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ABSTRACT

ROWLANDS, A. V., C. L. EDWARDSON, M. J. DAVIES, K. KHUNTI, D. M. HARRINGTON, and T. YATES. Beyond Cut Points:

Accelerometer Metrics that Capture the Physical Activity Profile. Med. Sci. Sports Exerc., Vol. 50, No. 6, pp. 1323–1332, 2018.

Purpose: Commonly used physical activity metrics tell us little about the intensity distribution across the activity profile. The purpose of

this paper is to introduce a metric, the intensity gradient, which can be used in combination with average acceleration (overall activity

level) to fully describe the activity profile. Methods: A total of 1669 adolescent girls (sample 1) and 295 adults with type 2 diabetes

(sample 2) wore a GENEActiv accelerometer on their nondominant wrist for up to 7 d. Body mass index and percent body fat were

assessed in both samples and physical function (grip strength, Short Physical Performance Battery, and sit-to-stand repetitions) in sample

2. Physical activity metrics were as follows: average acceleration (AccelAV); the intensity gradient (IntensityGRAD from the log–log

regression line: 25-mg intensity bins [x]/time accumulated in each bin [y]); total moderate-to-vigorous physical activity (MVPA); and

bouted MVPA (sample 2 only). Results: Correlations between AccelAV and IntensityGRAD (r = 0.39–0.51) were similar to correlations

between AccelAV and bouted MVPA (r = 0.48) and substantially lower than between AccelAV and total MVPA (r Q 0.93). IntensityGRAD
was negatively associated with body fatness in sample 1 (P G 0.05) and positively associated with physical function in sample 2 (P G 0.05);

associations were independent of AccelAV and potential covariates. By contrast, MVPA was not independently associated with body fatness

or physical function. Conclusion: AccelAV and IntensityGRAD provide a complementary description of a person_s activity profile, each

explaining unique variance, and independently associated with body fatness and/or physical function. Both metrics are appropriate for

reporting as standardized measures and suitable for comparison across studies using raw acceleration accelerometers. Concurrent use will

facilitate investigation of the relative importance of intensity and volume of activity for a given outcome. Key Words: INTENSITY

GRADIENT, AVERAGE ACCELERATION, GENEACTIV, BODY FATNESS, PHYSICAL FUNCTION

T
he measurement of physical behaviors with acceler-
ometers that can be worn continually and give access
to the raw acceleration data is nowwidespread. Research-

grade accelerometers available, and in use in large global
surveys, include the GENEActiv, Axivity, and ActiGraph

(GT3X+, GT9X/Link) (1–7). Despite the potential to describe
the 24-h physical behavior profile, output variables derived
from accelerometer data are commonly limited to overall
activity level and time spent in specific intensity categories
such as moderate-to-vigorous physical activity (MVPA) and/or
sedentary time.

Overall activity level, defined as average acceleration
over a 24-h period, is directly measured and does not rely on
population-specific calibration protocols to derive outcome
measures; thus, average acceleration is comparable across
studies and populations. However, it tells us little about the
intensity distribution; for example, it is possible to have a high
average acceleration because of a large volume of light-
intensity activity and relatively little or no MVPA, or because
of a substantial amount of MVPA with a large volume of
sedentary time. It is important to capture both overall activity
and intensity distribution because, for some health markers and
outcomes, it appears the volume of activity is more important
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than the pattern of intensity (e.g., [8–10]), but for others the
converse appears to be true (e.g., [11–13]).

Physical activity intensity information is usually expressed
as time spent within cut points that have typically been derived
using validation studies. These cut points are heavily depen-
dent on the calibration sample and the protocol used to derive
the cut points (14,15), leading to problems comparing outcomes
across studies and/or populations (15,16). Consequently, the
validity of these outcomes depends not only on the validity of
the measure of acceleration but also on the validity of the
algorithm. A further consideration is average acceleration,
time below cut points (e.g., inactive time), and time above cut
points (e.g., MVPA), which are typically highly intercorrelated,
suggesting relatively little unique information is obtained from
the measures (e.g., as seen in data from (11,17,18)).

A metric is needed that captures the intensity distribution,
does not rely on calibration protocols (that are, by nature,
population and protocol specific), and is more independent
of overall activity level and, thus, can be used alongside av-
erage acceleration. The two metrics together would use the
rich nature of the data available to more fully describe the 24-h
physical behavior profile and, critically, would depend only
on the validity of accelerometers at measuring acceleration,
rather than also being population or protocol specific.

The purpose of this paper was to introduce a novel metric
that describes the intensity distribution of the accelerations
experienced over a 24-h period and can be used in combi-
nation with average acceleration to fully describe the activity
profile. To demonstrate the potential of the new metric, we
applied both metrics to two very different data sets: adoles-
cent girls and adults with type 2 diabetes. In particular, we 1)
investigated whether the intensity gradient was more inde-
pendent of (i.e., less highly correlated with) average acceler-
ation than MVPA and inactive time, 2) investigated whether
independent relationships of overall activity level and the in-
tensity distribution existed with body fatness (adolescent girls
and adults with type 2 diabetes) and physical function (adults
with type 2 diabetes), and 3) demonstrated how results based
on analyses of the directly measured acceleration metrics can
be translated to easily interpretable physical activity intensity
outcomes post hoc.

METHODS

Sample 1 (Adolescent Girls)

Data were obtained from the baseline time point of the
evaluation of the Youth Sports Trust_s Girls Active school-
based physical activity program (19). This has been previously
described (19), but in brief, 20 schools in and on the boundary
of Leicestershire and Rutland (UK) took part with approxi-
mately 90 girls, 11–14 yr old, invited to participate at random
from each school. Parents returned an opt-out consent form
if they did not want their child to participate, and the girls
themselves provided verbal assent. Ethical approval for the
evaluation was obtained from the University of Leicester_s

College of Medicine and Biological Sciences Research Ethics
representative, United Kingdom.

In brief, the data were collected in measurement sessions
run during the school day. Participating girls were requested
to wear a GENEActiv accelerometer on their nondominant
wrist (defined as the hand they do not normally write with)
24 hIdj1 for 7 d after the measurement session. Height, sitting
height, and body mass were measured using standardized
procedures. Body mass index (BMI) was calculated and
expressed in z-scores of BMI for age according to reference
curves for the United Kingdom (20). Age was calculated from
date of birth to date of measurement; ethnicity was self-reported
and later collapsed into categories of White European, South
Asian, or other; and socioeconomic status (SES) was estimated
using the index of multiple deprivation from self-reported
postcode. Age at peak height velocity was calculated as an
indicator of biological maturity and categorized into ‘‘average
maturing,’’ ‘‘early maturers,’’ or ‘‘late maturers’’ (21). Percent
body fat was estimated using pediatric bioelectrical im-
pedance scales (Tanita SC-330ST; Tanita Europe BV,
Middlesex, UK).

Sample 2 (Adults with Type 2 Diabetes)

Data were obtained from adult participants (18–75 yr)
enrolled in the ongoing CODEC study (Chronotype of Pa-
tients with Type 2 Diabetes and Effect on Glycaemic Control;
Clinical Trial Registry Number: NCT02973412). Adults were
recruited from both primary and secondary care using direct
and opportunistic marketing. Eligible adults were sent an in-
vitation pack containing a patient information leaflet, letter of
invitation, and reply slip with prepaid envelope. All partici-
pants provided written informed consent. Ethical approval
was obtained from the local NHS research ethics committee.

Study data were collected in a single session during the
patient_s next outpatient appointment unless the patient re-
quested otherwise. The measures relevant to this study were
age (from date of birth to date of measurement), ethnicity
(self-reported and later collapsed into categories ofWhite [W],
South Asian [SA], or other), sex, body mass, height, BMI,
percent body fat from bioelectrical impedance scales (Tanita
SC-330ST, Tanita Europe BV), and measures of physical
function. With the exception of percent body fat and physical
function, the above measures were all part of the usual care
routine. Physical function measures included the following:

Handgrip strength (kg): Measured three times in the left
and right hand using a digital hand held dynamometer,
with the elbow flexed and the forearm in a neutral po-
sition. The average of the maximum readings for the left
and right hand was taken.
Sit-to-stand 60 test: The number of times a participant
could stand from a chair in 60 s was recorded.
Short Physical Performance Battery (SPPB): This consisted
of chair stands, standing balance, and gait speed (detailed
below). The SPPB score was the sum of the three tests and
could range from 0 to 12 points, with a high score
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indicating better performance. For details of scoring, see
Puthoff (22).

Chair stands: The participant started from a seated
position on a hard, upright chair, with the feet flat on
the floor and the knees bent at 90-. The time taken
for the participant to stand up fully and then return to
sitting, without using the hands five times, was
measured (0–4 points).
Standing balance: This was tested in three progressive
positions. If the participant was able to complete 10 s
in the specified position, then the starting position was
progressed to the next stage (0–4 points).

� Feet together
� Semitandem
� Tandem

Gait speed: The time taken for the participant to
walk 2.44 m (8 ft) on a level course was measured
(0–4 points).

At the end of the session, participants were given a
GENEActiv accelerometer and asked to wear it on their
nondominant wrist (defined as the hand they do not normally
write with) 24 hIdj1 for 7 d. They were provided with a
prepaid padded envelope to return the device at the end of the
assessment period.

Accelerometer Data Processing

The GENEActivs were initialized to collect data at 100 Hz
and uploaded using GENEActiv PC software version 3.1. The
GENEActiv.bin files were analyzed with R-package GGIR
version 1.2–2 (http://cran.r-project.org) (23,24). Signal pro-
cessing in GGIR includes autocalibration using local gravity as
a reference (24), detection of sustained abnormally high values,
detection of nonwear, and calculation of the average magnitude
of dynamic acceleration corrected for gravity (Euclidean Norm
minus 1g, ENMO) averaged over 5-s epochs and expressed in
milligravitational units (mg).

Participants were excluded if their accelerometer files
showed postcalibration error greater than 0.01g (10 mg),
fewer than 3 d of valid wear (defined as Q16 hIdj1; Rowlands
et al. (17,18)), or missing wear data for each 15-min period of
the 24-h cycle. Detection of nonwear has been described in
detail previously (see ‘‘Procedure for nonwear detection’’ in
supplementary document to van Hees et al. (23)). Briefly,
nonwear is estimated based on SD and value range of each
axis, calculated for 60-min windows with a 15-min sliding
window. The window is classified as nonwear if, for at least
two out of the three axes, the SD is less than 13 mg or the
value range is less than 50 mg. The default nonwear setting
was used; that is, invalid data were imputed by the average at
similar time points on different days of the week. Therefore,
the outcome variables were based on the complete 24-h cycle
(1440 min) for all participants. The distribution of time spent

in intensity bins (categories) of 25 mg resolution (0–25, 25–50,
50–75,I 4000, 94000) was calculated.

Physical activity was expressed as average acceleration
across the day (ENMO, mg), time accumulated in MVPA
per day, and time spent inactive (see below). For each sample,
all MVPA outcomes were defined to be consistent with
previous research within that population for comparative
purposes. For the adolescent girls, MVPATOTAL was defined
as time accumulated above an acceleration of 200 mg (25).
For the adults, MVPATOTAL was defined as time accumulated
above an acceleration of 125 mg as presented in a recent
paper using data from UK Biobank (26); MVPABOUTS was
defined as time accumulated in 10-min bouts above an ac-
celeration of 100 mg (25), where at least 80% of the bout is
above the 100-mg threshold as used in previous research
(5,27). Inactive time was defined as time accumulated below
50 mg for both samples (17,28,29).

Metric to Describe Intensity Distribution across the
Physical Activity Profile

There is a negative curvilinear relationship between inten-
sity and time accumulated at that intensity; i.e., the total time
for all participants is 1440 min (24 h), but the vast majority of
time is accumulated in the 0- to 25-mg intensity bin, with
time accumulated rapidly dropping off as intensity increases
and minimal time accumulated at very high intensities, e.g.,
91000 mg. The nature of the curvilinear relationship for a
given participant provides a good descriptor of their physical
activity intensity distribution. To describe this curvilinear re-
lationship, for each participant we transformed the curvilinear
relationship into a straight-line relationship by taking the natural
log of the twowide ranging quantities of intensity and time; that
is, the midrange of each of the intensity bins (e.g., 0–25mg bin =
12.5 mg) and the time accumulated in each intensity bin. We
recorded the R2 (indicative of the goodness of fit of the linear
model), gradient, and constant of the linear regression equation
for each participant. The gradient was always negative, reflecting
the drop in time accumulated as intensity increases; a higher
constant and more negative (lower) gradient reflects a steeper
drop with little time accumulated at midrange and higher in-
tensities (Fig. 1A), whereas a lower constant and less negative
(higher) gradient reflects a shallower drop with more time
spread across the intensity range (Fig. 1B).

Analyses. Descriptive statistics were calculated for each
variable using mean (SD) for continuous variables and per-
centage for categorical variables. Average acceleration was
used as the metric for overall activity, and the gradient of the
participant_s log–log linear regression line (intensity gradi-
ent) was used as the metric for physical activity distribution.

The two activity metrics were examined and exemplar data
plotted to demonstrate how the average acceleration and
intensity gradient differed between and within samples.
Independent-samples t-tests were used to compare the two
activity metrics across samples.
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Intercorrelations of Activity Variables

Pearson_s correlation coefficients were used to investigate
the intercorrelations between the various activity output
variables within each sample to determine whether the in-
tensity gradient was more independent of average accelera-
tion than standard intensity metrics.

Associations between the Two Activity Metrics,
Body Fatness and Physical Function

Sample 1 (adolescent girls). To control for clustering
at the school level, generalized estimating equations were
used to determine whether each of the two activity metrics
was associated with percent body fat and BMI z-score
(dependent variables) (model 1). Model 2 further controlled
for potential covariates (age, biological maturity, SES, and
ethnicity), and finally model 3 additionally controlled for
the alternate activity metric to test whether associations
were independent.

Sample 2 (adults with type 2 diabetes). There was
no clustering in this data set, so multiple linear regression
analyses were used to assess whether each of the activity
metrics was associated with the following dependent vari-
ables: percent body fat, BMI, grip strength, sit-to-stand test
score, and SPPB score (model 1). Model 2 was adjusted for
potential covariates (age, sex, SES, ethnicity, and percent body
fat [physical function variables only]), and model 3 additionally
for the alternate activity metric to test whether associations
were independent.

Analyses were repeated replacing the intensity gradient
with MVPATOTAL (both samples) and MVPABOUTS (sample
2 only). This allowed comparison of results from our new
metric, the intensity gradient, to those seenwithMVPAmetrics.

Continuous variables were centered before entry into
generalized estimating equations and regression analyses.
The variance inflation factor (VIF) was calculated to check
for multicollinearity; a value 95 was taken to indicate if the
effects of the predictors could not be reliably estimated (30).

Translation of Results

Increases in a participant_s average acceleration can be
made by adding varying durations of physical activity at any
intensity greater than the average acceleration. The intensity
of the physical activity added will have an effect on the
intensity gradient, as it will change the distribution of time
across the intensity bins. Whether overall activity, the pattern
of activity of both are important for a given health outcome
will determine whether an intervention should target the av-
erage acceleration (for overall activity), the intensity gradient
(for the pattern of activity), or both.

To demonstrate how adding physical activity may affect
average acceleration and intensity gradient, we determined
the time spent in specific activities that would need to be
accumulated to increase the overall activity level of partici-
pants from samples 1 and 2 by 1 SD. Next, we explored the
effect on the intensity gradient of each option. We assumed
that the introduced activity would replace time spent at the
average acceleration. Therefore, for a given activity, the time
required is calculated as follows: 1440 � (increase in average
acceleration required by activity at that intensity)/(acceleration
associated with that activityj average acceleration). We also
show how the recommended activities for a given increase in
activity level can be tailored toward a particular balance of in-
tensities. This may be desirable because of the intensity distri-
bution being important for a given health outcome, or to take
into account the preferences of a given demographic/individual
participant when prescribing or recommending activity.

The representative activities we used to translate the findings
from the accelerometer metrics were as follows: pottering/slow
walking (approximately 3 kmIhj1), brisk walking (approximately
5 kmIhj1), fast walking (approximately 6.5 kmIhj1, adults only),
slow running (approximately 8 kmIhj1), and medium running
(approximately 10 kmIhj1). The acceleration values indicative
of these activities and used to calculate the time estimates were
taken from Hildebrand et al. (25), Phillips et al. (31), and
Esliger et al. (32). For the adolescents, 100 mg was used for
pottering/light walking, 200 mg for brisk walking, 800 mg for
slow running, and 1000 mg for medium running. For the

FIGURE 1—A. A steeper, more negative (lower) gradient with a higher constant (y-intercept) showing a steep drop in time accumulated with
increasing intensity (left)—a poorer intensity profile. B. A shallower, less negative (higher) gradient with a lower constant (y-intercept) showing more
time spread across the intensity range (right)—a better intensity profile.
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adults, 80 mg was used for pottering/light walking, 175 mg
for brisk walking, 400 mg for fast walking, 750 mg for slow
running, and 1000 mg for medium running.

RESULTS

The descriptive characteristics are presented in Table 1.
GENEActiv files were available for 1730 participants in
sample 1 and 296 participants in sample 2. Excluded partici-
pants totaled 61 for sample 1 (6 failed calibration, 24 incom-
plete 24-h cycle, and 31 fewer than three valid days) and 1 for
sample 2 (incomplete 24-h cycle), resulting in a final ac-
celerometer sample size of 1669 for sample 1 and 295 for
sample 2. All comparable activity measures differed sig-
nificantly between the two groups, with the adolescent girls
(sample 1) having higher average acceleration and intensity
gradient and lower inactive time and regression line constant
(intercept). The log–log regression line showed strong linear
relationships in both samples (R2 9 0.92, P G 0.001) but was
significantly higher in the adolescent girls (sample 1).

Figure 2 shows the log–log intensity regression line
for a representative participant from each sample. The

representative participant from sample 1 (solid circles) has
an average acceleration level and intensity gradient that
equate to the mean value for each for the sample. Corre-
spondingly, the representative participant from sample 2
(open triangles) has an average acceleration level and in-
tensity gradient that equate to the mean for each for sample 2.
The less active profile of the adult with type 2 diabetes
(sample 2, open triangles) can clearly be seen: steeper gradi-
ent, lower accumulated accelerations across all but the lowest
intensity bin, and the lack of accelerations at the higher in-
tensities. These characteristics are captured by the combina-
tion of the two physical activity metrics: acceleration average
and intensity gradient.

To demonstrate how the intensity gradient can differ, when
the average acceleration does not, a log–log plot for two par-
ticipants with equally high average acceleration (approxi-
mately 2 SD above their sample means) is shown in Figure 3A
for sample 1 (top left) and Figure 3B for sample 2 (top right).
One of the participants in each plot has a steep intensity gra-
dient (approximately 2 SD below their sample mean) and one
has a shallow intensity gradient (approximately 2 SD above
their sample mean). The same plots for two participants with
equally low average acceleration (approximately 2 SD below
their sample mean) are shown in Figures 3C for sample 1
(bottom left) and Figure 3D for sample 2 (bottom right). The
participants with steeper gradients accumulate more time in
low-to-mid range intensities, whereas the participants with
the shallower gradients accumulate more time at relatively
high intensities. This results in equivalent average acceleration
values within sample.

Intercorrelations of Activity Variables

Average acceleration was strongly positively associated
with MVPATOTAL in both samples (r Q 0.93, P G 0.001),
moderately associated with MVPABOUTS in adults with type
2 diabetes (r = 0.48, P G 0.001), and strongly negatively associ-
ated with inactive time in both samples (r e j0.88, P G 0.001).
Correlations between average acceleration and the intensity gra-
dient were still significant, but considerably weaker (sample 1:

TABLE 1. Descriptive characteristics of sample 1 and sample 2.

Sample 1 (N = 1669),
Adolescent Girls

Sample 2 (N = 295),
Adults with

Type 2 Diabetes

Sex
Male 0 60.3
Female 100 39.7

Age (yr) 12.8 (0.8) 63.2 (9.7)
SESa 5.5 (2.9) 6.3 (3.0)
Body size

Height (cm) 155.9 (8.0) 168.1 (10.0)
Mass (kg) 48.8 (12.4) 89.7 (17.6)
BMI (kgImj2) 19.9 (4.0) 31.6 (5.3)
BMI z-score 0.19 (1.33) –
Percent body fat 24.1 (7.7) 35.0 (8.5)

Biological maturity
Age at peak height velocity 12.1 (0.5) –
Early maturer 16.0 –
On time 68.2 –
Late maturer 15.8 –

Ethnicity
Whiteb 77.3 77.6
South Asian 11.2 17.2
Other 11.5 5.2

Physical function
Grip strength (kg) – 28.5 (10.1)
Sit-to-stand 60 – 22.1 (7.8)
SPPB – 9.9 (2.0)

Physical activitye

Average acceleration (mg) 36.3 (8.7) 22.1 (7.5)
MVPATOTAL

c 45.5 (20.4) 42.2 (32.8)
MVPABOUTS

d – 9.3 (20.4)
Inactive time (G50 mg) 1163.5 (53.9) 1240.3 (78.3)

Intensity regression linee

Intensity gradient j2.47 (0.18) j3.11 (0.26)
Constant 14.7 (0.89) 16.8 (1.0)
Variance explained (R2, %) 95.0 (1.8) 92.7 (3.3)

Values are presented asmean (SD) for continuous variables and% for categorical variables.
aSES is measured by the index of multiple deprivation 2015 decile score, which ranges
from 1 to 10, where 1 is the least deprived and 10 is the most deprived.
bWhite European for sample 1 and White for sample 2.
cMVPATOTAL: total accumulated MVPA for adolescent girls (9200 mg) and adults with
type 2 diabetes (9125 mg).
dMVPABOUTS accumulated in 10-min bouts for adults with type 2 diabetes (9100 mg).
eAll physical activity/intensity regression line metrics different between groups (P G 0.001).

FIGURE 2—Log–log Intensity regression line for representative par-
ticipants from sample 1 (solid circles) and sample 2 (open triangles). Both
participants have the mean average acceleration and mean intensity
gradient for their sample.
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r = 0.39; sample 2: r = 0.51; both P G 0.001), than for average
acceleration with MVPATOTAL or inactive time, demonstrating
the metrics were more independent. Similarly, correlations
between the intensity gradient and MVPATOTAL (sample 1: r =
0.34; sample 2: r = 0.51; both P G 0.001), MVPABOUTS (r =
0.29, P G 0.001), and inactive time were all considerably
weaker (r e j0.39 P G 0.001) than the corresponding cor-
relations with average acceleration. All intercorrelations
between activity metrics are shown in Table, Supplemental
Digital Content 1, Intercorrelations between activity metrics
for samples 1 and 2, http://links.lww.com/MSS/B202.

Associations between the Two Activity Metrics,
Body Fatness and Physical Function

Table 2 presents the results of the regression models
considering associations of the two physical activity metrics
with body fatness (percent body fat and BMI z-score/BMI)
in both samples (upper part of Table) and with physical
function in sample 2 (lower part of Table). Corresponding
results for MVPA are shown in Table, Supplemental Digital
Content 2, Associations of average acceleration and MVPA
with body fatness (samples 1 and 2) and physical function
(sample 2), http://links.lww.com/MSS/B203.

Average Acceleration and the Intensity Gradient
(Table 2)

Sample 1 (adolescent girls). Average acceleration was
negatively associated with percent body fat, but not BMI

z-score, in the unadjusted model (model 1, Table 2). The
association did not persist after adjusting for covariates
(models 2 and 3). The intensity gradient was negatively
associated with both percent body fat and BMI z-score,
with both associations remaining significant after adjusting
for covariates and independent of average acceleration
(models 2 and 3). The VIF was e1.3 in all cases. An increase
of one unit in the intensity gradient was associated with a per-
cent body fat 6.03 percentage points lower and BMI z-score
0.81 U lower. As the size of the 95% confidence interval
(CI) for the intensity gradient was approximately 0.35, the
difference in percent body fat and BMI z-score associated
with an intensity gradient at the lower and upper limits of the
95% CI was approximately 2 percentage points and 0.28 U,
respectively.

Sample 2 (adults with type 2 diabetes). Average
acceleration was negatively associated with both percent
body fat and BMI (model 1, Table 2). These associations
persisted after adjusting for covariates and were independent
of intensity gradient (models 2 and 3). The intensity gradient
was significantly negatively associated with percent body fat
and BMI in the unadjusted model (model 1) but only with
BMI after adjusting for covariates (model 2), and not inde-
pendent of average acceleration for either percent body fat or
BMI (model 3). The VIF was e1.4 in all cases. The difference
in percent body fat and BMI associated with average accel-
eration at the lower and upper limits of the 95% CI was ap-
proximately 2 percentage points and 2 kgImj2, respectively.

FIGURE 3—Intensity regression line for representative participants with high average acceleration and steep (open triangle) or shallow (solid circle)
intensity gradients from sample 1 (A) and sample 2 (B); low average acceleration and steep (open triangle) or shallow (solid circle) intensity gradients
from sample 1 (C) and sample 2 (D). Note that average acceleration is similar within each plot. Steep and shallow gradients are similar within each
sample (vertically aligned plots).
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Average acceleration was not associated with grip strength
but was positively associated with sit-to-stand 60 and SPPB
(model 1, Table 2). These associations remained after adjusting
for covariates (model 2) but were not independent of intensity
gradient (model 3). The intensity gradient was positively as-
sociated with grip strength, sit-to-stand 60, and SPPB score
(model 1), with all associations remaining significant after
adjusting for covariates (model 2) and independent of average
acceleration (model 3). The VIF was e2.1 in all cases. The
size of the effect associated with activity levels at the upper
and lower ends of the 95% CI for each of the scores was
approximately 2.6 kg for grip strength, three extra sit-to-
stand 60 reps, and an SPPB score 0.8 higher (just under
half a SD).

Average Acceleration and MVPA (SDC2)

Sample 1 (adolescent girls). MVPATOTAL was neg-
atively associated with percent body fat when adjusted for
clustering at the school level only, but not after adjusting for
covariates. It was not possible to test for independent effects of
MVPA and average acceleration because of multicollinearity
(VIF, 10.4–10.5).

Sample 2 (adults with type 2 diabetes). MVPATOTAL

was negatively associated with percent body fat and
BMI and positively associated with sit-to-stand 60 and
SPPB; these associations persisted after adjusting for
covariates. It was not possible to test for independent ef-
fects of MVPATOTAL and average acceleration because of
multicollinearity (VIF, 7.7–8.1).

MVPABOUTS was negatively associated with percent body
fat and BMI and positively associated with sit-to-stand 60

and SPPB, but only the association with BMI remained after
adjusting for covariates. No independent effects of MVPABOUTS

were evident. The VIF was e2.1 in all cases.

Translation of Results

An increase in the average acceleration level of 1 SD (an
increase of 8.7 and 7.5 mg for samples 1 and 2, respectively)
could be achieved by replacing time per day spent at the
average acceleration level with:

Sample 1:

1. approximately 3 h of pottering around/slow walking,
2. approximately 75 min of brisk walking,
3. approximately 16–17 min of slow running, or
4. approximately 13 min of medium running.

Sample 2:

1. approximately 3 h of pottering around/slow walking,
2. approximately 65–70 min of brisk walking,
3. approximately 30 min of fast walking,
4. approximately 15 min of slow running, or
5. approximately 11 min of medium running.

The increase in average acceleration to be obtained from
each intensity/activity can be manipulated as long as the sum
of the increases is equal to the overall average acceleration
increase needed (8.7 and 7.5 mg for samples 1 and 2, respec-
tively, in the examples). Thus, a combination of activities in a
given day can be used to gain the same increase in average
acceleration. For example, in sample 2:

TABLE 2. Associations of the two physical activity metrics with percent body fat (samples 1 and 2) and physical function (sample 2).

Model 1 Model 2 Model 3 Independent Effecta

Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI (Model 3)

Sample 1 (adolescent girls) Pairwise N = 1527–1638 Listwise N = 1521 Listwise N = 1521
Generalized estimating equations
Percent body fat
Average acceleration (mg) j0.09 j0.13, j0.05 j0.01 j0.05, 0.02 0.03 j0.01, 0.07 X
Intensity gradientb j9.15 j11.46, j6.83 j5.58 j7.36, j3.81 j6.03 j7.96, j4.09 (

BMI z-score
Average acceleration (mg) j0.01 j0.01, 0.00 0.01 j0.00, 0.01 0.01 0.00, 0.02 (
Intensity gradientb j1.17 j1.53, j0.81 j0.66 j0.88, j0.44 j0.81 j1.04, j0.58 (

Sample 2 (adults with type 2 diabetes) Pairwise N = 260–291 Listwise N = 253–279 Listwise N = 253–279
Multiple regression
Percent body fat
Average acceleration (mg) j0.13 j0.26, j0.00 j0.15 j0.26, j0.05 j0.14 j0.24, j0.03 (
Intensity gradientb j7.25 j10.82, j3.68 j3.09 j6.34, 0.15 j1.27 j4.55, 2.22 X

BMI (kgImj2)
Average acceleration (mg) j0.13 j0.21, j0.05 j0.15 j0.23, j0.08 j0.14 j0.22, j0.05 (
Intensity gradientb j2.88 j5.03, j0.73 j2.70 j5.09, j0.31 j0.61 j3.37, 1.78 X

Average grip strength (kg)
Average acceleration (mg) 0.12 j0.03, 0.28 0.09 j0.04, 0.23 0.03 j0.11, 0.17 X
Intensity gradientb 11.09 6.63, 15.56 4.44 0.60, 8.27 4.05 0.04, 8.06 (

Sit-to-stand 60 (repetitions)
Average acceleration (mg) 0.25 0.11, 0.40 0.22 0.06, 0.38 0.13 j0.05, 0.30 X
Intensity gradientb 8.83 5.83, 11.83 7.74 4.36, 11.13 6.03 2.04, 10.02 (

SPPB
Average acceleration (mg) 0.06 0.03, 0.09 0.04 0.01, 0.07 0.02 j0.02, 0.05 X
Intensity gradientb 2.19 1.44, 2.94 1.76 1.05, 2.47 1.55 0.67, 2.44 (

Model 1 adjusted for clustering at school level only (sample 1) or unadjusted (sample 2). Model 2 adjusted for potential covariates. Model 3 further adjusted for alternate activity metric.
Significant associations are denoted in bold.
aThe final column indicates whether the associations with each activity metric were independent of the other metric (from model 3).
b Intensity gradient: gradient of the regression line from log–log plot of intensity (x) and minutes accumulated (y).
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6. 1 h of slow walking (2.7 mg) and 30 min of brisk
walking (3.2 mg) and 6 min of fast walking (1.6 mg),
total = 2.7 + 3.2 + 1.6 = 7.5 mg.

Alternatively, if higher-intensity activity was to be em-
phasized, the same increase in average acceleration could
be obtained from

7. 25 min of slow walking (1.1 mg) and 25 min of brisk
walking (2.8mg) and 7–8 min of slow running (3.6 mg),
total = 1.1 + 2.8 + 3.6 = 7.5 mg.

All options would increase the average acceleration by the
SD of the sample, but the options would have differing effects
on the intensity gradient (note, the effect on the intensity
gradient will also depend on the participant_s initial activity
profile). The effect of each of these on the intensity gradient
for a participant from sample 2 (adults with type 2 diabetes)
with a low average acceleration and a low intensity gradient
(1 SD below the sample mean for each) is depicted in Figure 4.
The order of the options reflects the effect on the intensity
gradient, with more negative/null effects at the bottom and the
most positive effect at the top (exact values for the change in
the intensity gradient for our representative participant are in a
column in the middle of the plot). The length of the bars rep-
resents the total activity time, and the patterning of the bars
represents the combination of activity types included in the
option; the more dense the patterning, the more intense the
activity. The two lowest-intensity options may have a detri-
mental effect on the intensity gradient (make it steeper), and the
more intense the activities selected, the more positive the effect
on the intensity gradient (makes it shallower). The same pat-
tern is true for sample 1 (adolescent girls, not shown), but
when adding higher-intensity activities (slow running or
medium running), the effects on the intensity gradient were more
pronounced in adults with type 2 diabetes.

DISCUSSION

We have proposed a novel new metric, the intensity gradi-
ent, which describes the intensity distribution of the physical
activity profile. It is relatively independent of overall activity,
in comparison with the intensity variables currently deployed;
for example, MVPA and inactive time. In conjunction with
average acceleration (a measure of overall activity level), the two
metrics provide a detailed picture of an individual_s physical
activity profile. Both metrics are calculated from the directly
measured acceleration, minimizing the error associated with
using physical behavior outcomes that are further removed from
the measured variable (33). Neither relies on calibration protocols,
and therefore both are protocol and population independent,
facilitating comparisons between studies and populations (33).

We have demonstrated the added value of using the in-
tensity gradient to describe the physical activity profile by
investigating relations with body fatness and physical func-
tion. The intensity gradient was negatively associated with
body fatness in adolescent girls and positively associated
with physical function in adults with type 2 diabetes; these
associations were independent of overall activity level, as
assessed by average acceleration. By contrast, MVPATOTAL was
highly correlated with average acceleration, and MVPABOUTS

was not independently associated with body fatness or physical
function. The similarity of the associations between average
acceleration and body fatness/physical function with those
between MVPA and body fatness/physical function in model
2 is not surprising, given the high correlation between average
acceleration and MVPA. Given the independent positive
associations between the intensity gradient and physical
function, it is possible that the intensity distribution of the
physical activity profile may be of particular relevance to
frailty, elderly, and/or in rehabilitation. It is likely that for
different health and physical function outcomes the relative
importance of the average acceleration and the intensity

FIGURE 4—Duration per day of activity type(s), all of which increase the average acceleration by 1 SD (sample 2), and the effect of each on the
intensity gradient for an example participant (average acceleration and intensity gradient both 1 SD below sample mean).
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gradient will differ. The use of these two metrics will enable
further investigation of independent, additive, and interactive
effects of activity volume and the intensity distribution on
health and physical function. Potentially, this could facilitate
the incorporation of choice in physical activity promotion
messages, allowing individualization of interventions.

The average acceleration and intensity gradient metrics
are not immediately interpretable in the way that minutes of
physical activity are, but translational outcomes can be
produced post hoc using data from calibration studies (e.g.,
(25,29,31,32,34)). Importantly, this shifts assumptions re-
lating to the conversion of acceleration metrics to physical
activity intensity outcomes from the analysis stage to the
translation of the research. Further, this means that interpre-
tation and translation can be updated and/or changed with ease
by other researchers; access to the primary data would not be
required. We have presented an example translation of the
outcomes, highlighting how the recommended time accumu-
lated across a range of physical activity intensities per day can
be manipulated, e.g., as appropriate for a given health outcome,
or as selected as achievable by a participant, or most suited to a
given demographic. Translations such as these could be used to
develop meaningful physical activity targets, as appropriate, for
individuals or groups. As Wolff-Hughes et al. (35,36) have
done for total accelerometer counts per day for U.S. adults and
children using NHANES 2003–2006 data, it would also be
possible to generate age- and sex-specific population-referenced
percentiles for both metrics. This would facilitate comparison
with norms, comparison of population subgroups (e.g., ethnic
groups), and the tracking of physical activity over time (35,36).

Kim et al. (26) recently showed that fatness and grip strength
at baseline predicted both average acceleration and total time
spent in MVPA at follow-up (median, 5.7 yr; interquartile
range, 4.9–6.5 yr) in 993,000 participants in UK Biobank. This
is consistent with the cross-sectional associations observed for
body fatness in the current study. However, in our smaller data
set, neither average acceleration nor MVPA was associated
with grip strength, whereas intensity gradient was associated
with grip strength. The size of the UK Biobank sample (2)
offers considerable scope for exploring potential health and/or
performance differences between participants with similar
average acceleration levels but very different intensity distri-
butions. This could feed into whether physical activity in-
terventions and/or public health messages need to focus on
volume of activity alone or also on shifting the intensity gra-
dient by focus on specific intensities. We have provided
examples of how this could occur in the results section.

It should be noted that the validity of the average accel-
eration and intensity distribution metrics would still be de-
pendent on the procedures used to clean the acceleration
signal, e.g., removal of gravity, and detection and treatment
of nonwear (23,24). Furthermore, the magnitude of the inten-
sity gradient will depend on the size of the intensity bins used
to summaries the acceleration data. Rerunning the analyses
with intensity bins of 40 mg and 50 mg did not change the
pattern of the results but did affect the magnitude the intensity

gradient and constant (y-intercept). For consistency, we would
recommend standardizing the intensity bin size at 25 mg. This
provides a fairly high, but manageable, resolution.

Strengths and Limitations

The current study demonstrates the utility of the proposed
metric, the intensity gradient, in two large heterogeneous
samples. We only examined data from the GENEActiv ac-
celerometer, but our previous research indicates the same
metrics calculated from the Axivity (as used in UK Biobank,
Doherty et al. (2)) would likely be equivalent (17). The av-
erage acceleration from the ActiGraph (as used in the US
National Health and Nutrition Examination Survey (3,15)) is
around 10% lower (17,18), but this appears to be consistent
across the intensity range (17,37), suggesting that the in-
tensity gradient may be comparable.

Further, we only used data collected at the nondominant
wrist. Participants in UK Biobank wore accelerometers on
their dominant wrist (2), unlike most other studies that use
the nondominant wrist (1,3–7). Average acceleration tends
to be higher when measured at the dominant relative to the
nondominant wrist (unpublished data from our laboratory).
Whether the intensity gradient differs will depend on whether
differences between the dominant and the nondominant wrist are
spread equally across the intensity distribution. We plan further
research to investigate the degree to which average accelera-
tion and the intensity gradient differ between wrists.

In summary, the average acceleration and the intensity
gradient together provide a complementary description of a
person_s entire activity profile and will facilitate investiga-
tion of the relative importance of intensity and volume of
activity for a given outcome. Crucially, the metrics are not
subject to the error and population specificity associated
with converting acceleration into physical activity outcomes.
They would be appropriate for reporting as standardized mea-
sures, suitable for comparison across the wealth of studies using
wrist-worn raw acceleration accelerometers.
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