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Abstract

A different approach towards quantum theory is proposed in this paper. The
basis is taken to be conceptual variables, physical variables that may be accessible
or inaccessible, i.e., it may be possible or impossible to assign numerical values to
them. In an epistemic process, the accessible variables are just ideal observations
connected to an actor or to some communicating actors. Group actions are defined
on these variables, and using group representation theory, this is the basis for de-
veloping the Hilbert space formalism here. Operators corresponding to accessible
conceptual variables are derived as a result of the formalism, and in the discrete
case it is argued from the same formalism that the possible physical values are the
eigenvalues of these operators. The interpretation of quantum states (or eigenvec-
tor spaces) implied by this approach is as focused questions to nature together with
sharp answers to those questions. Resolutions if the identity are then connected to
the relevant questions; these may be complementary in the sense defined by Bohr.
This interpretation may be called a general epistemic interpretation of quantum
theory. It is similar in some respects to QBism, but more generally, can also be
seen as a concrete implementation of aspects of Rovelli’s Relational Quantum Me-
chanics. The focus in the present paper is, however, as much on foundation as on
interpretation. But the simple consequence is a general epistemic interpretation.
Consequences are also sketched for for some socalled quantum paradoxes. The
foundational discussion started here, is continued in the author’s book [1]. It is
shown in this paper that technical symmetry assumptions stated in recent articles
by the author, can be satisfied in important cases, for instance under very weak
conditions in the finite-dimensional case.

1 Introduction
For an outsider, one of the really difficult things to accept about quantum mechanics
is its state concept: The state of a physical system is given by a normalized vector in
a complex separable Hilbert space. One question that I will raise here, is whether this
state concept can be derived, or at least motivated, by some other considerations. And
I will try to answer this by using group theory and group representation theory.
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The point of departure will be the notion of conceptual variables, physical variables
attached to some observer. For instance according to Relational Quantum Mechanis,
see Rovelli [2] and von Fraassen [3], variables take values only at interactions, and the
values that they take are only relative to the other system affected by the interaction.
This other system might well be an observer, and I will think of such a situation. Vari-
ables which take definite values relative to an observer, will be called accessible. But
in the mind of the observer there may also be other conceptual variables which I will
call inaccessible. An example may be the vector (position, momentum) connected to
the observation of a particle. Another example may be the spin vector of a particle.

In this article I discuss these notions more closely with a focus on the more mathe-
matical aspects of the situations described above. I assume the existence of a concrete
(physical) situation, and that there is a space Ωφ of an inaccessible conceptual vari-
able φ with a group K acting on this space. There is at least one accessible conceptual
variable, θ defined, a function on Ωφ . This θ varies on a space Ωθ , and the group K
may or may not induce a transformation group G on Ωθ . In any case I will focus on
such a group G on Ωθ , whether it is induced by K or not. An essential requirement is
that G is transitive on Ωθ . It is shown below that the existence of K and G, together
with symmetry assumptions assumed by the author in recent papers, will be satisfied
in important cases.

A special situation is when φ is a spin vector, and θ is a spin component in a given
direction. In the simple spin situation the natural group K for the spin vector does
not directly induce groups on the components. But does so if we redifine φ to be the
projection of the spin vector upon the plane spanned by two related components of
spin, and take K to be the corresponding rotation group.

When there are several potential accessible variables, I will denote this by a super-
script a: θ a and Ga = {ga}. Both here and in [1] I use the word ‘group’ as synonymous
to ‘group action’ or transformation group on some set, not as an abstract group.

The article has some overlap with the papers [4,5], but the results there are further
discussed and clarified here.

My derivations will in some sense compete with the rather deep investigations re-
cently on deriving the Hilbert space structure from physical assumptions [6,7,8,9,10].
By relying on group representation theory, I use at the outset some Hilbert space struc-
ture, but this is by construction, not by assumption. And the construction is shown to
be realizable in important cases. It is interesting to see, as is stated in [11], that there
is a problem connecting the above general derivations to the many different interpreta-
tions of quantum theory. By contrast, the derivation presented here seems to lead to a
particular interpretation: A general epistemic interpretation. This interpretation is also
elaborated on in [1].

Group representation theory in discussing quantum foundation has also been used
other places; see for instance [12]. In quantum field theory and particle physics theory,
the use of group representation theory is crucial [13].

Section 2 gives some background. In Sections 3 and 4 I introduce some basic group
theory and group representation theory that is needed in the paper. Then in Sections
5-7 I formulate my approach to the foundation of quantum theory. The basic notion is
conceptual variables in the mind of an actor in a concrete context or in the joint minds
of a communicating group of actors. Simple postulates for the relevant situations are
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assumed. From this, the ordinary quantum formalism is derived, and it is shown how
operators attached to accessible physical variables may be defined. In Sections 8 and
9 a corresponding interpretation of quantum states is proposed, and Section 10 gives
some concluding remarks.

To complete the derivation of quantum theory along these lines, one will also
need a derivation of the Born rule under suitable conditions, and a derivation of the
Schrödinger equation. For this the reader is referred to the book [1].

2 On interpretations of quantum mechanics
There exist several interpretations of quantum mechanics, and the discussions between
the supporters of the different interpretations are still going on. During the recent
years there have been held a long range of international conferences on the foundation
of quantum mechanics. A great number of interpretations have been proposed; some
of them look very peculiar to the laymen. The many worlds interpretation assumes
that there exist millions or billions of parallel worlds, and that a new world appears
every time when one performs a measurement; there is also a related many minds
interpretation.

On two of these conferences recently there was taken an opinion poll among the
participants [14,15]. It turned out to be an astonishing disagreement on many fun-
damental and fairly simple questions. One of these questions was: Is the quantum
mechanics a description of the objective world, or is it only a description of how we
obtain knowledge about reality? The first of these descriptions is called ontological, the
second epistemic. Up to now most physicists have supported some version of an onto-
logical or realistic interpretation of quantum mechanics, but variants of the epistemic
interpretation have received a fresh impetus during the recent years.

I look upon my book ’Epistemic Processes’ [1] as a contribution to this debate. An
epistemic process can denote any process to achieve knowledge. It can be a statistical
investigation or a quantum mechanical measurement, but it can also be a simpler pro-
cess. The book starts with an informal interpretation of quantum states, which in the
traditional theory has a very abstract definition. In my opinion, a quantum state can
under wide circumstances be connected to a focused question and a sharp answer to
this question, see below.

A related interpretation is QBism, or quantum Bayesianism, see Fuchs [16,17,18]
and von Baeyer [19]. The predictions of quantum mechanics involve probabilities, and
a QBist interpret these as purely subjective probabilities, attached to a concrete ob-
server. Many elements in QBism represent something completely new in relation to
classical physical theory, in relation to many people’s conception about science in gen-
eral and also to earlier interpretations of quantum mechanics. The essential thing is that
the observer plays a role that can not be eliminated. A single person’s comprehension
of reality can differ from person to person, at least at a given point of time, and this is
in principle all that can be said.

Such an understanding can in my opinion be made valid in very many contexts.
We humans can have a tendency to experience reality differently. Partly, this can be
explained by the fact that we give different meaning to the concepts we use. Or we can
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have different contexts for our choices. An important aspect is that we focus differently.
QBism has been discussed by several authors. For instance, Hervé Zwirn’s views

on QBism, which I largely agree with, are given in [20].
By using group theory and group representation theory, I aim at studying a general

situation involving conceptual variables mathematically, and it seems to appear from
this that essential elements of the quantum formulation can be derived under weak con-
ditions. This may be of some scientific relevance. Empirically, the quantum formalism
has turned out to give a very extensive description of our world as we know it [21], in
physical situations in microcosmos an all-embracing description.

In decision situations and in cognitive modeling it has also been fruitful to look at
a quantum description, see [22,23]. In a decision situation the decision variable may
seem to be so extensive that it is extremely difficult for the person in question to make
a decision; this variable may then be called inaccessible. The person can then focus
on a simpler, accessible, decision variable, in such a way that it is possible to make a
partial decision.

Often it is useful to have an epistemic way to relate to the world; it can simply
be necessary to seek knowledge. We can get knowledge on certain issues by focusing
on certain questions, and our knowledge depends on the answers we obtain to these
questions. And this is all we can achieve.

Following the view on quantum theory sketched above, it can be argued that for
certain phenomena there exists no other state concept than this (subjective) attached
to each single person. This statement must be made precise to be understood in the
correct way. First, it is connected to an ideal observer. Secondly, groups of observers
that communicate, can go in and act as one observer when a concrete measurement is
focused on. When all potential observers agree on a measurement, there is a strong
indication that this measurement represents an objective property of reality. Thus the
objective world exists; it is the state attached to certain aspects of the world that in
some cases must be connected to an observer (or to several communicating observers).

Nevertheless, these are aspects of physics – and science – which can be surprising
for many people.

Here is one remark concerning QBism, which can be said to represent a variant of
this view: Subjective Bayes-probabilities have also been in fashion among groups of
statisticians. In my opinion it can be very fruitful to look for analogies between statis-
tical inference theory and quantum mechanics, but then one must look more broadly
upon statistics and statistical inference theory, not only focus on subjective Bayesian-
ism. This is only one of several philosophies that can form a basis for statistics as a
science. Studying connections between these philosophies, is an active research area
today. From such discussions one might infer that an interesting version of Bayesian-
ism also is objective Bayesianism, with a prior based on group actions.

3 Variables and group actions
Let φ be an inaccessible conceptual variable varying in a space Ωφ . It is a basic phi-
losophy of the present paper that I always regard groups as group actions or transfor-
mations, acting on some space.
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Starting with Ωφ and a group K acting on Ωφ , let θ(·) be an accessible function on
Ωφ , and let Ωθ be the range of this function.

As mentioned in the Introduction, I regard ‘accessible’ and ‘inaccessible’ as prim-
itive notions. But they have concrete interpretations, at least in the physical case: A
physical variable θ is called accessible if an actor, by a suitable measurement, can ob-
tain as accurate values of θ as he wants to. From a mathematical point of view, I only
assume: If θ is accessible, and λ can be defined as a fixed function of θ , then λ is also
accessible.

Ωθ and Ωφ are equipped with topologies, and all functions are assumed to be Borel-
measurable.

Definition 1. The accessible variable θ is called maximal if the following holds:
If θ can be written as θ = f (ψ) for a function f that is not bijective, the conceptual
variable ψ is not accessible. In other words: θ is maximal under the partial ordering
defined by α ≤ β iff α = f (β ) for some function f .

Note that this partial ordering is consistent with accessibility: If β is accessible and
α = f (β ), then α is accessible. Also, φ is an upper bound under this partial ordering.
The existence of maximal accessible conceptual variables then follows from Zorn’s
lemma, if this lemma, which is equivalent to the axiom of choice, is assumed to hold.

Definition 2. The accessible variable θ is called permissible if the following holds:
θ(φ1) = θ(φ2) implies θ(kφ1) = θ(kφ2) for all k ∈ K.

With respect to parameters and subparameters along with their estimation, the con-
cept of permissibility is discussed in some details in Chapter 3 in [24]. The main con-
clusion, which also is valid in this setting, is that under the assumption of permissibility
one can define a group G of actions on Ωθ such that

(gθ)(φ) := θ(kφ); k ∈ K. (1)

Herein I use different notations for the group actions g on Ωθ and the group actions
k on Ωφ ; by contrast, the same symbol g was used in [24]. The background for that is

Lemma 1. Assume that θ is a permissible variable. The function from K to G
defined by (1) is then a group homomorphism.

Proof. See [25]. �

Starting with a point θ0 ∈ Ωθ , an orbit of a group G acting on Ωθ is the set {gθ0 :
g∈G}. It is trivial to see that the orbits are disjoint, and the their union is the full space
Ωθ . The point θ0 may be replace by any point of the same orbit. In the case of one
orbit filling the whole space, the group is said to be transitive.

The isotropy group at a point θ ∈Ωθ is the set of g such that gθ = θ . It is easy to
see that this is a group.

It is important to define left and right invariant measures, both on the groups and
on the spaces of conceptual variables. In the mathematical literature, see for instance
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[26,27], Haar measures on the groups are defined (assuming locally compact groups).
Right (µG) and left (νG) Haar measures on the group G satisfy

µG(Dg) = µG(D), and νG(gD) = νK(D)

for g ∈ G and D⊂ G, respectively.

Next define the corresponding measures on Ωθ . As is commonly done, I assume
that the group operations (g1,g2) 7→ g1g2, (g1,g2) 7→ g2g1 and g 7→ g−1 are continuous.
Furthermore, I will assume that the action (g,θ) 7→ gθ is continuous.

As discussed in Wijsman [28], an additional condition is that every inverse image
of compact sets under the function (g,θ) 7→ (gθ ,θ) should be compact. A continuous
action by a group G on a space Ωθ satisfying this condition is called proper. This
technical condition turns out to have useful properties and is assumed throughout this
paper. When the group action is proper, the orbits of the group can be proved to be
closed sets relative to the topology of Ωθ .

The following result, originally due to Weil, is proved in [26,28]; for more details
on the right-invariant case, see also [24].

Theorem 1. The left-invariant measure measure ν on Ωθ exists if the action of G
on Ωθ is proper and the group is locally compact.

The connection between νG defined on G and the corresponding left invariant mea-
sure ν defined on Ωθ is relatively simple: If for some fixed value θ0 of the conceptual
variable the function β on G is defined by β : g 7→ gθ0, then ν(E) = νG(β

−1(E)).This
connection between νG and ν can also be written νG(dg)= dν(gθ0)), so that dν(hgφ0)=
dν(gφ0) for all h,g ∈ G if ν is left-invariant..

Note that ν can be seen as an induced measure on each orbit of G on Ωθ , and it can
be arbitrarily normalized on each orbit. ν is finite on a given orbit if and only if the
orbit is compact. In particular, ν can be defined as a probability measure on Ωθ if and
only if all orbits of Ωθ are compact. Furthermore, ν is unique only if the group action
is transitive. Transitivity of G as acting on Ωθ will be assumed throughout this paper.

In a corresponding fashion, a right invariant measure can be defined on Ωθ . This
measure satisfies dµ(ghφ0) = dµ(gφ0) for all g,h ∈G. In many cases the left invariant
measure and the right invariant measure are equal.

4 A brief discussion of group representation theory
A group representation of G is a continuous homomorphism from G to the group of
invertible linear operators V on some vector space H :

V (g1g2) =V (g1)V (g2). (2)

It is also required that V (e) = I, where I is the identity, and e is the unit element of G.
This assures that the inverse exists: V (g)−1 =V (g−1). The representation is unitary if
the operators are unitary (V (g)†V (g) = I). If the vector space is finite-dimensional, we
have a representation D(V ) on the square, invertible matrices. For any representation
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V and any fixed invertible operator U on the vector space, we can define a new equiv-
alent representation as W (g) =UV (g)U−1. One can prove that two equivalent unitary
representations are unitarily equivalent; thus U can be chosen as a unitary operator.

A subspace H1 of H is called invariant with respect to the representation V if
u ∈H1 implies V (g)u ∈H1 for all g ∈G. The null-space {0} and the whole space H
are trivially invariant; other invariant subspaces are called proper. A group representa-
tion V of a group G in H is called irreducible if it has no proper invariant subspace. A
representation is said to be fully reducible if it can be expressed as a direct sum of irre-
ducible subrepresentations. A finite-dimensional unitary representation of any group is
fully reducible. In terms of a matrix representation, this means that we can always find
a W (g) =UV (g)U−1 such that D(W ) is of minimal block diagonal form. Each one of
these blocks represents an irreducible representation, and they are all one-dimensional
if and only if G is Abelian. The blocks may be seen as operators on subspaces of
the original vector space, i.e., the irreducible subspaces. The blocks are important in
studying the structure of the group.

A useful result is Schur’s Lemma; see for instance [27]:

Let V1 and V2 be two irreducible representations of a group G; V1 on the space H1
and V2 on the space H2. Suppose that there exists a linear map T from H1 to H2 such
that

V2(g)T (v) = T (V1(g)v) (3)

for all g ∈ G and v ∈H1.
Then either T is zero or it is a linear isomorphism. Furthermore, if H1 =H2, then

T = λ I for some complex number λ .

Let ν be the left-invariant measure of the space Ωθ induced by the group G, and
consider in this connection the Hilbert space H = L2(Ωθ ,ν). Then the left-regular
representation of G on H is defined by UL(g) f (φ) = f (g−1φ). This representation
always exists, and it can be shown to be unitary, see [29].

If V is an arbitrary representation of a compact group G in some Hilbert space H ,
then there exists in H a new scalar product defining a norm equivalent to the initial
one, relative to which V is a unitary representation of G.

For references to some of the vast literature on group representation theory, see
Appendix A.2.4 in [24].

5 A mathematical model of our minds
My point of departure is a statement of Hervé Zwirn’s Convivial Solipsism [30]: Every
description of the world must be relative to the mind of some observer. Different
observers can communicate. A consequence of this is that physical variables also must
be assumed to have some ‘existence’ in the mind of an observer. In the following I will
take as a point of departure a concrete observer A. This will be assumed throughout
this paper, but note that A can be any person.
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Postulate 1 Assume that A is in some (physical) context. Every (physical) variable
in this context has a paralell existence in the mind of A.

As noted before, the variables may be accessible or inaccessible to A. If θ is ac-
cessible, A will, in principle in some future be able to find as accurate value of θ as he
likes. This is taken as a primitive notion. From a mathematical point of view I only
assume:

Postulate 2 If θ is accessible to A and λ = f (θ) for some function f , then λ is also
accessible to A.

The crucial model assumption is now the following (see also [1,4,5]):

Postulate 3 In the given context there exists an inaccessible variable φ such that
all the accessible ones can be seen as functions of φ .

As will be seen below, this postulate, taken together with some symmetry assump-
tions, has really far-reaching consequences. And these symmetry assumptions will be
shown to be satisfied in important cases, for instance when all accessible variables take
a finite number of values.

Now recall Definition 1 in Section 3 above.

Postulate 4 There exist maximal accessible variables. For every accessible vari-
able λ there exists a maximal accesible variable θ such that λ is a function of θ .

As noted before, this can be motivated by using Zorn’s lemma. Physical examples
are the position or the momentum of some particle, or the spin component in some
direction.

Postulate 5 One can define a group K of actions on the space Ωφ associated with
φ . For at least one maximal accessible variable θ there is a group G of actions on the
associated space Ωθ .

There may or may not be a connection between K and G. As noted in Lemma 1 of
Section 3, if θ(·) is a permissible function of φ , then G may be defined from K by the
simple homomorphism defined in equation (1).

Finally, to complete the model, we need a new definition.

Definition 3 Let θ and η be two maximal accessible variables in some context,
and let θ = f (φ) for some function f . If there is a transformation k of Ωφ such that
η(φ) = f (kφ), we say that θ and η are related. If no such (φ ,k) can be found, we say
that θ and η are essentially different.

It is easy to show that the property of being related is an equivalence relation. And
if θ is maximal, it follows from the relationship property that η above also is maximal.
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6 The construction of operators for the hypothetical case
of an irreducible representation of the basic group

In the quantum-mechanical context defined in [1], θ is an accessible variable, and one
should be able to introduce an operator associated with θ . The following discussion,
which is partly inspired by [29, 31], assumes first an irreducible unitary representation
of G on a complex Hilbert space H . In the next Section, the assumption of irreducibil-
ity will be removed, by simply assuming that we have two related maximal accessible
variables in the given context.

6.1 A resolution of the identity
In the following I assume that the group G has representations that give square-integrable
coherent state systems (see page 43 of [29]). For instance this is the case for all rep-
resentations of compact semisimple groups, representations of discrete series for real
semisimple groups, and some representations of solvable Lie groups.

Let G be an arbitrary such group, and let V (·) be one of its unitary irreducible
representations acting on a Hilbert space H . Assume that G is acting transitively on
the space Ωθ , and fix θ0 ∈Ωθ . Then every θ ∈Ωθ can be written as θ = gθ0 for some
g ∈ G. I also assume that the isotropy groups of G are trivial. Then this establishes
a one-to-one correspondence between G and Ωθ . In particular, this implies that the
group action is proper; see Theorem 1 above.

Also, fix a vector |θ0〉 ∈H , and define the coherent states |θ〉= |θ(g)〉=V (g)|θ0〉.
With ν being the left invariant measure on Ωθ , introduce the operator

T =
∫
|θ(g)〉〈θ(g)|dν(gθ0). (4)

Note that the measure here is over Ωθ , but the elements are parametrized by G. T is
assumed to be a finite operator.

Lemma 2. T commutes with every V (h);h ∈ G.

Proof. V (h)T =∫
V (h)|θ(g)〉〈θ(g)|dν(gθ0) =

∫
|θ(hg)〉〈θ(g)|dν(gθ0)

=
∫
|θ(r)〉〈θ(h−1r)|dν(h−1rθ0).

Since |θ(h−1r)〉=V (h−1r)|θ0〉=V (h−1)V (r)|θ0〉=V (h)†|θ(r)〉, we have 〈θ(h−1r)|=
〈θ(r)|V (h), and since the measure ν is left-invariant, it follows that V (h)T = TV (h).
�

From the above and Schur’s Lemma it follows that T = λ I for some λ . Since T
by construction only can have positive eigenvalues, we must have λ > 0. Defining the
measure dρ(θ) = λ−1dν(θ) we therefore have the important resolution of the identity∫

|θ〉〈θ |dρ(θ) = I. (5)
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For a more elaborate similar construction taking into account the isotropy subgroups,
see Chapter 2 of [31]. In [4] a corresponding resolution of the identity is derived for
states defined through representations of the group K acting on Ωφ .

6.2 Simple quantum operators
Let now θ be a maximal accessible variable, and let G be a group acting on θ , satisfying
the requirements of the last subsection.

In general, an operator corresponding to θ may be defined by

Aθ =
∫

θ |θ〉〈θ |dρ(θ). (6)

Aθ is defined on a domain D(Aθ ) of vectors |v〉 ∈ H where the integral defining
〈v|Aθ |v〉 converges.

This mapping from an accessible variable θ to an operator A has the following
properties:

(i) If θ = 1, then Aθ = I.
(ii) If θ is real-valued, then Aθ is symmetric (for a definition of this concept for

operators and its relationship to self-adjointness, see [32].)
(iii) The change of basis through a unitary transformation is straightforward.
For further important properties, we need some more theory. First consider the

situation where we regard the group G as generated by a group K defined on the space
of an inaccessible variable φ . This represents no problem if the mapping from φ to θ

is permissible, a case discussed in [4], and in this case the operators corresponding to
several accessible variables can be defined on the same Hilbert space. In the opposite
case we have the following theorem.

Theorem 2. Let H be the subgroup of K consisting of any transformation h such
that θ(hφ) = gθ(φ) for some g ∈ G. Then H is the maximal group under which the
variable θ is permissible.

Proof. Let θ(φ1)= θ(φ2) for all θ ∈Θ. Then for h∈H we have θ(hφ1)= gθ(φ1)=
gθ(φ2) = θ(hφ2), thus θ is permissible under the group H. For a larger group, this
argument does not hold. �

Next look at the mapping from θ to Aθ defined by (6).

Theorem 3. For g ∈ G, V (g−1)AV (g) is mapped by θ ′ = gθ .

Proof. V (g−1)AV (g) =∫
θ |g−1

θ〉〈g−1
θ |dρ(θ) =

∫
gθ |θ〉〈θ |dρ(gθ).

Use the left invariance of ρ . �
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Further properties of the mapping from θ to A may be developed in a similar way.
The mapping corresponds to the usual way that the operators are allocated to observ-
ables in the quantum mechanical literature. But note that this mapping comes naturally
here from the notions of conceptual variable and accessible variables on which group
actions are defined.

7 The main theorems.

7.1 The general case
Up to now I have assumed an irreducible representation of the group G. A severe
problem with this, however, is that the group G in many applications is Abelian, and
Abelian groups have only one-dimensional irreducible representations. Then the above
theory is trivial.

In [4] this problem is solved by taking as a point of departure two different related
maximal accessible variables θ and η . The main result is then as follows.

Theorem 4 Consider a context where the observer A has two related maximal
accessible variables θ and η in his mind. Assume that both θ and η are real-valued or
real vectors, taking at least three values. Make the following additional assumptions
assumptions:

(i) On one of these variables, θ , there can be defined a transitive group of actions
G with a trivial isotropy group and with a left-invariant measure ρ on the space Ωθ .

(ii) There exists a unitary multi-dimensional representation U(·) of the group be-
hind the group actions G such that for every fixed |θ0〉 the coherent states U(g)|θ0〉 are
in one-to-one correspondence with the values of g and hence with the values of θ .

Then there exists a Hilbert space H connected to the situation, and to every (real-
valued or vector-valued) accessible variable there can be associated a symmetric op-
erator on H .

For conditions under which a symmetric operator is self-adjoint/ Hermitian, see
[32].

The crucial point in the proof of Theorem 4 is to construct a group N acting on the
vector ψ = (θ ,η), and then a representation W (·) of N which I prove to be irreducible.
The coherent states |vn〉=W (n)|v0〉 are then in one-to-one correspondence with n∈N.
For the details of all this, I refer to Appendix 1, and also to [4].

This gives the crucial identity∫
|vn〉〈vn|µ(dn) = I, (7)

where µ is a left-invariant measure on the group N.
One can show that there is a function fθ on N such that θ = fθ (n), and a function

fη on N such that η = fη(n). We can now define operators corresponding to θ and η :

Aθ =
∫

fθ (n)|vn〉〈vn|µ(dn), (8)
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Aη =
∫

fη(n)|vn〉〈vn|µ(dn). (9)

The properties (i)-(iii) of Subsection 6.2 can now be proved for the operators Aθ

and Aη . All proofs are in Appendix 1.
Note that any pair of related maximal accessible variables may be used as a basis for

Theorem 4. Accessible variables that are not maximal, can always be seen as functions
of a maximal variable. Hence for these variables the spectral theorem may be used,
and operators constructed as in the last part of Appendix 1.

An essential part of the proof of Theorem 4 is to prove that if U(·) is a representa-
tion of G which is not irreducible, then W (·) is an irreducible representation of N. In
order to carry out this part of the proof, I need a representation U(·) which is multi-
dimensional, so that it can be reduced to a lowerdimensional space if not irreducible,
and similarly the representation of the group H acting upon η must be at least twodi-
mensional and different from U(·). Then the transformation k defining η = f (kφ) can
not be just the trivial one interchanging θ and η . This is also clear, since if such a
trivial interchange was allowed, every pair of variables would be related by the above
definitions.

To complete the construction of the usual Hilbert space formalism from the math-
ematical model of Section 5, I need a further main theorem.

Theorem 5 Assume that the function θ(·) is permissible with respect to a group
K acting on Ωφ . Assume that K is transitive and has a trivial isotropy group. Let
T (·) be a unitary representation of K such that the coherent states T (t)|ψ0〉 are in
one-to-one correspondence with t. For any transformation t ∈ K and any such unitary
representation T of K, the operator T (t)†Aθ T (t) is the operator corresponding to θ ′

defined by θ ′(φ) = θ(tφ).

This is also proved in Appendix 1.
One final remarks to the developments above: The above theorems have so far

been connected to a single observer A and the mathematical model of Section 5. But
the same arguments can be used with the following model: Assume a group of commu-
nicating actors, and assume that these have defined joint variables that may be accesible
or inaccessible to the group. Then the same mathematics is valid, and the same physical
examples of variables may be used.

7.2 The case where the maximal accessible variable takes a finite
number of values

I will show here that if θ takes a finite n number of values, then we can choose G, k and
K such that all the symmetry assumptions of Theorem 4 and Theorem 5 are satisfied.
This leads to a great simplification of the theory. I will assume here that n is at least 3.
The case n = 2, the qubit case, is discussed separately in [1]; see Subsection 4.5.3 and
Section 5.2 there.

In the finite case is is crucial that reducibility of the representation U(·) is permitted.
Concretely, let G be the cyclic group acting on the distinct values u1, ...,un of θ , that
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Figure 1: The construction of the transformation k.

is, the group generated by the element g0 such that g0ui = ui+1 for i = 1, ...,n− 1
and g0un = u1. This is an Abelian group, which only has one-dimensional irreducible
representations. However, we can define U(·) as taking values as diagonal unitary
n× n matrices with different complex nth roots of the identity on the diagonal. For
the specific matrix U(g0), take these nth roots in their natural order, and then let every
element of G be mapped into the diagonal matrices U(·) by the corresponding cyclical
permutation.

It is easy to see then that the coherent states U(g)|θ0〉 are in one-to-one correspon-
dence with the group elements g ∈G when |θ0〉 is a unit vector with one element equal
to 1 and the others zero, and this can be generalized to any |θ0〉. Also, G is transitive
on its range and has a trivial isotropy group.

Thus the only assumption of Theorem 4 that is left to verify, is the assumption that ξ

can be found as a related variable to θ , that is, the existence of an inaccessible variable
φ and a transformation k in the corresponding space Ωφ such that η(φ) = θ(kφ).

To this end, let Ωφ be the three-dimensional unit sphere, plot the values of η along
the equator E, and the values of θ along the great circle F containing the south pole
and the north pole. See Figure 1.

Without loss of generality we can let the values of θ and η be equidistant.(If this
is not the case, we can use the spectral theorem to define new variables θ and η .)
If these values are plotted in a corresponding way, we can transform the values of
θ onto the values of η by a 90o rotation k of the sphere as indicated on the figure.

13



Figure 2: The construction of the group K, acting on a grid.

Thus η(φ) = θ(kφ). This implies that all the symmetry assumptions of Theorem 4 are
satisfied, and we have simply

Theorem 6 Assume Postulate 1 to Postulate 4 of Section 5, and that there exist
two different maximal accessible variables θ and η , each taking n values. Then there
exists a Hilbert space H describing the situation, and every accessible variable in this
situation will have a self-adjoint operator in H associated with it.

By Postulate 5 there also exists a group K acting on Ωφ . I will now show that
this group can be constructed such that the symmetry assumptions of Theorem 5 also
are satisfied. Take as a basis the cyclic group G acting on the values of θ , and let
a corresponding group H act on the values of η . Without loss of generality, assume
these values to be equidistant. Then we can let φ vary on the same unit sphere as
above, and plot the values of θ and η along circles. Construct a grid on the unit sphere
as illustrated in Figure 2: First let E be the equator, plot the values of η along E as
before, and let this correspond to the mean value of θ . (I assume here that n is an
odd number; when n is even, we can construct a similar proof.) As before, let F be a
great circle through the north and south pole, plot the values of θ along F , and let this
correspond to the mean value of η . Draw circles ortogonal to E and plot the values of
θ along each circle. Draw circles orthogonal to F and plot the values of values of η

along each circle.
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On this grid we can construct in a straightforward manner a realization of the two-
dimensional cyclic group K = G⊗H, acting just on the values on the grid. Note that
not all joint values of θ and η appear on this grid: If the value of θ is large enough,
the corresponding circle only intersects a circle for η when η is small. This does not
prevent K to be uniquely defined on the grid points.

The representation U(·) of G is taken as above, we construct a similar representa-
tion V (·) of H, and we take T (K) = W (K) be the irreducible group used in the proof
of Theorem 4.

Using this geometry, it is not difficult to verify:
1) K is transitive on its values, and has a trivial isotropy group.
2) The mapping φ 7→ θ(φ) is permissible with respect to K as long as it is restricted

to the points of the grid. Then G is generated by K as in (1).
3) Taking as |ψ0〉 one of the two points where the great circles E and F intersect,

the coherent states T (t)|ψ0〉 are in one-to-one correspondence with the group elements
t ∈ K.

4) T (·) is unitary and irreducible.
I only prove statement 2): Assume two points φ1 and φ2 on the grid where θ(φ1) =

θ(φ2) = θ0, and let t be some transformation in K. Then φ1 and φ2 lie on the same
vertical circle, determined by the value θ0. For the points tφ1 and tφ2 there are two
possibilities: Either non of them belong to the grid, or they are on the same vertical
circle, corresponding to some value θ00. In the last case, θ(tφ1) = θ(tφ2). Since
K = G⊗H on its values, it follows that G is generated by K. �

Note that as constructed above, the special transformation k is not in the group K,
but this is not necessary.

From these results we conclude from Theorem 5:

Theorem 7 Assume Postulate 1 to Postulate 4 of Section 5, and that there exist two
different maximal accessible variables θ and η , each taking n values. Then for any
transformation t ∈ K, the operator T (t)†Aθ T (t) is the operator corresponding to θ ′

defined by θ ′(t) = θ(tφ).
Also, for the special transformation k above, we have Aη =W (k)†AθW (k) for some

unitary matrix W (k). .

Proof. The last statement follows from the fact that in this case j = j(k) acts on
ψ = (θ ,η) and induces a transformation s(k) on the group N. Take S(s(k)) =W (k) in
(23). �

From these two theorems follow a rich class of results, as discussed in detail in [1]:
- Every accessible variable has a self-adjoint operator connected to it.
- The eigenvalues of the operator are the possible values of the variable.
- An accessible variable is maximal if and only if all eigenvalues are simple.
- The eigenvectors can, in the maximal case, be interpreted in terms of a question

together with its answer. Specifically this means that in a context with several variables,
a chosen maximal variable θ may be identified with the question ‘What will θ be if we
measure it?’ and a specific eigenvector of Aθ , corresponding to the eigenvalue u may
be identified with the answer ‘θ = u’.
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- In the general case, eigenspaces have the same interpretation.
- The operators of related variables are connected by a unitary similarity transform.

For the proofs of the second and third statements above, see Appendix 2.
It is crucial now that this full theory follows by only, in addition to the simple Pos-

tulate1 to Postulate 4 of Section 5, assuming that just two related maximal accessible
variables exist.

7.3 The case of position and momentum of a particle
It is of interest also to develop further the basis of quantum theory for the general case
where θ and η are continuous conceptual variable, but this is outside the scope of the
present paper. But it is fairly straightforward now to complete the theory for an im-
portant special case: Let θ be the theoretical position of some particle, and let η be its
theoretical momentum. I choose the conceptual variables to be such theoretical vari-
ables, and assume that a measurement consists of a theoretical value plus a measurment
error. This is similar to how measurements are modeled in statistics.

The simplest approach is the following: Approximate θ with an n-valued variable
θn, find an operator An corresponding to θn, and let n tend to infinity. This approach is
carried out in Section 5.3 in [1]. The Hilbert space for θ is there shown to be L2(R,dx),
and the transformation k, which gives the operator for momentum, is a Fourier trans-
form on this Hilbert space.

A more direct approach, using the general theory here, is to take the group G acting
on θ to be the translation group, and let the group K acting on φ = (θ ,η) be the
Heisenberg-Weyl group; see [31]. This will not be further discussed here.

7.4 Quantum decision theory
There is a large literature on quantum decision theory; see for instance [22, 23]. The
whole field of quantum decisions can be linked to the theory introduced here, as dis-
cussed in [5]. The clue is to let my variables θ ,η ,ξ , ... not longer be physical variables,
but decision variables. In the simplest case, a decision variable takes a finite number of
values.

Let a person A be in a concrete decision situation. He is among other things faced
with the choice between taking actions a1, ...,an. Define a decision variable θ as equal
to j if he chooses to make decision a j. If this shall be linked to my theory, we have
to define what is meant by accessible and inaccessible decision variables. Let θ be
accessible if A really is able to perform all the actions a1, ...,an, if not, we say that θ is
inaccessible.

To carry out this connection, we have to give meaning to all the Postulates 1 to 4
of Section 5. Postulate 1 gives no problem; θ is certainly in the mind of A. Postulate 2
has to be assumed: We assume that, corresponding to the concrete decision associated
with θ , there exist simpler decisions, with decision variables λ , such that each λ is a
function of θ . The simplest way to achieve this, is to let these simpler decisions be
associated with a subset of the actions a1, ...,an.
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Postulate 3 is a challenge here, but it can be satisfied in the following situation:
Assume that A has concrete ideals when doing his decisions, and he can imagine that
one of these ideals has made similar decisions before, but he does not know this so
concretely that he can figure out what the ideal person would have done in his concrete
case. Let the inaccessible variable φ correspond to the choices that A’s ideal would
have done.

Postulate 4 may be justified by appealing to Zorn’s lemma for the partial order
defined by taking functions of decision variables. The maximal decisions that can be
made by A will have a special place in the proposed quantum decision theory.

If all these assumptions are made, we now have the results Theorem 6 and Theorem
7, which give a Hilbert space apparatus connected to the situation. We then make the
assumption that A really at the same time is confronted with two difficult decisions,
each involving decision variables which to him are maximal.

To complete the link to quantum decisions, we have to find probabilities connected
to the decision variables. For this, one can use the Born formula, which is discussed
below.

I hope to discuss this further, and give concrete examples, elsewhere.

7.5 On entanglement and EPR
Consider two spin 1/2 particles, originally in the state of total spin 0, then separated,
one particle sent to Alice and one particle sent to Bob. This can be described by the
entangled singlet state

|ψ〉= |1+〉|2−〉−|1−〉|2+〉√
2

, (10)

where |1+〉 means that particle 1 has spin component +1 in some fixed direction, and
|1−〉 means that the component is -1; similarly for |2+〉 and |2−〉.

As in David Bohm’s version of the EPR situation, let Alice measure the spin com-
ponent of her particle in some direction a, and let Bob measure the spin component
of his particle in the same direction. As has been described in numerous papers, there
seemingly is an acton at a distance: The spin components are always opposite.

I want to couple this to the philosophy of Convivial Solipsism: Every description of
the world must be relative to the mind of some actor. So let us introduce an actor Char-
lie, observing the results of both Alice and Bob. Charlies state during this observation
is given by (10).

Let us try to descibe all this in terms of accessible and inaccessible variables. The
unit spin vectors n1 and n2 of the two paricles are certainly inaccessible to Charlie, but
it turns out that their dot product η = n1 · n2 is accessible to him. In fact, Charlie is
forced to be in the state given by η =−1.

Mathematically this is proved as follows. The eigenvalues of the operator Aη corre-
sponding to η are -1 and -3. The eigevector associated with the eigenvalue -1 is just |ψ〉
of (10), while the eigenspace associated with the eigenvalue -3 is three-dimensional.
(See for instance exercise 6.9. page 181 in [48].)

What does it mean that η = n1 · n2 = −1? In terms of inaccessible variables, it
means that n1 =−n2. In terms of accessible components, it means that once the com-
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ponent of one particle in some direction is measured to be +1, then, as observed by
Charlie, the corresponding component of the other particle must be -1, and vice versa.

Note that Charlie can be any person. So we conclude: To any observing person, the
spin components as measured by Alice and Bob must be opposite. This is a necessary
conclusion, implied by the fact that the person, relative to his observations, is in the
state given by (10).

7.6 Born’s formula
In [1], a version of Born’s formula was derived in my setting under the following
additional assumptions:

Postulate 6 There are two maximal accessible discrete variables θ a and θ b, and
the current state |a;k〉 is determined by θ a = uk.

Postulate 7 The likelihood principle from statistics holds.
Postulate 8 The actor A has ideals, and these ideals can be modeled by a perfectly

rational abstract actor D.

Under these assumptions we have:

P(θ b = v j|θ a = uk) = |〈b; j|a;k〉|2, (11)

where |b; j〉 is the state corresonding to θ b = v j.
Some remarks: The derivation relies heavily on a variant of Gleason’s formula due

to Paul Busch. In statistics, the likelihood is defined as the point probability/ probability
density of data, given the actual parameter, and the principle says that in a given context
all inference can be derived from the likelihood. Rationality is defined with respect to
The Dutch Book principle: No choice of payoffs in a series of bets shall lead to sure
loss for the bettor. For details, see [1].

Measurements of physical variables is discussed in [1], where noise in the measure-
ment also is considered. Note that the physical variables discussed in this article are
assumed to be perfect, without any measurement noise. Here I will also look at the case
of a perfect measurement. Assume in general that we know the state |ψ〉 of a system,
and that we want to measure a new variable θ b. This can be discussed by means of the
projection operators Π b

j = |b; j〉〈b; j|. First observe that by a simple calculation from
(11)

P(θ b = v j|ψ) = ‖Π b
j |ψ〉‖2. (12)

It is interesting that Shrapnel et al. [49] recently simultaneously derived both the
Born rule and the well-known collapse rule from a knowledge-based perspective. I say
more about the collapse rule in [1], but in this article I will just assume this derivation as
given. Then, after a perfect measurement θ b = v j has been obtained, the state changes
to

|b; j〉=
Π b

j |ψ〉
‖Π b

j |ψ〉‖
.
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Successive measurements are often of interest. We find

P(θ b = v j and then θ
c = wi|ψ) = P(θ c = wi|θ b = v j)P(θ b = v j|ψ)

= ‖Π c
i

Π b
j |ψ〉

‖Π b
j |ψ〉‖

‖2‖Π b
j |ψ〉‖2 = ‖Π c

i Π
b
j |ψ〉‖2. (13)

In the case with multiple eigenvalues, the formulae above are still valid, but the
projectors above must be replaced by projectors upon eigenspaces. One can show that
(12) then gives a precise version of Born’s rule for this case.

Proof. Look first at the case with unique eigenvalues. Then Born’s rule says

P(θ b = v j|ψ) = 〈ψ|b; j〉〈b; j|ψ〉.

Let then the eigenvalues move towards coincidence. Let Ck = { j : v j = rk} for some
fixed rk. Then by continuity from the previous equation we get

P(θ b = rk|ψ) = ∑
j∈Ck

〈ψ|b; j〉〈b; j|ψ〉= 〈ψ|Π b
k |ψ〉= ‖Π b

k |ψ〉‖2.

�
Note that in general P(θ b = v j and then θ c = wi|ψ) 6= P(θ c = wi and then θ b =

v j|ψ). Measurements do not necessarily commute.

Using a suitable projection, the formula can be generalized to the case where also
the accessible variables θ a is not necessarily maximal. There is also a variant for a
mixed state involving θ a.

First, define the mixed state associated with any accessible variable θ . We need
the assumption that there exists a maximal accessible variable η such that θ = f (η)
and such that each distribition of η , given some θ = u, is uniform. Furthermore some
probability distribution of θ is assumed. Let Πu be the projection of the operator of θ

upon the eigenspace associated with θ = u. Then define the mixed state operator

ρ = ∑
j

P(θ = u j)Πu j = ∑
i

∑
j

P(η = vi|θ = u j = f (vi))P(θ = u j)|ψi〉〈ψi|, (14)

where |ψi〉 is the state vector associated with the event η = vi for the maximal variable
η .

From this, we can easily show from (11) (assuming that the maximal ηa corre-
sponding to θ a also is a function of φ ) that in general

P(θ b = v|ρa) = trace(ρa
Π

b
v), (15)

with an obvious meaning given to the projection Πb
v .

An important observation is that this result is not necessarily associated with a mi-
croscopic situation. The result can also be generalized to continuous conceptual vari-
ables by first approximating them by discrete ones. For continuous variables, Born’s
formula is most easily stated on the form

E(θ b|ρa) = trace(ρaAθ b
). (16)
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Note again that we in this formula do not assume that the accessible variable θ b

is maximal. Hence a corresponding formula is also valid for any function of θ b, for
instance exp(iθ bx) for some fixed x. The operator corresponding to a function of θ b

can be found from the spectral theorem. From this, the probability distribution of θ b,
given the information in ρa, can be recovered.

8 Interpretation of quantum states and operators
Focus on the case where θ takes a discrete set of values. In the case where θ takes an
infinite discrete set of values, we can still prove that Theorem 6 and Theorem 7 hold;
the proof goes by taking a limit of cases where θ takes a finite number of values.

The following simple observation should be noted, and is in correspondence with
the ordinary textbook interpretation of quantum states: Trivially, every vector |v〉 is
the eigenvector of some operators. Assume that there is one such operator A that is
physically meaningful, and for which |v〉 is also a non-degenerate eigenvector, say with
a corresponding eigenvalue u. Let λ be a physical variable associated with A = Aλ .
Then |v〉 can be interpreted as the question ‘What is the value of λ?’ along with the
definite answer ‘λ = u’.

More generally, accepting operators with non-degenerate eigenspaces (correspond-
ing to observables that are accessible, but not maximally accessible), each eigenspace
can be interpreted as a question along with an answer to this question.

Binding together these two paragraphs, we can also think of the case where λ is a
vector, such that each component λi corresponds to an operator Aλ i

i , and these operators
are mutually commuting. Then Aλ =

⊗
i Aλ i

i has eigenspaces which can be interpreted
as a set of questions ‘What is the value of λi i = 1,2, ...?’ together with sharp answers
to these questions. In the special case of systems of qubits, Höhn and Wever [35] have
recently proved that there is a one-to-one correspondence between sets of question-
and-answer pairs and state vectors.

The following is proved in [1,36] under certain general technical conditions, and
also specifically in the case of spin/ angular momentum: Given a vector |v〉 in a Hilbert
space H and a number u, there is at most one pair (a, j) such that |a; j〉= |v〉 modulus
a phase factor, and |a; j〉 is an eigenvector of an operator Aa with eigenvalue u.

The main interpretation in [1] is motivated as follows: Suppose the existence of
such a vector |v〉 with |v〉 = |a; j〉 for some a and j. Then the fact that the state of the
system is |v〉 means that one has focused on a question (‘What is the value of λ a?’)
and obtained the definite answer (λ a = u.) The question can be associated with the
orthonormal basis {|a; j〉; j = 1,2, ...,d}, equivalently with a resolution of the identity
I = ∑ j |a; j〉〈a; j|. The general technical result of [1] is also valid in the case where λ a

and u are real-valued vectors.
After this we are left with the problem of determining the exact conditions under

which all vectors |v〉 ∈H in the non-degenerate discrete case and all projection op-
erators in the general case can be interpreted as above. This will require a rich index
set A determining the index a. This problem will not be considered further here, but
this is stated as a general question to the quantum community in [36]. But from the
evidence above, I will in this paper rely on the assumption that each quantum state/
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eigenvector space can be associated in a unique way with a question-and-answer pair.
Strictly speaking, this requires a new version of quantum mechanics, where we only
permit state vectors that are eigenvectors of some physically meaningful operator.

Superposition of quantum states can be introduced in my setting as follows: Take as
a point of departure the states |a; j〉, each such state interpreted in the way that we know
that λ a = ua

j for a maximally accessible variable λ a. Then consider another maximal
variable λ b and a hypothetical possible value ub

i for λ b. Since ∑ j |a; j〉〈a; j| = I, we
have

|b; i〉= ∑
j
|a; j〉〈a; j|b; i〉= ∑

j
〈a; j|b; i〉|a; j〉. (17)

Here the corresponding operators Aa and Ab do not commute, and this is a fairly general
linear combination of states |a; j〉. Such linear combinations will then be state vectors.
The state |b; i〉 may be a very hypothetical state, not coupled to the observer’s concrete
knowledge. Then (17) corresponds to a ‘do not know’ state.

When λ is a continuous variable or even a more general variable, we can still
interpret the eigenspaces of the operator Aλ as questions ‘What is the value of λ?’
together with answers in terms of intervals or more generally sets for λ . This is related
to the spectral decomposition of Aλ , which gives the resolution of the identity (recall
(25))

I =
∫

σ(Aλ )
dE(λ ). (18)

This resolution of the identity is tightly coupled to the question ‘What is the value
of λ?’, and it implies projections related to indicators of intervals/sets C for λ as

Π(C) =
∫

σ(Aλ )∩C
dE(λ ). (19)

9 The epistemic interpretation
Consider a physical system, and an observator or a set communicating observators on
this system. The physical variables which can be measured in this setting are examples
of accessible conceptual variables, and are called e-variables in [1].

A maximal accessible variable θ a admits values ua
j that are single eigenvalues of

the operator Aa, uniquely determined from θ a. Let |a; j〉 be the eigenvector associated
with this eigenvalue. Then |a; j〉 can be connected to the question ‘What is the value
of θ a?’ together with the sharp answer ‘θ a = ua

j ’. Note that such an interpretation
is relevant for both the preparation phase and the measurement phase of a physical
system.

All this can be seen as the general epistemic interpretation of quantum states and
projection operators. It is related to the QBist interpretation, but is more general. It
can also be seen as a concrete specification of the Relational Quantum Mechanics and
of interpretations related to information. There is a huge literature on interpretations
of quantum theory. Some of the proposed interpretations have relationships to this
epistemic interpretation, but I will not discuss such relationships here.
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In general, λ may be seen as a maximal accessible variable associated with the
operator Aλ . If θ is another maximal accessible variable, it will be associated with
another operator Aθ , and Aλ and Aθ will not be commuting. We can then say that λ and
θ are complementary variables in the sense of Bohr. More precisely, it is the questions
related to these variables that are complementary. Variables/operators corresponding to
the same question, but having different sharp answers to this question, are equivalent
in this respect.

In a physical context, Niels Bohr’s complementarity concept has been thoroughly
discussed by Plotnitsky [37].

Here is Plotnitsky’s definition of complementarity:
(a) a mutual exclusivity of certain phenomena, entities, or conceptions; and yet
(b) the possibility of applying each one of them separately at any given point; and
(c) the necessity of using all of them at different moments for a comprehensive

account of the totality of phenomena that we consider.
This definition points at the physical situation discussed above, and has Niels Bohr’s

interpretation of quantum mechanics as a point of departure. However, in my opinion
the definition can also be carried over to a long range of macroscopic phenomena or
conceptions. In particular, the concept is useful in connection to quantum cognitive
modeling [22,23] and in quantum decision theory, see Yukalov and Sornette [38-42].
In this connection, the accessible variable discussed above may be taken as a decision
variable θ a, chosen from a possible set A of decision variables by a ∈A . This choice
is a choice of focusing. Finally, a concrete decision θ a = u is chosen among the pos-
sible values that θ a may take. This should be compared to more traditional decision
theory, which may be taken as a basis of both statistical inference and economic theory.

Going back to physics, it may be considered of some value to have an epistemic
interpretation which is not necessarily tied to a subjective Bayesian view as it is given
in QBism. Under such an epistemic interpretation, one may also give very simple
discussions of various “quantum paradoxes” like Schrödinger’s cat, Wigner’s friend
and the two-slit experiment.

Note: I assume here a version of quantum mechanics where all state vectors are
eigenvectors of some operator. I admit linear combinations of state vectors, but only if
they can be put in a setting as discussed in connection to (17) above.

Example 1. Schrödinger’s cat. The discussion of this example concerns the state
of the cat just before the sealed box is opened. Is it half dead and half alive?

To an observer outside the box the answer is simply: “I do not know”. Any ac-
cessible variable connected to this observer does not contain any information about
the status of life of the cat. But on the other hand – an imagined observer inside the
box, wearing a gas mask, will of course know the answer. The interpretation of quan-
tum mechanics is epistemic, not ontological, and it is connected to the observer. Both
observers agree on the death status of the cat once the box is opened.

Example 2. Wigner’s friend. Was the state of the system only determined when
Wigner learned the result of the experiment, or was it determined at some previous
point?
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My answer to this is that at each point in time a quantum state is connected to
Wigner’s friend as an observer and another to Wigner, depending on the knowledge
that they have at that time. The superposition given by formal quantum mechanics
corresponds to a ‘do not know’ epistemic state. The states of the two observers agree
once Wigner learns the result of the experiment.

Example 3. The two-slit experiment. This is an experiment where all real and imag-
ined observers can communicate at each point of time, so there is always an objective
state.

Look first at the situation when we do not know which slit the particle goes through.
This is a ‘do not know’ situation. Any statement to the effect that the particles somehow
pass through both slits is meaningless. The interference pattern can be explained by the
fact that the particles are (nearly) in an eigenstate in the component of momentum in
the direction perpendicular to the slits in the plane of the slits. And by de Broglie’s for-
mula, momentum is connected to the wavelength of an associated wave. If an observer
finds out which slit the particles goes through, the state changes into an eigenstate for
position in that direction.

10 Concluding remarks
The treatment of this paper is not quite complete. Some open problems include:

- A further development of the case of continuous conceptual variables.
- Giving concrete conditions under which the Born formula is applicable in practice.

This is particularly relevant in connection to cognitive modeling.
- Developing an axiomatic basis in the spirit of quantum logic (see for instance

[43]). But note the simple postulates of Section 5 above.
Other issues are discussed elsewhere, like the implication of the present interpre-

tation to the spin version of the EPR experiment and a related discussion of the recent
experiments showing a loop-hole free violations of the Bell inequalities [34]. A brief
discussion of the relationship of the epistemic interpretation to the PBR Theorem is
given in [1].

Group theory and quantum mechanics are intimately connected, as discussed in
details in several books and papers. In this article it is shown that the familiar Hilbert
space formulation can be derived mathematically from a simple basis of groups acting
on conceptual variables. The consequences of this is further discussed in [1]. The
discussion there also seems to provide a link to statistical inference.

From the viewpoint of purely statistical inference the accessible variables θ dis-
cussed in this paper are parameters. In many statistical applications it is useful to have
a group of actions G defined on the parameter space; see for instance the discussion in
[44]. In the present paper, the basic group G is assumed to be transitive, hence, tenta-
tively, if we have a group on some parameter which is not transitive, the quantization of
quantum mechanics can be derived from the following principle: all model reductions
in some given model should be to an orbit of the group.

It is of some interest that the same criterion can be used to derive the statistical
model corresponding to the partial least squares algorithm in chemometrics [45], and
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also to motivate important cases of the more general recently proposed envelope model
[46].

In the present paper, the first axioms of quantum theory are derived from reasonable
assumptions. As briefly stated in [1], one can perhaps expect after this that such a rel-
atively simple conceptual basis for quantum theory may facilitate a further discussion
regarding its relationship to relativity theory. One can regard physical variables as con-
ceptual variables, inaccessible inside black holes. These ideas are further developed in
[47]

Further aspects of the connection between quantum theory and statistical inference
theory are under investigation.
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Appendix 1. Proof of Theorem 4 and Theorem 5

Basic construction
In the proof of these theorems in [4], I took into account the arbitrary phase of the
coherent states involved. Strictly speaking, this is correct, but makes the proof more
difficult to follow, so I will avoid this subtility here. People who want to be more
precise, can replace statements of the form g∈G by the corresponding g∈G/E, where
E is the subgroup generated by the arbitrary phase.

So fix a ket vector |θ0〉, and consider the coherent states U(g)|θ0〉. Since by as-
sumption these are in one-to-one correspondence with g, and hence with θ , we can
write |θ〉=U(g)|θ0〉. If the representation U(·) is irreducible, we can refer to the the-
ory of Subsections 6.1 and 6.2. The identity (5) holds, the operator Aθ associated with
θ can be defined by (6), and this operator has the properties (i)-(iii) as stated there.

It is crucial for this argument that U(·) is irreducible. It is known that abelian
groups only have one-dimensional irreducible representations. So if G is abelian, it
only possible to satisfy (5) if H is one-dimensional, giving a trivial theory.

In the following, I will allow U(·) to be reducible, but maintain the basic construc-
tion |θ〉=U(g)|θ0〉.

Two maximal accessible variables
So we will stick to the reducible case. For this case, study two conceptual varables θ

and η .
Assume that the variables θ and η are maximal as accessible variables, that both

can be seen as functions of an underlying inaccessible variable φ , and suppose that
there exists a transformation k such that η(φ) = θ(kφ). Let g ∈G be a transitive group
action on θ , and let h ∈ H be the transitive group action on η defined by hη(φ) =
g1θ(kφ) when η(φ) = θ(kφ), where g1 ∈ G1, an independent copy of G. This gives a
group isomorphism between G and H.

Let n ∈ N be the group actions on ψ = (θ ,η) generated by G and H and a sin-
gle element j defined by jψ = (η ,θ) and jθ = η . For g ∈ G, define g jψ(φ) =
(gθ(kφ),gθ(φ)) when η = θ(kφ), and for h∈H define h jψ(φ) = (hη(φ),hη(k−1φ))
when θ(φ) = η(k−1φ). Since G and H are transitive on the components, and since
through j one can choose for a group element of N to act first arbitrarily on the first
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component and then arbitrarily on the second component, N is transitive on ψ . Also,
N is non-Abelian: g j 6= jg.

I want to fix some Hilbert space H , and consider the representation U(·) of the
group corresponding to G on this Hilbert space with the property that if we fix some
vector |v0〉 ∈H , then the vectors U(g)|v0〉 are in one-to-one correspondence with the
group elements g ∈ G and hence with the values gθ0 of θ for some fixed θ0. I choose
to use the notation |v0〉 in this proof instead of |θ0〉, since several sets of coherent states
will be considered.

For each element g ∈ G there is an element h = jg j ∈ H and vise versa. Note that
j · j = e, the unit element. Let U( j) = J be some unitary operator on H such that
J · J = I. Then for the representation U(·) of the group corresponding to G, there is a
representation V (·) of the group corresponding to H given by V ( jg j) = JU(g)J. These
are acting on the same Hilbert space H with vectors |v〉, and they are equivalent in
some concrete sense.

Note that J must satisfy JU( jg j) = U(g)J. By Schur’s Lemma this demands J to
be an isomorphism or the zero operator if the representation U(·) is irreducible. In the
reducible case a non-trivial operator J exists, however:

In this case there exists at least one proper invariant subrepresentation U0 acting
on some vector space H0, a subspace of H , and another proper invariant subrepre-
sentation U ′0 acting on an orthogonal vector space H ′

0 . Fix |v0〉 ∈H0 and |v′0〉 ∈H ′
0 ,

and then define J|v0〉 = |v′0〉, J|v′0〉 = |v0〉 and J|v〉 = |v〉 for any |v〉 ∈H which is
orthogonal to |v0〉 and |v′0〉.

Now we can define a representation W (·) of the full group N acting on ψ = (θ ,η)
in the natural way: W (g) = U(g) for g ∈ G, W (h) = V (h) for h ∈ H, W ( j) = J, and
then on products from this.

If U is irreducible, then also V is an irreducible representation of H, and we can
define operators Aθ corresponding to θ and Aη corresponding to η as in (6). If not, we
need to show that the representation W of N constructed above is irreducible on H .

Lemma A1. W (·) as defined above is irreducible.

Proof. Assume that W (·) is reducible, which implies that both U(·) and V (·) are
reducible, i.e., can be defined on a lowerdimensional space H0, and that J = W ( j)
also can be defined on this lower-dimensional space. Let R(·) be the representation
U(·) of G restricted to vectors |u〉 in H orthogonal to H0. Fix some vector |u0〉
in this orthogonal space; then consider the coherent vectors in this space given by
R(g)|u0〉. Note that the vectors orthogonal to H0 together with the vectors in H0 span
H , and the vectors U(g)|u0〉 in H are in one-to-one correspondence with θ . Then the
vectors R(g)|u0〉. are in one-to-one correspondence with a subvariable θ 1. And define
the representation S(·) of H by S( jg j) = R(g) and vectors S(h)|v0〉, where |v0〉 is a
fixed vector of H , orthogonal to H0. These are in one-to-one correspondence with a
subparameter η1 of η .

Given a value θ , there is a unique element gθ ∈G such that θ = gθ θ0. (It is assumed
that the isotropy group of G is trivial.)

From this look at the fixed vector S( jgθ j)|v0〉. By what has been said above, this
corresponds to a unique value η1, which is determined by gθ , and hence by θ . But this
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means that a specification of θ determines the vector (θ ,η1), contrary to the assump-
tion that θ is maximally accessible. Thus W (·) cannot be reducible.

�
Note that it is crucial for this proof that the space H is multi-dimensional, in fact,

by inspecting the proof, it must here be of dimension at least 3. In particular, the proof
does not work for the following case: φ = (θ ,η), and the transformation k defining
relationship just exchanges θ and η . Then H could be taken to be two-dimensional.
If this was allowed in the proof and in the corresponding definition of reducibility, all
maximal accessible variable would by definition be related.

This lemma shows that there are group actions n ∈ N acting on ψ = (θ ,η) and an
irreducible representation W (·) of N on the Hilbert space H . Hence the identity (5)
holds if G is replaced by N, and the coherent states by vn =W (n)|v0〉:∫

|vn〉〈vn|µ(dn) = I, (20)

where µ is some left-invariant measure on N, and |v0〉 is some fixed vector in H .
It is left to prove that these states are in some correspondence with ψ or with some

suitable variable containing ψ .
Now N is generated by G, H and a group L with two elements l, the identity element

and j. Define a binary varable λ such that λ = 0 if l is the identity, λ = 1 if l = j. This
implies that N is a subgroup of the larger group M = G⊗H⊗L Now g ∈ G is in one-
to-one correspondence with θ ∈ Ωθ , and h ∈ H is in one-to-one correspondence with
η ∈Ωη . Finally, there is a one-to-one correspondence between λ and l. But m ∈M as
acting on ζ =(θ ,η ,λ ) is given as m=(g,h, j), so there is a one-to-one correspondence
between m and ζ .

I also want to prove that the vectors vn = W (n)|v0〉 are in one-to-one correspon-
dence with the group elements n. This follows from the assumptions made on the rep-
resentation U(·) and the construction of W (·): For each g there is a unique U(g)|v0〉.
By isomorphy, for each h there is a unique V (h)|v0〉. Finally, n = e and j gives two
values, in correspondence to the corresponding values vn = W (n)|v0〉. Thus to any n,
which is a product of g’s, h’s and l’s, the corresponds a unique W (n), and hence a vn.
Conversely, since the representation W (·) is irreducible, any other construction of co-
herent states will by Schur’s lemma be proportional to the vectors vn, so given vn, there
is a unique W (n), and hence a unique n.

Summarizing all this, given n ∈ N, there is a unique vn. And N can be seen as a
subgroup of M, so to this n, there corresponds some m(n) ∈M, and therefore a unique
ζ = ζ (n). In particular, there is a function fθ on n such that θ = fθ (n), and a function
fη on n such that η = fη(n). We are now ready to define operators corresponding to θ

and η :

Aθ =
∫

fθ (n)|vn〉〈vn|µ(dn), (21)

Aη =
∫

fη(n)|vn〉〈vn|µ(dn). (22)

These are more precise versions corresponding to equations (17)-(20) in [4].

29



It is clear that these operators are symmetric when θ and η are real-valued vari-
ables. Under some technical assumptions [32] they will be self-adjoint/ Hermitian.
Also, if θ = 1, then Aθ is the identity. In addition, if s is any transformation in N,
and S(·) is any representation of N, we have, following the proof of Theorem 3 of
Subsection 6.2 and using the left-invariance of µ:

S(s−1)Aθ S(s) =
∫

fθ (sn)|vn〉〈vn|µ(dn), (23)

Consider a special case:

Recall that θ = θ(φ), where φ varies over some space Ωφ , and φ is inaccessi-
ble. Let K be some group of transformations of Ωφ . Assume that θ(·) is permissible
with respect to K. Let T (·) be a unitary representation of K such that the coherent
states T (t)|v0〉 are in one-to-one correspondence with t. Then for t ∈ K the operator
T (t)†Aθ T (t) is the operator corresponding to θ ′(φ) = θ(tφ).

Proof Since θ is permissible, θ(tφ) = g(t)θ(φ) for some transformation g(t) of
Ωθ . Recall that for g ∈ G, the basic group acting on Ωθ , it is assumed that the states
U(g)|v0〉 are in one-to-one correspondence with g. Comparing with the properties of
T (·), we must then have g(t) ∈ G, and T (t) =U(g(t)). Now g(t) induces transforma-
tions s(t) in N by the construction of N, and for these transformations and an arbitrary
g ∈ G, we can define θ ′(g) = g(t)θ(g), and get θ ′(g) = fθ (s(t)ng), where ng is any
transformation in N which is induced by g. Taking s = s(t) and S(s) = T (s(t)) in (23)
completes the proof. �

This also completes the proof of Theorem 5 in Section 7.

The spectral theorem and operators for functions of θ

So far, we have found operators for the related variables θ and η . Note that these can
be any pair of related maximal accessible variables. Now we need to find operators for
other accessible variables, maximal or not. I will use Postulate 4: For any accessible
variable λ there exists a maximal accessible variable θ such that λ is a function of θ .

Assume that θ is real-valued or a real vector, and that we have found a self-adjoint
operator Aθ associated with this θ . Then based on the spectral theorem (e.g., [28]) we
have that there exists a projectionvalued measure, E on Ωθ such that for |v〉 ∈ D(Aθ )

〈v|Aθ |v〉=
∫

σ(Aθ )
θd〈v|E(θ)|v〉. (24)

Here σ(Aθ ) is the spectrum of Aθ as defined in [32].
A more informal way to write (24) is

Aθ =
∫

σ(Aθ )
θdE(θ).
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This defines an orthogonal resolution of the identity∫
σ(Aθ )

dE(θ) = I. (25)

From this, we can define the operator of an arbitrary Borel-measurable function of
θ by

A f (θ) =
∫

σ(Aθ )
f (θ)dE(θ). (26)

The case with a discrete spectrum is discussed in the main text. In this case we
have

Aθ = ∑
j

u jPj, (27)

where {u j} are the eigenvalues and {Pj} the projections upon the eigenspaces of Aθ .
The equations (25) and (26) can be written in a similar way.

Important special cases of (26) include f (θ) = I(θ ∈ B) for sets B. Another impor-
tant observation is the following: Any accessible variable can be written as f (θ), where
θ is some maximal accessible variable. Thus operators associated with all accessible
variables may be defined. A special case is when the function f is one-to one. Then in
this way operators associated with equivalent maximal variables may be defined.

A further important case is connected to statistical inference theory in the way it is
advocated in [1]. Assume that there are data X and a statistical model for these data of
the form P(X ∈C|θ) for sets C. Then a positive operator-valued measure (POVM) on
the data space can be defined by

M(C) =
∫

σ(Aθ )
P(X ∈C|θ)dE(θ). (28)

The density of M at a point x is called the likelihood effect in [1], and is the basis for
the focused likelihood principle formulated there.

Finally, given a probability measure with density π(θ) over the values of θ , one
can define a density operator σ by

σ =
∫

σ(Aθ )
π(θ)dE(θ). (29)

In [1] the probability measure π was assumed to have one out of three possible
interpretations: 1) as a Bayesian prior, 2) as a Bayesian posterior or 3) as a frequentist
confidence distribution (see [33]).

Appendix 2. Two theorems for the finite-dimensional case
Consider the case where the maximal accessible variables as in Theorem 6 take a fi-
nite number of values. Note that the construction in Subsection 7.1 of an operator
corresponding to a variable can be made for any maximal accessible variable θ . If θ

is not maximal, an operator for θ can be defined by appealing to the spectral theo-
rem. In either case the operator Aθ corresponding to θ has a discrete spectrum. Let
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the eigenvalues be {u j} and let the corresponding eigenspaces be {Vj}. The vectors of
these eigenspaces are defined as quantum states, and as discussed in the main text, each
eigenspace Vj can be associated with a question ‘What is the value of θ?’ together with
a definite answer ‘θ = u j’. This assumes that the set of values of θ can be reduced to
this set of eigenvalues, which I will justify as follows.

Theorem A1 Let {u j} be the eigenvalues of the operator Aθ corresponding to θ .
Then it follows that Ωθ is identical to this set of eigenvalues.

Proof. Consider first the maximal case. For each j, let | j〉 be an eigenvector of Aθ

with eigenvalue u j, and let g ∈ G. Let the group K acting on Ωφ be as in Subsection
7.2. It is shown there that the mapping φ 7→ θ(φ) is permissible with respect to K, and
we can then look upon G as generated by K. So gθ(φ) = θ(tφ) for some t ∈ K. By
Theorem 7 we have that the operator V (t−1)AV (t) is mapped by gθ(φ). Assume now
that θ0 = u j for some j. We need to show that gθ0 is another eigenvalue for Aθ , which
follows from the fact that |V (t−1)AV (t)−λ I|= |A−λ I|, so that these two determinants
have the same zeros.

Let I0 = {u j : u j = gθ0 for some g∈G}. Since G is transitive on Ωθ , it follows that
I0 = Ωθ .

Above, I have assumed that one value of θ , θ = θ0 was an eigenvalue of A. So the
conclusion so far is that if one value is an eigenvalue, then all values in Ωθ are eigen-
values. Now the same arguments could have been done with respect to the operator
B = γA for some fixed constant γ 6= 0. For each γ the conclusion is: Either (i) all values
in Ωθ are eigenvalues of B, or (ii) no values in Ωθ are eigenvalues of B.

Now go back to the general definition (8) of Aθ . Changing from A to B here,
amounts to changing θ to θ ′= γθ . It is clear that we always can choose γ in such a way
that there is one value in Ωθ ′ which equals the first eigenvalue of B. Thus the conclusion
(i) holds for one choice of γ . Now the change from θ to θ ′ also changes the measure µ

which is involved in the definition of the operator and also in a corresponding resolution
(7) of the identity. It is only one choice of γ , namely γ = 1 which makes the resolution
of the identity (7) valid, which is crucial for the theory. Thus one is forced to conclude
that γ = 1, and that the conclusion (i) holds for this choice.

Hence Ωθ is contained in the set of eigenvalues of A. If there were one eigenvalue
that is not contained in Ωθ , one can use this eigenvalue as a basis for choosing γ in the
argument above, hence get a contradiction. Thus the two sets are identical.

Having proved this for a maximal accessible θ , it is clear that it also follows for a
more general accessible λ = f (θ), since the spectrum then is changed as in (26).

�.
We also have the following:

Theorem A2 The accessible variable θ is maximal if and only if each eigenspace
Vj of the operator Aθ is one-dimensional.

Proof. The assertion that there exists an eigenspace that is not one-dimensional, is
equivalent with the following: Some eigenvalue u j correspond to at least two orthog-
onal eigenvectors | j〉 and |i〉. Based on the spectral theorem, the operator Aθ corre-
sponding to θ can be written as ∑r urPr, where Pr is the projection upon the eigenspace
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Vr. Now define a new e-variable ψ whose operator B has the following properties: If
r 6= j, the eigenvalues and eigenspaces of B are equal to those of Aθ . If r = j, B has
two different eigenvalues on the two one-dimensional spaces spanned by | j〉 and |i〉,
respectively, otherwise its eventual eigenvalues are equal to u j in the space Vj. Then
θ = θ(ψ), and ψ 6= θ is inaccessible if and only if θ is maximal accessible. This
construction is impossible if and only if all eigenspaces are one-dimensional. �
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