defined object type or of one of the built-in object

types that has a constructor function.

Syntax
new constructor[([arguments])]

Parameters

constructor

A function that specifies the type of the object instance.

arguments

A list of values that the constructor will be called with.

Description

Creating a user-defined object requires two steps:

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its name and properties.

An object can have a property that is itself another object. See the examples below.

When the code new Foo(...) is executed, the following things happen:

1. A new object is created, inheriting from Foo.prototype.

DroidScript - Languaje Page 96

2. The constructor function Foo is called with the specified arguments and this bound to the

newly created object. new Foo is equivalent to new Foo(), i.e. if no argument list is

specified, Foo is called without arguments.

3. The object returned by the constructor function becomes the result of the

whole new expression. If the constructor function doesn't explicitly return an object, the object

created in step 1 is used instead. (Normally constructors don't return a value, but they can

choose to do so if they want to override the normal object creation process.)

You can always add a property to a previously defined object. For example, the

statement car1.color = "black" adds a property color to car1, and assigns it a value of "black".

However, this does not affect any other objects. To add the new property to all objects of the same

type, you must add the property to the definition of the Car object type.

You can add a shared property to a previously defined object type by using

the Function.prototype property. This defines a property that is shared by all objects created with

that function, rather than by just one instance of the object type. The following code adds a color

property with value null to all objects of type car, and then overwrites that value with the string

"black" only in the instance object car1. For more information, see prototype.

function Car() {}

car1 = new Car();

console.log(car1.color); // undefined

Car.prototype.color = null;

console.log(car1.color); // null

car1.color = "black";

console.log(car1.color); // black

Examples

Object type and object instance

Suppose you want to create an object type for cars. You want this type of object to be called car,

and you want it to have properties for make, model, and year. To do this, you would write the

following function:

DroidScript - Languaje Page 97

function Car(make, model, year) {

 this.make = make;

 this.model = model;

 this.year = year;

}

Now you can create an object called mycar as follows:

var mycar = new Car("Eagle", "Talon TSi", 1993);

This statement creates mycar and assigns it the specified values for its properties. Then the value

of mycar.make is the string "Eagle", mycar.year is the integer 1993, and so on.

You can create any number of car objects by calls to new. For example:

var kenscar = new Car("Nissan", "300ZX", 1992);

Object property that is itself another object

Suppose you define an object called person as follows:

function Person(name, age, sex) {

 this.name = name;

 this.age = age;

 this.sex = sex;

}

And then instantiate two new person objects as follows:

var rand = new Person("Rand McNally", 33, "M");

var ken = new Person("Ken Jones", 39, "M");

Then you can rewrite the definition of car to include an owner property that takes a person object, as

follows:

function Car(make, model, year, owner) {

 this.make = make;

 this.model = model;

DroidScript - Languaje Page 98

 this.year = year;

 this.owner = owner;

}

To instantiate the new objects, you then use the following:

var car1 = new Car("Eagle", "Talon TSi", 1993, rand);

var car2 = new Car("Nissan", "300ZX", 1992, ken);

Instead of passing a literal string or integer value when creating the new objects, the above

statements pass the objects rand and ken as the parameters for the owners. To find out the name of

the owner of car2, you can access the following property:

car2.owner.name

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their operands and

return a single numerical value. The standard arithmetic operators are addition (+), subtraction (-),

multiplication (*), and division (/).

Addition (+)

The addition operator produces the sum of numeric operands or string concatenation.

Syntax

Operator: x + y

Examples

// Number + Number -> addition

1 + 2 // 3

// Boolean + Number -> addition

true + 1 // 2

// Boolean + Boolean -> addition

DroidScript - Languaje Page 99

false + false // 0

// Number + String -> concatenation

5 + "foo" // "5foo"

// String + Boolean -> concatenation

"foo" + false // "foofalse"

// String + String -> concatenation

"foo" + "bar" // "foobar"

Subtraction (-)

The subtraction operator subtracts the two operands, producing their difference.

Syntax

Operator: x - y

Examples

5 - 3 // 2

3 - 5 // -2

"foo" - 3 // NaN

Division (/)

The division operator produces the quotient of its operands where the left operand is the dividend

and the right operand is the divisor.

Syntax

Operator: x / y

Examples

1 / 2 // returns 0.5 in JavaScript

DroidScript - Languaje Page 100

1 / 2 // returns 0 in Java

// (neither number is explicitly a floating point number)

1.0 / 2.0 // returns 0.5 in both JavaScript and Java

2.0 / 0 // returns Infinity in JavaScript

2.0 / 0.0 // returns Infinity too

2.0 / -0.0 // returns -Infinity in JavaScript

Multiplication (*)

The multiplication operator produces the product of the operands.

Syntax

Operator: x * y

Examples

2 * 2 // 4

-2 * 2 // -4

Infinity * 0 // NaN

Infinity * Infinity // Infinity

"foo" * 2 // NaN

Remainder (%)

The remainder operator returns the remainder left over when one operand is divided by a second

operand. It always takes the sign of the dividend, not the divisor. It uses a built-in modulo function to

produce the result, which is the integer remainder of dividing var1 by var2 â€” for example

â€” var1 modulo var2. There is a proposal to get an actual modulo operator in a future version of

ECMAScript, the difference being that the modulo operator result would take the sign of the divisor,

not the dividend.

Syntax

Operator: var1 % var2

DroidScript - Languaje Page 101

Examples

12 % 5 // 2

-1 % 2 // -1

NaN % 2 // NaN

1 % 2 // 1

2 % 3 // 2

-4 % 2 // -0

5.5 % 2 // 1.5

Exponentiation (**)

The exponentiation operator returns the result of raising first operand to the power second operand.

that is, var1
var2

, in the preceding statement, where var1 and var2 are variables. Exponentiation

operator is right associative. a ** b ** c is equal to a ** (b ** c).

Syntax

Operator: var1 ** var2

Notes

In most languages like PHP and Python and others that have an exponentiation operator (typically ^

or **), the exponentiation operator is defined to have a higher precedence than unary operators such

as unary + and unary -, but there are a few exceptions. For example, in Bash or in the current ES7

exponentiation operator draft spec, the ** operator is defined to have a lower precedence than unary

operators.

-2 ** 2 // equals 4 in ES7 or in Bash, equals -4 in other languages.

Examples

2 ** 3 // 8

3 ** 2 // 9

3 ** 2.5 // 15.588457268119896

10 ** -1 // 0.1

NaN ** 2 // NaN

DroidScript - Languaje Page 102

2 ** 3 ** 2 // 512

2 ** (3 ** 2) // 512

(2 ** 3) ** 2 // 64

Increment (++)

The increment operator increments (adds one to) its operand and returns a value.

 If used postfix, with operator after operand (for example, x++), then it returns the value

before incrementing.

 If used prefix with operator before operand (for example, ++x), then it returns the value after

incrementing.

Syntax

Operator: x++ or ++x

Examples

// Postfix

var x = 3;

y = x++; // y = 3, x = 4

// Prefix

var a = 2;

b = ++a; // a = 3, b = 3

Decrement (--)

The decrement operator decrements (subtracts one from) its operand and returns a value.

 If used postfix (for example, x--), then it returns the value before decrementing.

 If used prefix (for example, --x), then it returns the value after decrementing.

Syntax

Operator: x-- or --x

DroidScript - Languaje Page 103

Examples

// Postfix

var x = 3;

y = x--; // y = 3, x = 2

// Prefix

var a = 2;

b = --a; // a = 1, b = 1

Unary negation (-)

The unary negation operator precedes its operand and negates it.

Syntax

Operator: -x

Examples

var x = 3;

y = -x; // y = -3, x = 3

Unary plus (+)

The unary plus operator precedes its operand and evaluates to its operand but attempts to converts

it into a number, if it isn't already. Although unary negation (-) also can convert non-numbers, unary

plus is the fastest and preferred way of converting something into a number, because it does not

perform any other operations on the number. It can convert string representations of integers and

floats, as well as the non-string values true, false, and null. Integers in both decimal and

hexadecimal ("0x"-prefixed) formats are supported. Negative numbers are supported (though not for

hex). If it cannot parse a particular value, it will evaluate to NaN.

Syntax

Operator: +x

DroidScript - Languaje Page 104

Examples

+3 // 3

+"3" // 3

+true // 1

+false // 0

+null // 0

delete

The delete operator removes a property from an object.

Syntax
delete expression

where expression should evaluate to a property reference, e.g.:

delete object.property

delete object['property']

Parameters

object

The name of an object, or an expression evaluating to an object.

property

The property to delete.

Return value

Throws in strict mode if the property is an own non-configurable property (returns false in non-

strict). Returns true in all other cases.

DroidScript - Languaje Page 105

Description

Unlike what common belief suggests, the delete operator has nothing to do with directly freeing

memory (it only does indirectly via breaking references. See the memory management page for

more details).

If the delete operator succeeds, it removes the property from the object entirely. However, if a

property with the same name exists on the object's prototype chain, the object will inherit that

property from the prototype.

delete is only effective on an object's properties. It has no effect on variable or function names.

While sometimes mis-characterized as global variables, assignments that don't specify an object

(e.g. x = 5) are actually property assignments on the global object.

delete can't remove certain properties of predefined objects (like Object, Array, Math etc). These

are described in ECMAScript 5 and later as non-configurable.

Temporal dead zone

The "temporal dead zone" (TDZ), specified in ECMAScript 6 for const and let declarations, also

applies to the delete operator. Thus, code like the following will throw a ReferenceError.

function foo() {

 delete x;

 let x;

}

function bar() {

 delete y;

 const y;

}

Examples
x = 42; // creates the property x on the global object

var y = 43; // creates the property y on the global object, and marks

it as non-configurable

myobj = {

DroidScript - Languaje Page 106

 h: 4,

 k: 5

};

// x is a property of the global object and can be deleted

delete x; // returns true

// y is not configurable, so it cannot be deleted

delete y; // returns false

// delete doesn't affect certain predefined properties

delete Math.PI; // returns false

// user-defined properties can be deleted

delete myobj.h; // returns true

// myobj is a property of the global object, not a variable,

// so it can be deleted

delete myobj; // returns true

function f() {

 var z = 44;

 // delete doesn't affect local variable names

 delete z; // returns false

}

If the object inherits a property from a prototype, and doesn't have the property itself, the property

can't be deleted by referencing the object. You can, however, delete it directly on the prototype.

function Foo(){}

Foo.prototype.bar = 42;

var foo = new Foo();

// returns true, but with no effect,

// since bar is an inherited property

delete foo.bar;

DroidScript - Languaje Page 107

// logs 42, property still inherited

console.log(foo.bar);

// deletes property on prototype

delete Foo.prototype.bar;

// logs "undefined", property no longer inherited

console.log(foo.bar);

Deleting array elements

When you delete an array element, the array length is not affected. This holds even if you delete the

last element of the array.

When the delete operator removes an array element, that element is no longer in the array. In the

following example, trees[3] is removed with delete.

var trees = ["redwood","bay","cedar","oak","maple"];

delete trees[3];

if (3 in trees) {

 // this does not get executed

}

If you want an array element to exist but have an undefined value, use the undefined value instead

of the delete operator. In the following example, trees[3] is assigned the value undefined, but the

array element still exists:

var trees = ["redwood","bay","cedar","oak","maple"];

trees[3] = undefined;

if (3 in trees) {

 // this gets executed

}

void

The void operator evaluates the given expression and then returns undefined.

DroidScript - Languaje Page 108

Syntax
void expression

Description

This operator allows inserting expressions that produce side effects into places where an expression

that evaluates to undefined is desired.

The void operator is often used merely to obtain the undefined primitive value, usually using

"void(0)" (which is equivalent to "void 0"). In these cases, the global variable undefined can be

used instead (assuming it has not been assigned to a non-default value).

Immediately Invoked Function Expressions

When using an immediately-invoked function expression, void can be used to force

the function keyword to be treated as an expression instead of a declaration.

void function iife() {

 var bar = function () {};

 var baz = function () {};

 var foo = function () {

 bar();

 baz();

 };

 var biz = function () {};

 foo();

 biz();

}();

JavaScript URIs

When a browser follows a javascript: URI, it evaluates the code in the URI and then replaces the

contents of the page with the returned value, unless the returned value is undefined.

The void operator can be used to return undefined. For example:

DroidScript - Languaje Page 109

 Click here to do nothing

 Click here for green background

Note, however, that the javascript: pseudo protocol is discouraged over other alternatives, such

as unobtrusive event handlers.

typeof

The typeof operator returns a string indicating the type of the unevaluated operand.

Syntax

The typeof operator is followed by its operand:

typeof operand

Parameters

operand is an expression representing the object or primitive whose type is to be returned.

Description

The following table summarizes the possible return values of typeof. For more information about

types and primitives, see also the JavaScript data structure page.

Examples
// Numbers

typeof 37 === 'number';

typeof 3.14 === 'number';

typeof Math.LN2 === 'number';

typeof Infinity === 'number';

typeof NaN === 'number'; // Despite being "Not-A-Number"

typeof Number(1) === 'number'; // but never use this form!

DroidScript - Languaje Page 110

// Strings

typeof "" === 'string';

typeof "bla" === 'string';

typeof (typeof 1) === 'string'; // typeof always return a string

typeof String("abc") === 'string'; // but never use this form!

// Booleans

typeof true === 'boolean';

typeof false === 'boolean';

typeof Boolean(true) === 'boolean'; // but never use this form!

// Symbols

typeof Symbol() === 'symbol'

typeof Symbol('foo') === 'symbol'

typeof Symbol.iterator === 'symbol'

// Undefined

typeof undefined === 'undefined';

typeof blabla === 'undefined'; // an undefined variable

// Objects

typeof {a:1} === 'object';

// use Array.isArray or Object.prototype.toString.call

// to differentiate regular objects from arrays

typeof [1, 2, 4] === 'object';

typeof new Date() === 'object';

// The following is confusing. Don't use!

typeof new Boolean(true) === 'object';

typeof new Number(1) === 'object';

typeof new String("abc") === 'object';

// Functions

DroidScript - Languaje Page 111

typeof function(){} === 'function';

typeof class C {} === 'function';

typeof Math.sin === 'function';

null

// This stands since the beginning of JavaScript

typeof null === 'object';

In the first implementation of JavaScript, JavaScript values were represented as a type tag and a

value. The type tag for objects was 0. null was represented as the NULL pointer (0x00 in most

platforms). Consequently, null had 0 as type tag, hence the bogus typeof return value. (reference)

A fix was proposed for ECMAScript (via an opt-in), but was rejected. It would have resulted

in typeof null === 'null'.

Regular expressions

Callable regular expressions were a non-standard addition in some browsers.

typeof /s/ === 'function'; // Chrome 1-12 Non-conform to ECMAScript 5.1

typeof /s/ === 'object'; // Firefox 5+ Conform to ECMAScript 5.1

IE-specific notes

On IE 6, 7, and 8 a lot of host objects are objects and not functions. For example:

typeof alert === 'object'

Logical Operators

Logical operators are typically used with Boolean (logical) values. When they are, they return a

Boolean value. However, the && and || operators actually return the value of one of the specified

operands, so if these operators are used with non-Boolean values, they may return a non-Boolean

value.

DroidScript - Languaje Page 112

Description

The logical operators are described in the following table:

Operator Usage Description

Logical

AND (&&)
expr1 && expr2

Returns expr1 if it can be converted to false; otherwise,

returns expr2. Thus, when used with Boolean values, && returns

true if both operands are true; otherwise, returns false.

Logical OR

(||)
expr1 || expr2

Returns expr1 if it can be converted to true; otherwise,

returns expr2. Thus, when used with Boolean values, || returns

true if either operand is true; if both are false, returns false.

Logical

NOT (!)
!expr

Returns false if its single operand can be converted to true;

otherwise, returns true.

Examples of expressions that can be converted to false are those that evaluate to null, 0, the empty

string (""), or undefined.

Even though the && and || operators can be used with operands that are not Boolean values, they

can still be considered Boolean operators since their return values can always be converted to

Boolean values.

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible "short-circuit"

evaluation using the following rules:

 false && (anything) is short-circuit evaluated to false.

 true || (anything) is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that the anything part of

the above expressions is not evaluated, so any side effects of doing so do not take effect. Also note

that the anything part of the above expression is any single logical expression (as indicated by the

parentheses).

DroidScript - Languaje Page 113

For example, the following two functions are equivalent.

function shortCircuitEvaluation() {

 doSomething() || doSomethingElse()

}

function equivalentEvaluation() {

 var flag = doSomething();

 if (!flag) {

 doSomethingElse();

 }

}

However, the following expressions are not equivalent due to operator precedence, and stresses the

importance of requiring the right hand operator to be a single expression (grouped if needed by

parentheses).

false && true || true // returns true

false && (true || true) // returns false

Logical AND (&&)

The following code shows examples of the && (logical AND) operator.

a1 = true && true // t && t returns true

a2 = true && false // t && f returns false

a3 = false && true // f && t returns false

a4 = false && (3 == 4) // f && f returns false

a5 = "Cat" && "Dog" // t && t returns "Dog"

a6 = false && "Cat" // f && t returns false

a7 = "Cat" && false // t && f returns false

Logical OR (||)

The following code shows examples of the || (logical OR) operator.

o1 = true || true // t || t returns true

DroidScript - Languaje Page 114

o2 = false || true // f || t returns true

o3 = true || false // t || f returns true

o4 = false || (3 == 4) // f || f returns false

o5 = "Cat" || "Dog" // t || t returns "Cat"

o6 = false || "Cat" // f || t returns "Cat"

o7 = "Cat" || false // t || f returns "Cat"

Logical NOT (!)

The following code shows examples of the ! (logical NOT) operator.

n1 = !true // !t returns false

n2 = !false // !f returns true

n3 = !"Cat" // !t returns false

Conversion rules

Converting AND to OR

the following operation involving Booleans:

bCondition1 && bCondition2

is always equal to:

!(!bCondition1 || !bCondition2)

Converting OR to AND

the following operation involving Booleans:

bCondition1 || bCondition2

is always equal to:

!(!bCondition1 && !bCondition2)

DroidScript - Languaje Page 115

Converting between NOTs

the following operation involving Booleans:

!!bCondition

is always equal to:

bCondition

Removing nested parentheses

As logical expressions are evaluated left to right, it is always possible to remove parentheses from a

complex expression following some rules.

Removing nested AND

The following composite operation involving Booleans:

bCondition1 || (bCondition2 && bCondition3)

is always equal to:

bCondition1 || bCondition2 && bCondition3

Removing nested OR

The following composite operation involving Booleans:

bCondition1 && (bCondition2 || bCondition3)

is always equal to:

!(!bCondition1 || !bCondition2 && !bCondition3)

Bitwise Operators

Bitwise operators treat their operands as a sequence of 32 bits (zeroes and ones), rather than as

decimal, hexadecimal, or octal numbers. For example, the decimal number nine has a binary

DroidScript - Languaje Page 116

representation of 1001. Bitwise operators perform their operations on such binary representations,

but they return standard JavaScript numerical values.

The following table summarizes JavaScript's bitwise operators:

Signed 32-bit integers

The operands of all bitwise operators are converted to signed 32-bit integers in two's complement

format. Two's complement format means that a number's negative counterpart (e.g. 5 vs. -5) is all

the number's bits inverted (bitwise NOT of the number, a.k.a. ones' complement of the number) plus

one. For example, the following encodes the integer 314:

00000000000000000000000100111010

The following encodes ~314, i.e. the ones' complement of 314:

11111111111111111111111011000101

Finally, the following encodes -314, i.e. the two's complement of 314:

11111111111111111111111011000110

The two's complement guarantees that the left-most bit is 0 when the number is positive and 1 when

the number is negative. Thus, it is called the sign bit.

The number 0 is the integer that is composed completely of 0 bits.

0 (base 10) = 00000000000000000000000000000000 (base 2)

The number -1 is the integer that is composed completely of 1 bits.

-1 (base 10) = 11111111111111111111111111111111 (base 2)

The number -2147483648 (hexadecimal representation: -0x80000000) is the integer that is

composed completely of 0 bits except the first (left-most) one.

-2147483648 (base 10) = 10000000000000000000000000000000 (base 2)

DroidScript - Languaje Page 117

The number 2147483647 (hexadecimal representation: 0x7fffffff) is the integer that is composed

completely of 1 bits except the first (left-most) one.

2147483647 (base 10) = 01111111111111111111111111111111 (base 2)

The numbers -2147483648 and 2147483647 are the minimum and the maximum integers

representable through a 32bit signed number.

Bitwise logical operators

Conceptually, the bitwise logical operators work as follows:

 The operands are converted to 32-bit integers and expressed by a series of bits (zeroes and

ones).

 Each bit in the first operand is paired with the corresponding bit in the second operand: first

bit to first bit, second bit to second bit, and so on.

 The operator is applied to each pair of bits, and the result is constructed bitwise.

& (Bitwise AND)

Performs the AND operation on each pair of bits. a AND b yields 1 only if both a and b are 1. The

truth table for the AND operation is:

. 9 (base 10) = 00000000000000000000000000001001 (base 2)

 14 (base 10) = 00000000000000000000000000001110 (base 2)

14 & 9 (base 10) = 00000000000000000000000000001000 (base 2) = 8 (base 10)

Bitwise ANDing any number x with 0 yields 0. Bitwise ANDing any number x with -1 yields x.

| (Bitwise OR)

Performs the OR operation on each pair of bits. a OR b yields 1 if either a or b is 1. The truth table

for the OR operation is:

. 9 (base 10) = 00000000000000000000000000001001 (base 2)

 14 (base 10) = 00000000000000000000000000001110 (base 2)

DroidScript - Languaje Page 118

14 | 9 (base 10) = 00000000000000000000000000001111 (base 2) = 15 (base

10)

Bitwise ORing any number x with 0 yields x. Bitwise ORing any number x with -1 yields -1.

^ (Bitwise XOR)

Performs the XOR operation on each pair of bits. a XOR b yields 1 if a and b are different. The truth

table for the XOR operation is:

. 9 (base 10) = 00000000000000000000000000001001 (base 2)

 14 (base 10) = 00000000000000000000000000001110 (base 2)

14 ^ 9 (base 10) = 00000000000000000000000000000111 (base 2) = 7 (base 10)

Bitwise XORing any number x with 0 yields x. Bitwise XORing any number x with -1 yields ~x.

~ (Bitwise NOT)

Performs the NOT operator on each bit. NOT a yields the inverted value (a.k.a. one's complement)

of a. The truth table for the NOT operation is:

 9 (base 10) = 00000000000000000000000000001001 (base 2)

~9 (base 10) = 11111111111111111111111111110110 (base 2) = -10 (base 10)

Bitwise NOTing any number x yields -(x + 1). For example, ~5 yields -6.

Example with indexOf:

var str = 'rawr';

var searchFor = 'a';

// this is alternative way of typing if (-1*str.indexOf('a') <= -1)

if (~str.indexOf(searchFor)) {

 // searchFor is in the string

} else {

 // searchFor is not in the string

DroidScript - Languaje Page 119

}

// here are the values returned by (~str.indexOf(searchFor))

// r == -1

// a == -2

// w == -3

Bitwise shift operators

The bitwise shift operators take two operands: the first is a quantity to be shifted, and the second

specifies the number of bit positions by which the first operand is to be shifted. The direction of the

shift operation is controlled by the operator used.

Shift operators convert their operands to 32-bit integers in big-endian order and return a result of the

same type as the left operand. The right operand should be less than 32, but if not only the low five

bits will be used.

<< (Left shift)

This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to

the left are discarded. Zero bits are shifted in from the right.

For example, 9 << 2 yields 36:

. 9 (base 10): 00000000000000000000000000001001 (base 2)

9 << 2 (base 10): 00000000000000000000000000100100 (base 2) = 36 (base 10)

Bitwise shifting any number x to the left by y bits yields x * 2^y.

>> (Sign-propagating right shift)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off

to the right are discarded. Copies of the leftmost bit are shifted in from the left. Since the new

leftmost bit has the same value as the previous leftmost bit, the sign bit (the leftmost bit) does not

change. Hence the name "sign-propagating".

For example, 9 >> 2 yields 2:

DroidScript - Languaje Page 120

. 9 (base 10): 00000000000000000000000000001001 (base 2)

9 >> 2 (base 10): 00000000000000000000000000000010 (base 2) = 2 (base 10)

Likewise, -9 >> 2 yields -3, because the sign is preserved:

. -9 (base 10): 11111111111111111111111111110111 (base 2)

-9 >> 2 (base 10): 11111111111111111111111111111101 (base 2) = -3 (base

10)

>>> (Zero-fill right shift)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off

to the right are discarded. Zero bits are shifted in from the left. The sign bit becomes 0, so the result

is always non-negative.

For non-negative numbers, zero-fill right shift and sign-propagating right shift yield the same result.

For example, 9 >>> 2 yields 2, the same as 9 >> 2:

. 9 (base 10): 00000000000000000000000000001001 (base 2)

9 >>> 2 (base 10): 00000000000000000000000000000010 (base 2) = 2 (base 10)

However, this is not the case for negative numbers. For example, -9 >>> 2 yields 1073741821,

which is different than -9 >> 2 (which yields -3):

. -9 (base 10): 11111111111111111111111111110111 (base 2)

-9 >>> 2 (base 10): 00111111111111111111111111111101 (base 2) = 1073741821

(base 10)

Examples

Flags and bitmasks

DroidScript - Languaje Page 121

The bitwise logical operators are often used to create, manipulate, and read sequences of flags,

which are like binary variables. Variables could be used instead of these sequences, but binary flags

take much less memory (by a factor of 32).

Suppose there are 4 flags:

 flag A: we have an ant problem

 flag B: we own a bat

 flag C: we own a cat

 flag D: we own a duck

These flags are represented by a sequence of bits: DCBA. When a flag is set, it has a value of 1.

When a flag is cleared, it has a value of 0. Suppose a variable flags has the binary value 0101:

var flags = 5; // binary 0101

This value indicates:

 flag A is true (we have an ant problem);

 flag B is false (we don't own a bat);

 flag C is true (we own a cat);

 flag D is false (we don't own a duck);

Since bitwise operators are 32-bit, 0101 is actually 00000000000000000000000000000101, but the

preceding zeroes can be neglected since they contain no meaningful information.

A bitmask is a sequence of bits that can manipulate and/or read flags. Typically, a "primitive" bitmask

for each flag is defined:

var FLAG_A = 1; // 0001

var FLAG_B = 2; // 0010

var FLAG_C = 4; // 0100

var FLAG_D = 8; // 1000

New bitmasks can be created by using the bitwise logical operators on these primitive bitmasks. For

example, the bitmask 1011 can be created by ORing FLAG_A, FLAG_B, and FLAG_D:

var mask = FLAG_A | FLAG_B | FLAG_D; // 0001 | 0010 | 1000 => 1011

DroidScript - Languaje Page 122

Individual flag values can be extracted by ANDing them with a bitmask, where each bit with the

value of one will "extract" the corresponding flag. The bitmask masks out the non-relevant flags by

ANDing with zeroes (hence the term "bitmask"). For example, the bitmask 0101 can be used to see

if flag C is set:

// if we own a cat

if (flags & FLAG_C) { // 0101 & 0100 => 0100 => true

 // do stuff

}

A bitmask with multiple set flags acts like an "either/or". For example, the following two are

equivalent:

// if we own a bat or we own a cat

// (0101 & 0010) || (0101 & 0100) => 0000 || 0100 => true

if ((flags & FLAG_B) || (flags & FLAG_C)) {

 // do stuff

}

// if we own a bat or cat

var mask = FLAG_B | FLAG_C; // 0010 | 0100 => 0110

if (flags & mask) { // 0101 & 0110 => 0100 => true

 // do stuff

}

Flags can be set by ORing them with a bitmask, where each bit with the value one will set the

corresponding flag, if that flag isn't already set. For example, the bitmask 1100 can be used to set

flags C and D:

// yes, we own a cat and a duck

var mask = FLAG_C | FLAG_D; // 0100 | 1000 => 1100

flags |= mask; // 0101 | 1100 => 1101

Flags can be cleared by ANDing them with a bitmask, where each bit with the value zero will clear

the corresponding flag, if it isn't already cleared. This bitmask can be created by NOTing primitive

bitmasks. For example, the bitmask 1010 can be used to clear flags A and C:

// no, we don't have an ant problem or own a cat

DroidScript - Languaje Page 123

var mask = ~(FLAG_A | FLAG_C); // ~0101 => 1010

flags &= mask; // 1101 & 1010 => 1000

The mask could also have been created with ~FLAG_A & ~FLAG_C (De Morgan's law):

// no, we don't have an ant problem, and we don't own a cat

var mask = ~FLAG_A & ~FLAG_C;

flags &= mask; // 1101 & 1010 => 1000

Flags can be toggled by XORing them with a bitmask, where each bit with the value one will toggle

the corresponding flag. For example, the bitmask 0110 can be used to toggle flags B and C:

// if we didn't have a bat, we have one now,

// and if we did have one, bye-bye bat

// same thing for cats

var mask = FLAG_B | FLAG_C;

flags = flags ^ mask; // 1100 ^ 0110 => 1010

Finally, the flags can all be flipped with the NOT operator:

// entering parallel universe...

flags = ~flags; // ~1010 => 0101

Conversion snippets

Convert a binary String to a decimal Number:

var sBinString = "1011";

var nMyNumber = parseInt(sBinString, 2);

alert(nMyNumber); // prints 11, i.e. 1011

Convert a decimal Number to a binary String:

var nMyNumber = 11;

var sBinString = nMyNumber.toString(2);

alert(sBinString); // prints 1011, i.e. 11

Automatize the creation of a mask

DroidScript - Languaje Page 124

If you have to create many masks from some Boolean values, you can automatize the process:

function createMask () {

 var nMask = 0, nFlag = 0, nLen = arguments.length > 32 ? 32 :

arguments.length;

 for (nFlag; nFlag < nLen; nMask |= arguments[nFlag] << nFlag++);

 return nMask;

}

var mask1 = createMask(true, true, false, true); // 11, i.e.: 1011

var mask2 = createMask(false, false, true); // 4, i.e.: 0100

var mask3 = createMask(true); // 1, i.e.: 0001

// etc.

alert(mask1); // prints 11, i.e.: 1011

Reverse algorithm: an array of booleans from a mask

If you want to create an Array of Booleans from a mask you can use this code:

function arrayFromMask (nMask) {

 // nMask must be between -2147483648 and 2147483647

 if (nMask > 0x7fffffff || nMask < -0x80000000) {

 throw new TypeError("arrayFromMask - out of range");

 }

 for (var nShifted = nMask, aFromMask = []; nShifted;

 aFromMask.push(Boolean(nShifted & 1)), nShifted >>>= 1);

 return aFromMask;

}

var array1 = arrayFromMask(11);

var array2 = arrayFromMask(4);

var array3 = arrayFromMask(1);

alert("[" + array1.join(", ") + "]");

// prints "[true, true, false, true]", i.e.: 11, i.e.: 1011

You can test both algorithms at the same timeâ€¦

DroidScript - Languaje Page 125

var nTest = 19; // our custom mask

var nResult = createMask.apply(this, arrayFromMask(nTest));

alert(nResult); // 19

For didactic purpose only (since there is the Number.toString(2) method), we show how it is

possible to modify the arrayFromMask algorithm in order to create a String containing the binary

representation of a Number, rather than an Array of Booleans:

function createBinaryString (nMask) {

 // nMask must be between -2147483648 and 2147483647

 for (var nFlag = 0, nShifted = nMask, sMask = ""; nFlag < 32;

 nFlag++, sMask += String(nShifted >>> 31), nShifted <<= 1);

 return sMask;

}

var string1 = createBinaryString(11);

var string2 = createBinaryString(4);

var string3 = createBinaryString(1);

alert(string1);

// prints 00000000000000000000000000001011, i.e. 11

Conditional Operator

The conditional (ternary) operator is the only JavaScript operator that takes three operands. This

operator is frequently used as a shortcut for the if statement.

Syntax
condition ? expr1 : expr2

Parameters

condition

An expression that evaluates to true or false.

expr1, expr2

Expressions with values of any type.

DroidScript - Languaje Page 126

Description

If condition is true, the operator returns the value of expr1; otherwise, it returns the value of expr2.

For example, to display a different message based on the value of the isMember variable, you could

use this statement:

"The fee is " + (isMember ? "$2.00" : "$10.00")

You can also assign variables depending on a ternary result:

var elvisLives = Math.PI > 4 ? "Yep" : "Nope";

Multiple ternary evaluations are also possible (note: the conditional operator is right associative):

var firstCheck = false,

 secondCheck = false,

 access = firstCheck ? "Access denied" : secondCheck ? "Access denied"

: "Access granted";

console.log(access); // logs "Access granted"

You can also use ternary evaluations in free space in order to do different operations:

var stop = false, age = 16;

age > 18 ? location.assign("continue.html") : stop = true;

You can also do more than one single operation per case, separating them with a comma:

var stop = false, age = 23;

age > 18 ? (

 alert("OK, you can go."),

 location.assign("continue.html")

) : (

 stop = true,

 alert("Sorry, you are much too young!")

);

DroidScript - Languaje Page 127

You can also do more than one operation during the assignation of a value. In this case, the last

comma-separated value of the parenthesis will be the value to be assigned.

var age = 16;

var url = age > 18 ? (

 alert("OK, you can go."),

 // alert returns "undefined", but it will be ignored because

 // isn't the last comma-separated value of the parenthesis

 "continue.html" // the value to be assigned if age > 18

) : (

 alert("You are much too young!"),

 alert("Sorry :-("),

 // etc. etc.

 "stop.html" // the value to be assigned if !(age > 18)

);

location.assign(url); // "stop.html"

Assignment Operators

An assignment operator assigns a value to its left operand based on the value of its right operand.

Overview

The basic assignment operator is equal (=), which assigns the value of its right operand to its left

operand. That is, x = y assigns the value of y to x. The other assignment operators are usually

shorthand for standard operations, as shown in the following definitions and examples.

Assignment

Simple assignment operator which assigns a value to a variable. Chaining the assignment operator

is possible in order to assign a single value to multiple variables. See the example.

Syntax

Operator: x = y

DroidScript - Languaje Page 128

Examples

// Assuming the following variables

// x = 5

// y = 10

// z = 25

x = y // x is 10

x = y = z // x, y and z are all 25

Addition assignment

The addition assignment operator adds the value of the right operand to a variable and assigns the

result to the variable. The types of the two operands determine the behavior of the addition

assignment operator. Addition or concatenation is possible. See the addition operator for more

details.

Syntax

Operator: x += y

Meaning: x = x + y

Examples

// Assuming the following variables

// foo = "foo"

// bar = 5

// baz = true

// Number + Number -> addition

bar += 2 // 7

// Boolean + Number -> addition

baz += 1 // 2

// Boolean + Boolean -> addition

DroidScript - Languaje Page 129

baz += false // 1

// Number + String -> concatenation

bar += "foo" // "5foo"

// String + Boolean -> concatenation

foo += false // "foofalse"

// String + String -> concatenation

foo += "bar" // "foobar"

Subtraction assignment

The subtraction assignment operator subtracts the value of the right operand from a variable and

assigns the result to the variable. See the subtraction operator for more details.

Syntax

Operator: x -= y

Meaning: x = x - y

Examples

// Assuming the following variable

// bar = 5

bar -= 2 // 3

bar -= "foo" // NaN

Multiplication assignment

The multiplication assignment operator multiplies a variable by the value of the right operand and

assigns the result to the variable. See the multiplication operator for more details.

Syntax

Operator: x *= y

Meaning: x = x * y

Examples

DroidScript - Languaje Page 130

// Assuming the following variable

// bar = 5

bar *= 2 // 10

bar *= "foo" // NaN

Division assignment

The division assignment operator divides a variable by the value of the right operand and assigns

the result to the variable. See the division operator for more details.

Syntax

Operator: x /= y

Meaning: x = x / y

Examples

// Assuming the following variable

// bar = 5

bar /= 2 // 2.5

bar /= "foo" // NaN

bar /= 0 // Infinity

Remainder assignment

The remainder assignment operator divides a variable by the value of the right operand and assigns

the remainder to the variable. See the remainder operator for more details.

Syntax

Operator: x %= y

Meaning: x = x % y

Examples

DroidScript - Languaje Page 131

// Assuming the following variable

// bar = 5

bar %= 2 // 1

bar %= "foo" // NaN

bar %= 0 // NaN

Exponentiation assignment

The exponentiation assignment operator returns the result of raising first operand to

the power second operand. See the exponentiation operator for more details.

Syntax

Operator: x **= y

Meaning: x = x ** y

Examples

// Assuming the following variable

// bar = 5

bar **= 2 // 25

bar **= "foo" // NaN

Left shift assignment

The left shift assignment operator moves the specified amount of bits to the left and assigns the

result to the variable. See the left shift operator for more details.

Syntax

Operator: x <<= y

Meaning: x = x << y

Examples

DroidScript - Languaje Page 132

var bar = 5; // (00000000000000000000000000000101)

bar <<= 2; // 20 (00000000000000000000000000010100)

Right shift assignment

The right shift assignment operator moves the specified amount of bits to the right and assigns the

result to the variable. See the right shift operator for more details.

Syntax

Operator: x >>= y

Meaning: x = x >> y

Examples

var bar = 5; // (00000000000000000000000000000101)

bar >>= 2; // 1 (00000000000000000000000000000001)

var bar -5; // (-00000000000000000000000000000101)

bar >>= 2; // -2 (-00000000000000000000000000000010)

Unsigned right shift assignment

The unsigned right shift assignment operator moves the specified amount of bits to the right and

assigns the result to the variable. See the unsigned right shift operator for more details.

Syntax

Operator: x >>>= y

Meaning: x = x >>> y

Examples

var bar = 5; // (00000000000000000000000000000101)

bar >>>= 2; // 1 (00000000000000000000000000000001)

var bar = -5; // (-00000000000000000000000000000101)

DroidScript - Languaje Page 133

bar >>>= 2; // 1073741822 (00111111111111111111111111111110)

Bitwise AND assignment

The bitwise AND assignment operator uses the binary representation of both operands, does a

bitwise AND operation on them and assigns the result to the variable. See the bitwise AND

operator for more details.

Syntax

Operator: x &= y

Meaning: x = x & y

Example

var bar = 5;

// 5: 00000000000000000000000000000101

// 2: 00000000000000000000000000000010

bar &= 2; // 0

Bitwise XOR assignment

The bitwise XOR assignment operator uses the binary representation of both operands, does a

bitwise XOR operation on them and assigns the result to the variable. See the bitwise XOR

operator for more details.

Syntax

Operator: x ^= y

Meaning: x = x ^ y

Example

var bar = 5;

bar ^= 2; // 7

// 5: 00000000000000000000000000000101

// 2: 00000000000000000000000000000010

DroidScript - Languaje Page 134

// -----------------------------------

// 7: 00000000000000000000000000000111

Bitwise OR assignment

The bitwise OR assignment operator uses the binary representation of both operands, does a

bitwise OR operation on them and assigns the result to the variable. See the bitwise OR

operator for more details.

Syntax

Operator: x |= y

Meaning: x = x | y

Example

var bar = 5;

bar |= 2; // 7

// 5: 00000000000000000000000000000101

// 2: 00000000000000000000000000000010

// -----------------------------------

// 7: 00000000000000000000000000000111

Examples

Left operand with another assignment operator

In unusual situations, the assignment operator (e.g. x += y) is not identical to the meaning

expression (here x = x + y). When the left operand of an assignment operator itself contains an

assignment operator, the left operand is evaluated only once. For example:

a[i++] += 5 // i is evaluated only once

a[i++] = a[i++] + 5 // i is evaluated twice

Comma Operator

The comma operator evaluates each of its operands (from left to right) and returns the value of the

last operand.

DroidScript - Languaje Page 135

Syntax
expr1, expr2, expr3...

Parameters
expr1, expr2, expr3...

Any expressions.

Description

You can use the comma operator when you want to include multiple expressions in a location that

requires a single expression. The most common usage of this operator is to supply multiple

parameters in a for loop.

Example

If a is a 2-dimensional array with 10 elements on a side, the following code uses the comma operator

to increment two variables at once. Note that the comma in the var statement is not the comma

operator, because it doesn't exist within an expression. Rather, it is a special character

in var statements to combine multiple of them into one. Practically, that comma behaves almost the

same as the comma operator, though. The code prints the values of the diagonal elements in the

array:

for (var i = 0, j = 9; i <= 9; i++, j--)

 document.writeln("a[" + i + "][" + j + "] = " + a[i][j]);

Processing and then returning

Another example that one could make with comma operator is processing before returning. As

stated, only the last element will be returned but all others are going to be evaluated as well. So, one

could do:

function myFunc () {

 var x = 0;

 return (x += 1, x); // the same as return ++x;

}

DroidScript - Languaje Page 136

Thanks for read

WhatsApp : +56 9 3711 3110

