Minimize h1 subject to the following LMIs constraints :
X>0
[h1(X*(A+Ad)'+(A+Ad)*X)-sigma*B*B' X*Ad' X(A+Ad)';
Ad*X -X-sigma*B*B' 0;
(A+Ad)*X 0 -X-sigma*B*B'] <0
A, Ad,sigma,B are known
X, h1 are unkown .
Thanks in advance.
N.B I have tried theses codes
%%%%%%%%%%%%%%%%%%%%%%%%%%% Code in YALMIP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define the variables
A = [2 0 1;1.75 0.25 0.8;-1 0 1];
Ad= [-1 0 0;-0.1 0.25 0.2;-0.2 4 5];
B=[0;0;1];
X = sdpvar(3,3);
h1=sdpvar(1);
sigma=1;
F=[[h1*(X*(A+Ad)'+(A+Ad)*X)-sigma*B*B' X*Ad' X(A+Ad)';Ad*X -X-sigma*B*B' 0;(A+Ad)*X 0 -X-sigma*B*B']<0, X>0];
X= double(X);
solvesdp(F,X)
%%%%%%%%%%%%%%%%%Code LMI toolbox %%%%%%%%%%%%%%%%%%%%%%%%%%%
clc
clear all;
close all;
%
% The problem we solve here is gevp of a linear system x' = Ax.
%
% This can be formulated as
%
% min h-1
% s.t
% X > 0
%
pause
% Define the variables
A = [2 0 1;1.75 0.25 0.8;-1 0 1];
Ad= [-1 0 0;-0.1 0.25 0.2;-0.2 4 5];
B=[0;0;1];
sigma=1;
%A'= A+Ad ;
%X = sdpvar(3,3);
% LMI Description
setlmis([]); %
X=lmivar(1,[3 1]); %
%h1=lmivar(1,1); %
% 1 LMI
lmiterm([-1 1 1 X],1,1) % X > 0
% 2 LMI h-1(X*(A+Ad)'+(A+Ad)*X)- sigma*B*B' < 0
lmiterm([2 1 1 X],A+Ad,1,'s');
lmiterm([2 1 1 0],-sigma*B*B');
% % 2 LMI -X*A1'-A1*X+M1'*B1'+B1*M1-(2-1)*Y-2*alpha*X>0
% lmiterm([-3 1 1 X],-A1,1,'s');
% lmiterm([-3 1 1 M1],B1,1,'s');
% lmiterm([-3 1 1 Y],-1,1);
% lmiterm([-3 1 1 X],-2,1);
LMIs=getlmis;
[alpha,Xopt]=gevp(LMIs,1);
X=dec2mat(LMIs,Xopt,1);
alpha;