I approached it with the decay rate example. I am using sdpt3-4.0 to solve it but I get lambdas NaN when I am searching for the upper bound of gamma before performing the bisection method.
F = [P1>=eye(2), P2>=eye(2),l1>=0,l2>=0,l3>=0,l1>=0,...
A1'*P1+P1*A1<=l1*P2-l1*P1-t_upper*P1,...
A2'*P2+P2*A2<=l2*P1-l2*P2-t_upper*P2,...
A1'*P1+P1*A1<=l3*P1-l3*P2-t_upper*P1,...
A2'*P2+P2*A2<=l4*P2-l4*P1-t_upper*P2];
sol = optimize(F,[],ops);
Instead if I try to assign lambdas to zero and reducing the inequalities to 2, it works. Well but then when I perform the bisection method I get negative values of lambdas even though I forced them to be greater or equal to zero.
Thanks in advance,
Fred
t_lower = max(abs(t_lower1),abs(t_lower2));t_upper = t_lower;
F = [P1>=eye(2), P2>=eye(2),... A1'*P1+P1*A1-l1*(P2-P1)<= -t_upper*P1,... A2'*P2+P2*A2-l2*(P1-P2)<= -t_upper*P2,... A1'*P2+P2*A1-l3*(P1-P2)<= -t_upper*P2,... A2'*P1+P1*A2-l4*(P2-P1)<= -t_upper*P1]; sol = solvesdp(F,trace(P1)+trace(P2),ops)
yalmiptime: 0.0596 solvertime: 0.2284 info: 'Infeasible problem (MOSEK)' problem: 1