Dear Johan,
I am facing a problem of checking the feasibility of an optimization problem (logdet problem) subject to constraints. The diagnostics is giving a problem of numerical errors.
Can this problem be solved with other solvers in this case or is there some tweek?
The code is exactly as given below.
Thanks,
Shaik.
----------------------------------------------------------------------------------
N=5;
Pz=sdpvar(N+2,N+2,'symmetric');% Actually inverse of Pz
Psi_kv=[[0.4462 0.0334 0.1200;0.4414 0.8835 0.7900] zeros(2,N-1); zeros(N-1,3) eye(N-1); zeros(1,N+2)];
G_1kv=[-0.3653 -0.388 1 zeros(1,N-1)];Tx=[eye(2);zeros(N,2)];
lmiPz1=blkvar;
lmiPz1(1,1)=-0.3*Pz; lmiPz1(1,2)=0; lmiPz1(1,3)=Pz*Psi_kv';
lmiPz1(2,2)=-0.7; lmiPz1(2,3)=[2 2 zeros(1,N)];
lmiPz1(3,3)=-Pz;
lmiPz1=sdpvar(lmiPz1);
lmiPz2=blkvar;
lmiPz2(1,1)=4; lmiPz2(1,2)=G_1kv*Pz;
lmiPz2(2,2)=Pz;
lmiPz2=sdpvar(lmiPz2);
F=[Pz>=0]; F=[F,lmiPz1<=0];F=[F,lmiPz2>=0];
solvesdp(F,-logdet(Tx'*Pz*Tx),sdpsettings('solver','sdpt3')) %maximize the logdet(inv(Pz))
chekingset=checkset(F)
Pz=value(Pz)