I am trying to solve the logdet maximization problem that maximize the region of applicability under some LMI constraints. I am getting an error 'solver not applicable' with sdpt3. If I dont use sdpt3, it shows 'no solver found'.
Is it problem with solver?? The code is exactly as given below here.
A=[0.4 0.05;0.7 1.1]; Ab1=[0.09 0.03;0.03 0.09]; Ab2=[0.2 -0.04;-0.04 0.1];
B=[0.1 0.8]'; Bb1=[0.02 -0.01]'; Bb2=[-0.01 0.03]'; ub=0.3; p=0.9;
r=sqrt(chi2inv(0.9,1));
P = sdpvar(6,6,'symmetric');% Here P actually stands for inv(Cap P)
sdpvar ld;
F=[P>=0]; F=[F,0<=ld<=1]; % Constraints on P, lambda
%
K=[-0.2298 -0.5112];
Tx=[eye(2);zeros(4,2)]; % Tau_x
Psi= [A+B*K B*[1 0 0 0];
zeros(4,2) [0 1 0 0;0 0 1 0;0 0 0 1;0 0 0 0]];
Psib1= [Ab1+Bb1*K Bb1*[1 0 0 0];
zeros(4,6)];
Psib2= [Ab2+Bb2*K Bb2*[1 0 0 0];
zeros(4,6)];
% constraint in (36)
lmi1=[ub^2 [K 1 0 0 0]*P;
([K 1 0 0 0]*P)' P];
lmi2=[Tx'*P*Tx (Tx'*Psi*P) Tx'*[Psib1*P Psib2*P];
(Tx'*Psi*P)' (1-ld)*P zeros(6,12);
(Tx'*[Psib1*P Psib2*P])' zeros(12,6) [(ld/r^2)*P zeros(6);zeros(6) (ld/r^2)*P]];
F=[F, lmi1>=0]; F=[F, lmi2>=0];
optimize(F,-logdet(Tx'*P*Tx),sdpsettings('solver','sdpt3')) %maximize the logdet in (36) subject to (12), (16)
Px= inv(Tx'*value(P)*Tx)
Lambda = value(ld)