I want to solve an LMI constraint for getting a robust controller, i maked my augmented model by Schur complement, and use 'sdpt3' solver.
when i run, yalmip return that "the element wise enequality" is polynomial with error 'Infeasible problem (YALMIP)', are there a solution for this problem ?
close all
clear all
clc
%%% the differents constants
u=0.7;
Sf10=60712.7*u;
Sf20=4814*u;
Sr10=60088*u;
Sr20=3425*u;
m=1500;
Vx=20;
Iz=2208;
L2=1.4625;
L1=1.0065;
Is=5;
Iw=0.4;
Cx=0.4;%coefficient de trainé aérodynamique
rho=1.225;% densité volumique de l'air
Sx=3;% surface de la section exposée au vent
a11=(-(2*(Sf10+Sr10))/m*Vx);
a12=-1+((2*(L2*Sr10-L1*Sf10))/m*Vx^2);
a13=(2*(L2*Sr10-L1*Sr10))/Iz;
a14=(-2*(L2^2*Sr10+L1^2*Sf10))/Iz*Vx;
a21=(-(2*(Sf20+Sr20))/m*Vx);
a22=-1+((2*(L2*Sr20-L1*Sf20))/m*Vx^2);
a23=(2*(L2*Sr20-L1*Sr20))/Iz;
a24=(-2*(L2^2*Sr20+L1^2*Sf20))/Iz*Vx;
b11=2*Sf10/m*Vx;
b12=2*L1*Sf10/Iz;
b13=(rho*Cx*Sx)/m*Vx;
b14=(Iw*rho*Cx*Sx)/Iz;
b21=2*Sf20/m*Vx;
b22=2*L1*Sf20/Iz;
d1=0.12;
%%% the matrices of system
A1=[a11 a12 0 0;a13 a14 0 0;0 1 0 0;Vx Is Vx 0];
B1=[b11;b12;0;0];
A2=[a21 a22 0 0;a23 a24 0 0;0 1 0 0;Vx Is Vx 0];
B2=[b21;b22;0;0];
C=[0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];
D=[[0;0;0;0],[0;0;0;0],[0;0;0;0]];
E11=[(-(2*(Sf10+Sr10))/m*Vx) ((2*(L2*Sr10-L1*Sf10))/m*Vx^2) 0 0;(2*(L2*Sr10-L1*Sr10))/Iz (-2*(L2^2*Sr10+L1^2*Sf10))/Iz*Vx 0 0;0 0 0 0;0 0 0 0];
E12=[(-(2*(Sf20+Sr20))/m*Vx) ((2*(L2*Sr20-L1*Sf20))/m*Vx^2) 0 0;(2*(L2*Sr20-L1*Sr20))/Iz (-2*(L2^2*Sr20+L1^2*Sf20))/Iz*Vx 0 0;0 0 0 0;0 0 0 0];
E21=[2*Sf10/m*Vx;2*L1*Sf10/Iz;0;0];
E22=[2*Sf20/m*Vx;2*L1*Sf20/Iz;0;0];
Bd=[(rho*Cx*Sx)/m*Vx 0;(Iw*rho*Cx*Sx)/Iz 0;0 -Vx;0 -Is*Vx];
Dd=[d1 0 0 0;0 d1 0 0;0 0 0 0;0 0 0 0];
%%% sdp variables
W2=sdpvar(4,4);
W1=sdpvar(4,4);
P22=sdpvar(4,4);
P21=sdpvar(4,4);
P2=sdpvar(4,4);
P1=sdpvar(4,4);
P3=sdpvar(4,4);
l1=sdpvar(1);l2=sdpvar(1);l3=sdpvar(1);l4=sdpvar(1);l5=sdpvar(1);l6=sdpvar(1);
l7=sdpvar(1);l8=sdpvar(1);l9=sdpvar(1);
K1=sdpvar(1,4);
K2=sdpvar(1,4);
eta=sdpvar(1);
%%%% The matrices of my augmented model (each one is with indices i and j)
S11=[eye(4) zeros(4) zeros(4) (B1*K1)' zeros(4,1) zeros(4,2);
zeros(4) P21'*A1+P21*A1'+W1*C+W1'*C'+eye(4) (-P22*C*A1-W2*C-W1')' (-B1*K1+(A1-A1)'*P21)' ((B1-B1)'*P21)' (Bd'*P21)';
zeros(4) -P22*C*A1-W2*C-W1' W2+W2'+eye(4) ((C*(A1-A1)'*P22))' (-(C*(B1-B1))'*P22)' (-(C*Bd)'*P22)';
B1*K1 -B1*K1+(A1-A1)'*P21 -(C*(A1-A1)')*P22 A1+A1' B1 Bd;
zeros(1,4) (B1-B1)'*P21 -(C*(B1-B1))'*P22 B1' -eta^2*eye(1,1) zeros(1,2);
zeros(2,4) Bd'*P21 -(C*Bd)'*P22 Bd' zeros(2,1) eta^2*eye(2,2)];
S22=[eye(4) zeros(4) zeros(4) (B2*K2)' zeros(4,1) zeros(4,2);
zeros(4) P21'*A2+P21*A2'+W1*C+W1'*C'+eye(4) (-P22*C*A2-W2*C-W1')' (-B2*K2+(A2-A2)'*P21)' ((B2-B2)'*P21)' (Bd'*P21)';
zeros(4) -P22*C*A2-W2*C-W1' W2+W2'+eye(4) ((C*(A2-A2)'*P22))' (-(C*(B2-B2))'*P22)' (-(C*Bd)'*P22)';
B2*K2 -B2*K2+(A2-A2)'*P21 -(C*(A2-A2)')*P22 A2+A2' B1 Bd;
zeros(1,4) (B2-B2)'*P21 -(C*(B2-B2))'*P22 B2' -eta^2*eye(1,1) zeros(1,2);
zeros(2,4) Bd'*P21 -(C*Bd)'*P22 Bd' zeros(2,1) eta^2*eye(2,2)];
S12=[eye(4) zeros(4) zeros(4) (B1*K2)' zeros(4,1) zeros(4,2);
zeros(4) P21'*A2+P21*A2'+W1*C+W1'*C'+eye(4) (-P22*C*A2-W2*C-W1')' (-B1*K2+(A1-A2)'*P21)' ((B1-B2)'*P21)' (Bd'*P21)';
zeros(4) -P22*C*A2-W2*C-W1' W2+W2'+eye(4) ((C*(A1-A2)'*P22))' (-(C*(B1-B2))'*P22)' (-(C*Bd)'*P22)';
B1*K2 -B1*K2+(A1-A2)'*P21 -(C*(A1-A2)')*P22 A1+A1' B1 Bd;
zeros(1,4) (B1-B2)'*P21 -(C*(B1-B2))'*P22 B1' -eta^2*eye(1,1) zeros(1,2);
zeros(2,4) Bd'*P21 -(C*Bd)'*P22 Bd' zeros(2,1) eta^2*eye(2,2)];
S21=[eye(4) zeros(4) zeros(4) (B2*K1)' zeros(4,1) zeros(4,2);
zeros(4) P21'*A1+P21*A1'+W1*C+W1'*C'+eye(4) (-P22*C*A1-W2*C-W1')' (-B2*K1+(A2-A1)'*P21)' ((B2-B1)'*P21)' (Bd'*P21)';
zeros(4) -P22*C*A1-W2*C-W1' W2+W2'+eye(4) ((C*(A2-A1)'*P22))' (-(C*(B2-B1))'*P22)' (-(C*Bd)'*P22)';
B2*K1 -B2*K1+(A2-A1)'*P21 -(C*(A2-A1)')*P22 A2+A2' B2 Bd;
zeros(1,4) (B2-B1)'*P21 -(C*(B2-B1))'*P22 B2' -eta^2*eye(1,1) zeros(1,2);
zeros(2,4) Bd'*P21 -(C*Bd)'*P22 Bd' zeros(2,1) eta^2*eye(2,2)];
Sc11=[B1*K1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
P1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
B1*K1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
C*(B1-B1)*K1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) (B1-B1)*K1 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) C*(B1-B1)*K1 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2)];
Sc22=[B2*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
P1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
B2*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
C*(B2-B2)*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) (B2-B2)*K1 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) C*(B2-B2)*K2 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2)];
Sc12=[B1*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
P1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
B1*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
C*(B1-B2)*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) (B1-B2)*K2 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) C*(B1-B2)*K2 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2)];
Sc21=[B2*K1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
P1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
B1*K2 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
C*(B2-B1)*K1 zeros(4) zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) (B2-B1)*K1 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) P21 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) C*(B2-B1)*K1 zeros(4) zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2);
zeros(4) zeros(4) P22 zeros(4) zeros(4,1) zeros(4,2)];
So11=[Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
E21*K1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P2 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E21*K1 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E11*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*P21 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*C'*P2 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd'*C'*P22 zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1)];
So22=[Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
E22*K2 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P2 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E22*K2 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E12*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*P21 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*C'*P2 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd'*C'*P22 zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1)];
So12=[Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
E21*K2 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P2 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E21*K2 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E11*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*P21 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*C'*P2 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd'*C'*P22 zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1)];
So21=[Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
Dd'*P1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
E22*K1 zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) Dd'*P2 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E22*K1 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E12*P21 zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*P21 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) Dd'*C'*P2 zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd' zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) Dd'*C'*P22 zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1)];
Su11=[l6*E11'*E11+l1*E21*E21' zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E21*E21' zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) l8*E11'*E11+l6*E21*E21' zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) l9*E11'*E11+l7*Dd*Dd' zeros(4,2) zeros(4,1);
zeros(2,4) zeros(2,4) zeros(2,4) zeros(2,4) zeros(2,2) zeros(2,1);
zeros(1,4) zeros(1,4) zeros(1,4) zeros(1,4) zeros(1,2) zeros(1,1)];
Su22=[l6*E12'*E12+l1*E22*E22' zeros(4) zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) E22*E22' zeros(4) zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) l8*E12'*E12+l6*E22*E22' zeros(4) zeros(4,2) zeros(4,1);
zeros(4) zeros(4) zeros(4) l9*E12'*E12+l7*Dd*Dd' zeros(4,2) zeros(4,1);
zeros(2,4) zeros(2,4) zeros(2,4) zeros(2,4) zeros(2,2) zeros(2,1);
zeros(1,4) zeros(1,4) zeros(1,4) zeros(1,4) zeros(1,2) zeros(1,1)];
Sk=[16*eye(4) zeros(4,50);zeros(4) l1*eye(4) zeros(4,46);zeros(4,8) (l1+l4+l5)*eye(4) zeros(4,42);zeros(4,12) eye(4) zeros(4,38);zeros(4,16) l2*(l3+l5)*eye(4) zeros(4,34);
zeros(1,20) l3 zeros(1,33);zeros(4,21) l4*eye(4) zeros(4,29);zeros(4,25) eye(4) zeros(4,25);zeros(4,29) l4*eye(4) zeros(4,21);zeros(4,33) l5*eye(4) zeros(4,17);
zeros(4,37) l3*l1*eye(4) zeros(4,13);zeros(4,41) eye(4) zeros(4,9);zeros(4,45) l6*eye(4) zeros(4,5);zeros(1,49) l5 zeros(1,4);zeros(4,50) eye(4)];
% Sys=[S11 So11' Sc11';So11 Sk zeros(54);Sc11 zeros(54) eye(54)]
%%% the constraints
Sys=[((S11+Su11)-[So11;Sc11]'*([-Sk zeros(54);zeros(54) eye(54)])*[So11;Sc11])<=0];
Sys=[Sys, ((S22+Su22)-[So22;Sc22]'*([-Sk zeros(54);zeros(54) eye(54)])*[So22;Sc22])<=0];
Sys=[Sys, ((S12+Su11)-[So12;Sc12]'*([-Sk zeros(54);zeros(54) eye(54)])*[So12;Sc12])<=0];
Sys=[Sys, ((S21+Su22)-[So21;Sc21]'*([-Sk zeros(54);zeros(54) eye(54)])*[So21;Sc21])<=0];
Sys=[Sys, ((S11+Su11+S12+Su11+S21+Su22)-[So11+So12+So21;Sc11+Sc12+Sc21]'*3*([-Sk zeros(54);zeros(54) eye(54)])*[So11+So12+So21;Sc11+Sc12+Sc21])<=0];
Sys=[Sys, ((S22+Su22+S12+Su11+S21+Su22)-[So22+So21+So21;Sc11+Sc12+Sc21]'*3*([-Sk zeros(54);zeros(54) eye(54)])*[So22+So21+So21;Sc11+Sc12+Sc21])<=0];
Sys=[Sys, P1>0, P21>0, P22>0, eta>0, P3>0, l1>0, l2>0, l3>0, l4>0, l5>0, l6>0, l7>0, l8>0, l9>0]
opt=sdpsettings('solver','sdpt3');
yalmipdiagnostics=solvesdp(Sys)