A = diag([-0.25 -0.34 -1.24 -1.26]);
C = [1 0 0 0];
n = size(A,1);
m = size(C,1);
k0 = 6; % assumed
k1 = 7; % assumed
alpha = 0.25; % Relax our optimization
epsi = 0.1; % Relax our optimization
A_alpha = A+alpha/2*eye(n,n);
P = sdpvar(n,n);
X = sdpvar(n,n);
Q = sdpvar(n,n);
Y = sdpvar(n,m,'full');
Z0 = sdpvar(n,k0,'full');
Z1 = sdpvar(n,k1,'full');
Z2 = sdpvar(n,n);
Lambda = sdpvar(n,n);
% First Const.
M1 = [Q P; P Z2];
F = [M1>=0];
WQ1 = X*A_alpha + A_alpha*X + Q - Y*C - C'*Y';
% Second Const.
M2 = [WQ1, Y, -X, Z0, Z1;
Y' , -epsi*eye(m,m), zeros(m,n), zeros(m,k0), zeros(m,k1);
-X' , zeros(n,m), -epsi*eye(n,n), zeros(n,k0), zeros(n,k1);
Z0' , zeros(k0,m), zeros(k0,n), -epsi*eye(k0,k0), zeros(k0,k1);
Z1' , zeros(k1,m), zeros(k1,n), zeros(k1,k0), -epsi*eye(k1,k1)];
F = [F,M2<=0];
optimize(F,-trace(alpha*P/epsi))
Do you think the choice of dimension (n,m,k0,k1) make this problem unbounded? Or, solving such a problem with many unknowns leads to unbounded results?