
workshop
for new users

2015-12-10 · Chris Mair

AlpineBits?
• interface specification

• based on XML and HTTP(S)

• open (specs are CC-By-ND), everybody is free to
implement it

• all XML messages validate against OTA (= tourism
industry standard schema for XML)

• AlpineBit Alliance: group of 14 local SMEs

!AlpineBits
• AlpineBits is not a software package

• AlpineBits is not a company

• AlpineBits is not a database, service or website

• you cannot “get a ready made product” called
AlpineBits, but you can teach your software how to
“speak” AlpineBits

why the name?
• yes, it used to be an acronym

• A Lightweight Platform for INterchanging Essential
Booking Information and Travel Specifics

• everybody thought this was stupid, so it was
dropped after the first release in 2011

• (I'm still offended ;)

resources (part 1)
• http://www.alpinebits.org/

• get the AlpineBits 2015-07 zip (get it now!)

• the specification document (PDF, 65 pages,
color-print it to anger your boss ;)

• XML message sample files

• XML-schema (XSD) & RNG-schema files

client-server
• understand what we mean when we say:

• client (the software than initiate the comunication
with a request)

• server (the software that answers with a
response)

• for example: a backend of a website running on a
webserver can be an AlpineBits client!

exchange what data?
• FreeRooms (= notify about room availability)

• GuestRequests (= get quote or booking requests)

• SimplePackages (= notify about package
availability)

• Inventory (= notify about room category info)

• RatePlans (= notify about rate plans)

my usage?
• think a moment where AlpineBits will fit into your

system. will you be a server, a client or both? what
kind of data do you need to exchange?

• if you're lost, as a starting point, watch the video on
the FAQ site (http://www.alpinebits.org/faq/)

• once again: AlpineBits is just an interface
specification - it will not magically send you data or
accept data from you (it is not a service!), you still
need to agree with your counterpart

getting started with the
implementation

• skim chapter 1

• read chapter 2

• realize what you've just read: you need to be able
to send (or receive) HTTPS POST-requests with
content-type multipart/form-data using basic
authentication

• how are you going to do that?

really, how are you going to
do that?

• AlpineBits is (of course) language agnostic

• on https://github.com/alpinebits/code-snippets we
collect code snippets (currently there is something
in C# and in PHP, contributions welcome)

• try to see what your environment offers (e.g. libcurl
for PHP or Apache HttpComponents for Java),
use existing APIs if possible, don't reinvent the
wheel!

a basic client
• parameters: action and request

• simple case: query the server version, just need:

• action=getVersion

• you could do this with just a HTML form, but we're
going to use PHP and libcurl

• emphasis on libcurl (I'm not interested in PHP)

libcurl client code 1
 # $endpoint is the server's https-url
 $cu = curl_init($endpoint);
 curl_setopt($cu, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($cu, CURLOPT_POST, true);
 curl_setopt($cu, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 # note https is mandatory!
 curl_setopt($cu, CURLOPT_PROTOCOLS, CURLPROTO_HTTPS);
 # $authstr contains the credentials in the form "chris:secret"
 curl_setopt($cu, CURLOPT_USERPWD, $authstr);
 curl_setopt($cu, CURLOPT_HTTPHEADER,
 array("X-AlpineBits-ClientProtocolVersion: 2015-07",
 "X-AlpineBits-ClientID: testclient.php v. 1.0"
)
);

libcurl client code 2
 $data = array("action" => "getVersion");

 curl_setopt($cu, CURLOPT_POSTFIELDS, $data);

 $output = curl_exec($cu);
 $info = curl_getinfo($cu);
 curl_close($cu);

 if ($info["http_code"] != 200) {
 echo "Oops: http status code " . $info["http_code"] . "\n";
 }
 echo "I said:\n";
 print_r($data);
 echo "Server said:\n";
 echo $output;

libcurl client outcome

I said:
Array
(
 [action] => getVersion
)
Server said:
OK:2015-07

getVersion, what else?
• read chapter 3 - the “housekeeping actions” are:

• getVersion

• getCapabilities

• try getCapabilities...

• note: it is a client's responsibility to check for server
capabilities before trying to use them!

easy, isn't it?
• ask your counterpart to create a test account for you (I'm

using one as we demo this right now!)

• start using https (almost) immediately, avoid going into
production without testing https

• implement and test error handling - do not underestimate
this - implement sensible logging (when your counterpart
calls and ask about an error she got from your server, you
will look like a fool without some logging at hand)

• AlpineBits 2015-07 has added the support for gzip-
compressed requests (not on the housekeeping, though)

great, now let's talk
• read the intro to chapter 4 (the color-table)

• read the section you're interested in, for example
“FreeRooms”

• let's try to get our client to notify the server about a
room availability! we need to send:

• action = OTA_HotelAvailNotif:FreeRooms

• request = [an XML document]

XML, you say?
• if XML ist new to you, spend some time

understanding it (as a developer), you might want
to get a book such as this:

a sample message
<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRQ [...]>

 <UniqueID Type="16" ID="1" Instance="CompleteSet"/>

 <AvailStatusMessages HotelCode="2286">

 <AvailStatusMessage BookingLimit="10" BookingLimitMessageType="SetLimit">
 <StatusApplicationControl Start="2016-08-01" End="2016-08-10"
 InvTypeCode="double" InvCode="101S" />
 </AvailStatusMessage>

 <AvailStatusMessage BookingLimit="1" BookingLimitMessageType="SetLimit">
 <StatusApplicationControl Start="2016-08-21" End="2016-08-30"
 InvTypeCode="double" InvCode="101S" />
 </AvailStatusMessage>

 </AvailStatusMessages>

</OTA_HotelAvailNotifRQ>

let's send it!

 $data = array(
 "action" => "OTA_HotelAvailNotif:FreeRooms",
 "request" => file_get_contents("xml/FreeRooms-OTA_HotelAvailNotifRQ.xml")
);

<?xml version="1.0" encoding="UTF-8"?>
<OTA_HotelAvailNotifRS [...]>
 <Success/>
</OTA_HotelAvailNotifRS>

just fill the right parameters...

... and get a nice success message back

easy, isn't it?
• well... you used the file from the samples in the zip

file, right?

• in real live you need to construct the XML message
you wish to send from your database system or
parse the XML message you receive

• it really helps if you understand XML concepts:
wellformed documents, parser APIs (SAX, DOM),
schemas, valid documents, possibly XPath...

some tools: xmllint
• find a tool that suits your environment to:

• check a document for wellformedness

• validate a document against the schemas in the
zip file

• Linux and OS X comes with a command line tool
called “xmllint”...

xmllint in action

$ xmllint --noout xml/FreeRooms-OTA_HotelAvailNotifRQ.xml
xml/FreeRooms-OTA_HotelAvailNotifRQ.xml:30: parser error : Opening and ending tag mismatch:
AvailStatusMessages line 20 and vailStatusMessages
 </vailStatusMessages>
 ^

$ xmllint --noout --schema schemas/alpinebits.xsd xml/FreeRooms-OTA_HotelAvailNotifRQ.xml
xml/FreeRooms-OTA_HotelAvailNotifRQ.xml:16: element OTA_HotelAvailNotifRQ: Schemas validity
error : Element '{http://www.opentravel.org/OTA/2003/05}OTA_HotelAvailNotifRQ': Missing child
element(s). Expected is ({http://www.opentravel.org/OTA/2003/05}AvailStatusMessages).
xml/FreeRooms-OTA_HotelAvailNotifRQ.xml fails to validate

oops: not wellformed:

oops: not valid against the AlpineBits XSD:

don't waste time

• sending not wellformed or invalid documents
wastes everybody's time

• test the code that constructs your XML messages
extensively, don't rely on you counterpart to find
validation errors in your document!

• test corner cases and read the specs carefully

more tools: testing machine
http://alpinebits.testingmachine.eu/validator

validates against:

• OTA
• AlpineBits XSD
• AlpineBits RNG

what was OTA, again?
• http://www.opentravel.org/

• AlpineBits strives to be a subset of OTA, that is all
document that validate against the AlpineBits
schema(s) should validate against OTA, but not
viceversa

• if you want to navigate the (vast) OTA schema you
might want to use this tool:

• http://adriatic.pilotfish-net.com/ota-modelviewer/

experiments
• what happens in our FreemRooms-client when:

• we use wrong credentials

• the parameter values are wrong

• the document is not well formed / not valid

• we send rooms for an unknown hotel

• we send a start date > end date

layers
• realize that there can be errors at any level (low

level, authentication, before the XML ist even
processed, problems with the XML, problems with
the meaning of the data)

• test error catching in all layers

• test

• test more ;)

OoooK, but I need a server...

• handling the multipart/form-data POST requests
should be easier on the server, since web
developers are used to do it all the time ;)

• it really depends on your language and framework

• the github code snippets directory has a sketch of
the first part of a server, that I can demo, but won't
even bother copying into the slides, since it's too
PHP-specific anyway... ;)

great news, or not?
• not so fast... handling the POST is quite easy, but:

• think about parsing the XML data

• how do you map it into your (existing) database?

• generally you have to implement (almost)
everything for a given action, because you
cannot forsee what the client will send

now have a look at
• the specification for:

• FreeRooms (= notify about room availability)

• GuestRequests (= get quote or booking
requests)

• Inventory (= notify about room category info)

• (no slides here, I'll give an overview using the
AlpineBits document ;)

resources (part 2)
• we use the forum / mailing list at

https://groups.google.com/forum/#!forum/alpinebits

to discuss about AlpineBits

• the code repository is at

https://github.com/alpinebits

the end

