I am trying to solve this particular program, but i am not able to solve using Yalmip, however the problem is perfectly feasible, i have solved manually. I am wondering what is the role of 1e-4, i know i have inserted those values to make the matrix positive definite, but 1e-4 is not sufficient, i have to make it 1e-8 to make it work, Also if you could tell how could I minimize the monomials for the SOS decomposition.
sdpvar x
A=[2 3];
lam1=01e-4*(x^2);
Z = monolist(x,2);
Z=Z(2:end);
n=2;
M=[jacobian(Z,x)];
xvar=sdpvar(2*n,1)
Q=sdpvar(n);
R=sdpvar(n);
expr1=[(Q*A'*M'+M*A*Q-M*4*4'*M') Q;Q -R];
const1=-xvar'*(expr1+lam1*eye(length(expr1)))*xvar;
const2=xvar(1:2)'*(Q-1e-4*eye(n))*xvar(1:2);
const3=xvar(1:2)'*(R-1e-4*eye(n))*xvar(1:2);
F=[sos(const1),sos(const2),sos(const3)]
options = sdpsettings('solver','mosek','verbose',1);
[sol1,v1,Q1]=solvesos([F],[],options,[Q,R])
Q=value(Q)