Hi Johan,
I'm trying to find the Lagrange multiplier of the following least squares with quadratic constraint:
x = min{norm(a+A*x)^2 + \lambda * norm(x)^2}. The solution is x = -(A^H*A+\lambda*I)^-1*a , for which norm(x)^2 = \alpha and \alpha is known.
I'm using YALMIP with MOSEK, My code is:
==============================================================================================
options = sdpsettings('solver','mosek','verbose',1,'savesolveroutput',1)
x = sdpvar(10,1,'full','complex');
Objective = norm(a + A*x);
C1 = norm(x) <= sqrt(alpha);
diagnostics = solvesdp([C1],Objective,options);
if diagnostics.problem == 1
error('Fail!')
end
===============================================================================================
What do I need to add to this code to get the Lagrange multiplier \lambda. I tried using "dual", but it gave me "NAN".