Robust Model Predictive Control

77 views
Skip to first unread message

Sajjad Halakouei

unread,
Jul 15, 2019, 8:23:36 AM7/15/19
to YALMIP

Hello Professor Johan löfberg.

I want to implement a RMPC Controller in Yalmip. The Code is true and run for Np = 1. But when Np > 1, the solver cannot solve the optimization problem. Can you help me?

 

The Error:

Error using lmi/categorizeproblem (line 332)

Report bug in problem classification (linear constraint)

 

Error in compileinterfacedata (line 278)

[ProblemClass,integer_variables,binary_variables,parametric_variables,uncertain_variables,semicont_variables,quad_info] =

categorizeproblem(F,logdetStruct,h,options.relax,parametric,evaluation_based,F_vars,exponential_cone);

 

Error in solvesdp (line 242)

[interfacedata,recoverdata,solver,diagnostic,F,Fremoved,ForiginalQuadratics] =

compileinterfacedata(F,[],logdetStruct,h,options,0,solving_parametric);

 

Error in optimize (line 31)

[varargout{1:nargout}] = solvesdp(varargin{:});

 

Error in Test_02 (line 65)

    optimize(G, obj, opts);
RMPC.m

Johan Löfberg

unread,
Jul 15, 2019, 10:17:36 AM7/15/19
to YALMIP
your prediction model will be horribly nonlinear in uncertainty and decision variables for N>1, and there is no method in yalmip to cope with that uncertainty model
Reply all
Reply to author
Forward
0 new messages