Re: The coefficient matrix is not full row rank, numerical problems may occur. sedumi 1.3 is it a problem?

370 views
Skip to first unread message
Message has been deleted

Johan Löfberg

unread,
Jun 19, 2018, 2:23:32 AM6/19/18
to YALMIP
solved without proble,ms here using mosek. However, your problem is not well posed as 0 appears to be feasible

>> optimize(Constraints)
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 21              
  Cones                  : 0               
  Scalar variables       : 3               
  Matrix variables       : 38              
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 1
Eliminator terminated.
Eliminator - tries                  : 1                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.01            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.03    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 21              
  Cones                  : 0               
  Scalar variables       : 3               
  Matrix variables       : 38              
  Integer variables      : 0               

Optimizer  - threads                : 2               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 20
Optimizer  - Cones                  : 1
Optimizer  - Scalar variables       : 3                 conic                  : 3               
Optimizer  - Semi-definite variables: 38                scalarized             : 228             
Factor     - setup time             : 0.00              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 210               after factor           : 210             
Factor     - dense dim.             : 0                 flops                  : 3.77e+04        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   1.6e+01  1.0e+00  1.0e+00  0.00e+00   0.000000000e+00   0.000000000e+00   1.0e+00  0.06  
1   5.0e+00  3.2e-01  5.6e-01  1.00e+00   0.000000000e+00   0.000000000e+00   3.2e-01  0.17  
2   1.7e+00  1.1e-01  3.3e-01  1.00e+00   0.000000000e+00   0.000000000e+00   1.1e-01  0.17  
3   8.3e-01  5.3e-02  2.3e-01  1.00e+00   0.000000000e+00   0.000000000e+00   5.3e-02  0.19  
4   1.9e-01  1.2e-02  1.1e-01  1.00e+00   0.000000000e+00   0.000000000e+00   1.2e-02  0.19  
5   3.5e-03  2.2e-04  1.5e-02  1.00e+00   0.000000000e+00   0.000000000e+00   2.2e-04  0.19  
6   7.6e-09  4.8e-10  4.8e-10  1.00e+00   0.000000000e+00   0.000000000e+00   4.8e-10  0.23  
Optimizer terminated. Time: 0.28    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: 0.0000000000e+00    nrm: 1e+01    Viol.  con: 2e-03    var: 0e+00    barvar: 0e+00  
  Dual.    obj: 0.0000000000e+00    nrm: 9e-09    Viol.  con: 0e+00    var: 3e-10    barvar: 5e-10  
Optimizer summary
  Optimizer                 -                        time: 0.28    
    Interior-point          - iterations : 6         time: 0.23    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    


ans = 

  struct with fields:

    yalmiptime: 0.2545
    solvertime: 0.4025
          info: 'Successfully solved (MOSEK)'
       problem: 0



elmajidi azeddine

unread,
Jun 19, 2018, 4:55:03 AM6/19/18
to YALMIP
Hello Johan,

Thanks for your quick answer, i'll try to install mosek and rerun the code, however u said that my problem is not well posed, 
has it a relation with my strict inequalities in the theorem that i ommited in the code (for Q and the constraints with the increment i)?
there is it a way to overcome this (to be well posed)?
why sedumi can't resolve the problem?

and sorry again if i ask stupid question.

Thks in advance

Johan Löfberg

unread,
Jun 19, 2018, 5:15:01 AM6/19/18
to YALMIP
Strict inequalities are impossible in practice (as there is no minimizer). You have to dehomogenize it, by adding some explicit bound (such as replacing P>0 with P>=eye(n)) .

Sedumi simply doesn't seem to like you problem, likely due to the homogeneuous nature

Johan Löfberg

unread,
Jun 19, 2018, 8:07:37 AM6/19/18
to YALMIP
Ading Q>=eye(3) to dehomogenize leads to infeasibility, so I would suspect you problem is not strictly feasible

elmajidi azeddine

unread,
Jun 19, 2018, 8:15:40 AM6/19/18
to YALMIP
Hello again,

I tried ur instruction by using mosek instead of sedumi to resolve the problem without changing anything in my constraint, and as u said the problem got a solution that magically and hoepfully stabilized the system in my previous stacked point!!! Thanks a lot.

However i have final question to you, if you remember my LMIs were like:
  • Q>0 
  • S>=0
  • Q*Ai'+Ai*Q+C'*Ni'*Bi'+Bi*Ni*C+S<0 for each i
  • Q*(Ai'+Aj')+(Ai+Aj)*Q+C'*(Ni'*Bj'+Nj'*Bi')+(Bi*Nj+Bj*Ni)*C-2*S<=0 for each i <j
  • C*Q=M*C
and to verifiy the compliance of my solution i always try to see the nature of the gotten eigenvalues for S, Q, ...

in latest try with mosek I got eig(Q)>0 same thing with eig(S), but for Q*Ai'+Ai*Q+C'*Ni'*Bi'+Bi*Ni*C+S when I try eig(Qfeasible*A(1:3,1:3)'+A(1:3,1:3)*Qfeasible+B(1:3,1)*Nfeasible(1)*C+C'*Nfeasible(1)'*B(1:3,1)'+Sfeasible) for i=1 I got strictly positive values instead of negative

Is it normal or did i something wrong in my procedure ?

Sorry if I took a lot of your time

Johan Löfberg

unread,
Jun 19, 2018, 9:05:39 AM6/19/18
to YALMIP
As I said, your problem is likely infeasible. When you have a homogeneous problem, the solver simply returns 0 or something around that which is close enough, but of course garbage if you must have strictly feasible solution

The problem to find x>0 and x<0 is trivially infeasible, but a numerical solver might return x = 0 and think it is good enough as it violates feasibility very little

Johan Löfberg

unread,
Jun 19, 2018, 9:40:54 AM6/19/18
to YALMIP
btw, cells would simplify your coding a lot. Use  A = {A1,A2,A3,..} etc instead, and you can simply use A{i}

elmajidi azeddine

unread,
Jun 19, 2018, 10:45:17 AM6/19/18
to YALMIP
Thanks a lot for your directive Johan
Reply all
Reply to author
Forward
0 new messages