This is my problem, the variables are phi and psi.
phi=sdpvar(N,1);
psi=sdpvar(N,1);
CS=[phi>0,psi>0];
CS=[CS,(GammaUCon+1)*abs(T_B1(1,:)*G_B*F_1(:,1))^2*(psi(1)^2)>=...
GammaUCon*(norm(T_B1(1,:)*G_B*F*diag(psi),'fro')^2+sigma_R^2*norm(T_B1(1,:)*G_B*F*inv(V),'fro')^2+sigma_B^2*norm(T_B1(1,:),2)^2)];
CS=[CS,(GammaUCon+1)*abs(T_B2(1,:)*G_B*F_2(:,1))^2*(psi(2)^2)>=...
GammaUCon*(norm(T_B2(1,:)*G_B*F*diag(psi),'fro')^2+sigma_R^2*norm(T_B2(1,:)*G_B*F*inv(V),'fro')^2+sigma_B^2*norm(T_B2(1,:),2)^2)];
CS=[CS,(GammaUCon+1)*abs(T_B2(2,:)*G_B*F_2(:,2))^2*(psi(3)^2)>=...
GammaUCon*(norm(T_B2(2,:)*G_B*F*diag(psi),'fro')^2+sigma_R^2*norm(T_B2(2,:)*G_B*F*inv(V),'fro')^2+sigma_B^2*norm(T_B2(2,:),2)^2)];
CS=[CS,(GammaUCon+1)*abs(T_B3(1,:)*G_B*F_3(:,1))^2*(psi(4)^2)>=...
GammaUCon*(norm(T_B3(1,:)*G_B*F*diag(psi),'fro')^2+sigma_R^2*norm(T_B3(1,:)*G_B*F*inv(V),'fro')^2+sigma_B^2*norm(T_B3(1,:),2)^2)];
CS=[CS,(GammaUCon+1)*abs(T_B3(2,:)*G_B*F_3(:,2))^2*(psi(5)^2)>=...
GammaUCon*(norm(T_B3(2,:)*G_B*F*diag(psi),'fro')^2+sigma_R^2*norm(T_B3(2,:)*G_B*F*inv(V),'fro')^2+sigma_B^2*norm(T_B3(2,:),2)^2)];
CS=[CS,(GammaUCon+1)*abs(T_B3(3,:)*G_B*F_3(:,3))^2*(psi(6)^2)>=...
GammaUCon*(norm(T_B3(3,:)*G_B*F*diag(psi),'fro')^2+sigma_R^2*norm(T_B3(3,:)*G_B*F*inv(V),'fro')^2+sigma_B^2*norm(T_B3(3,:),2)^2)];
CS=[CS,norm(inv(H_B)*V*diag(phi),'fro')^2<=P_B];
CS=[CS,norm(inv(H_M)*V1*psi(1),'fro')^2<=P_M1];
CS=[CS,norm(inv(H_M)*V2*diag(psi(2:3)),'fro')^2<=P_M2];
CS=[CS,norm(inv(H_M)*V3*diag(psi(4:6)),'fro')^2<=P_M3];
CS=[CS,norm(F*diag(phi),'fro')^2+norm(F*diag(psi),'fro')^2+sigma_R^2*norm(F*inv(V),'fro')^2<=P_R];
Ipsi_1=diag([0;psi(2:6)]); %
Ipsi_2=diag([psi(1);0;0;psi(4:6)]);
Ipsi_3=diag([psi(1:3);0;0;0]);
MT_1=[diag(phi) Ipsi_1];
MT_2=[diag(phi) Ipsi_2];
MT_3=[diag(phi) Ipsi_3];
CS=[CS,(1+t_zero)*abs(T_M1(1,:)*G_M1*F_1(:,1))^2*(phi(1)^2)>=...
t_zero*(norm(T_M1(1,:)*G_M1*F*MT_1,'fro')^2+sigma_R^2*norm(T_M1(1,:)*G_M1*F*inv(V),'fro')^2+sigma_M^2*norm(T_M1(1,:),2)^2)];
CS=[CS,(1+t_zero)*abs(T_M2(1,:)*G_M2*F_2(:,1))^2*(phi(2)^2)>=...
t_zero*(norm(T_M2(1,:)*G_M2*F*MT_2,'fro')^2+sigma_R^2*norm(T_M2(1,:)*G_M2*F*inv(V),'fro')^2+sigma_M^2*norm(T_M2(1,:),2)^2)];
CS=[CS,(1+t_zero)*abs(T_M2(2,:)*G_M2*F_2(:,2))^2*(phi(3)^2)>=...
t_zero*(norm(T_M2(2,:)*G_M2*F*MT_2,'fro')^2+sigma_R^2*norm(T_M2(2,:)*G_M2*F*inv(V),'fro')^2+sigma_M^2*norm(T_M2(2,:),2)^2)];
CS=[CS,(1+t_zero)*abs(T_M3(1,:)*G_M3*F_3(:,1))^2*(phi(4)^2)>=...
t_zero*(norm(T_M3(1,:)*G_M3*F*MT_3,'fro')^2+sigma_R^2*norm(T_M3(1,:)*G_M3*F*inv(V),'fro')^2+sigma_M^2*norm(T_M3(1,:),2)^2)];
CS=[CS,(1+t_zero)*abs(T_M3(2,:)*G_M3*F_3(:,2))^2*(phi(5)^2)>=...
t_zero*(norm(T_M3(2,:)*G_M3*F*MT_3,'fro')^2+sigma_R^2*norm(T_M3(2,:)*G_M3*F*inv(V),'fro')^2+sigma_M^2*norm(T_M3(2,:),2)^2)];
CS=[CS,(1+t_zero)*abs(T_M3(3,:)*G_M3*F_3(:,3))^2*(phi(6)^2)>=...
t_zero*(norm(T_M3(3,:)*G_M3*F*MT_3,'fro')^2+sigma_R^2*norm(T_M3(3,:)*G_M3*F*inv(V),'fro')^2+sigma_M^2*norm(T_M3(3,:),2)^2)];
sol=solvesdp(CS,[],ops);
I know the above problem is a socp problem, but not in standard form. Will yalmip accept this form? I think the answer is no, cause the answer to the above problem is always
imfeasible, and the answers to phi and psi are both all 0 vectors. I have also tried to put a sqrt function in both sides, the answer is also imfeasible and always all 0 vectors.
The value I gave to the problem for verification ensures that the problem is feasible. Then a contradiction occurs. So could you tell me how to make yalmip accept this problem and give
the right answer.
Thank you very much.