
close all;%%
clear all;%%%
M=10;m=1;l=3;g=10;
A=[0 1 0 0; 0 0 -m*g/M 0; 0 0 0 1; 0 0 g/l 0];
B=[0; 1/M; 0; -1/(M*l)];
Bw=ones(4,1);
C=Bw';
D=0.1;
det=0.1; p=0.53; r=200; td=0.16;
X=sdpvar(4,4);
Q_=sdpvar(4,4);
R_=sdpvar(4,4);
Omg_=sdpvar(4,4);
N_=sdpvar(16,4);
M_=sdpvar(16,4);
Y=sdpvar(1,4);
F_11a=[A*X+X*A'+Q_, B*Y, zeros(4), B*Y;
Y'*B', det*Omg_, zeros(4), zeros(4);
zeros(4), zeros(4), -Q_, B*Y;
Y'*B', zeros(4), zeros(4), -Omg_];
F_11b=[-N_, N_-M_, M_, zeros(16,4)];
F_21a=sqrt(td)*N_';F_21b=sqrt(td)*M_';
F_31=[Bw', zeros(1,4), zeros(1,4), zeros(1,4)];
F_41=[sqrt(td)*A*X, sqrt(td)*B*Y, zeros(4), sqrt(td)*B*Y];
F_51=[C*X, D*Y, zeros(1,4), D*Y];
F1=[F_11a+F_11b+F_11b', F_21a', F_31', F_41', F_51';
F_21a, -R_, zeros(4,1), zeros(4), zeros(4,1);
F_31, zeros(1,4), -r^2, sqrt(td)*Bw', zeros(1);
F_41, zeros(4), sqrt(td)*Bw, p^2*R_-2*p*X, zeros(4,1);
F_51, zeros(1,4), zeros(1), zeros(1,4), -1];
F2=[F_11a+F_11b+F_11b', F_21b', F_31', F_41', F_51';
F_21b, -R_, zeros(4,1), zeros(4), zeros(4,1);
F_31, zeros(1,4), -r^2, sqrt(td)*Bw', zeros(1);
F_41, zeros(4), sqrt(td)*Bw, p^2*R_-2*p*X, zeros(4,1);
F_51, zeros(1,4), zeros(1), zeros(1,4), -1];
F=(X>=0)+(Q_>=0)+(R_>=0)+(Omg_>=0)+(F1<=0)+(F2<=0);
ops=sdpsettings('solver','lmilab');
optimize(F,[],ops)
%optimize(F)%mosek
check(F)
X=value(X);
Y=value(Y);
Q_=value(Q_)
R_=value(R_);
N_=value(N_);
M_=value(M_);
Omg_=value(Omg_)
Lm2=[F_11a+F_11b+F_11b', F_21a', F_31', F_41', F_51';
F_21a, -R_, zeros(4,1), zeros(4), zeros(4,1);
F_31, zeros(1,4), -r^2, sqrt(td)*Bw', zeros(1);
F_41, zeros(4), sqrt(td)*Bw, p^2*R_-2*p*X, zeros(4,1);
F_51, zeros(1,4), zeros(1), zeros(1,4), -1]
K=Y*inv(X)
Omg=inv(X)*Omg_*inv(X)

The above theorem is the objective of my simulation. I wander that there exist simultaniously \tilde{Q} and -\tilde{Q}, \tilde{\Omega} and -\delta \tilde{\Omega} as diagnal terms. I think it is not feasible. However, it is feasible by using solver lmilab, but infeasible by using solve mosek. As Johan Lofberg said, mosek is more fast and robust in YALMIP. I need help.