Constraints =[];
for k=1:1:T/dt
C = sdpvar(2,2);D=sdpvar(2,2);
L{k}{sdpvar(1,2);Constraints = [Constraints, -D+C+dt*(C*A{k}'+A{k}*C+B{k}*L{k})<0, C < inv(Gamma),C>= inv(R), C>= inv(R)];
end
I'm sorry but i'm still having problems with defining the constraint structure of this differential LMI.
my code looks as the following:
X = sdpvar(repmat(2,1,T/dt+1),repmat(2,1,T/dt+1));
Constraints = [X{1}>= inv(R)];
for k = 1:2
A{k} = [2/(tf1-t) 0 ; 0 2/(tf2-t)]; B{k} = [-1/(Vc*(tf1-t));-1/(Vc*(tf2-t))];
Constraints = [Constraints, -X{k+1}+X{k}+dt*(X{k}*A{k}'+A{k}*X{k}+B{k}*L{k}+L{k}'*B{k}')<= -eye(2)*0.5 ; X{k} <= inv(Gamma)]; t=t+dt; endsolvesdp(Constraints)