Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 9099
Cones : 1
Scalar variables : 10467
Matrix variables : 0
Integer variables : 15 Optimizer started.
Mixed integer optimizer started.
Threads used: 4
Presolve started.
Presolve terminated. Time = 13.83
Presolved problem: 10466 variables, 9063 constraints, 18279897 non-zeros
Presolved problem: 0 general integer, 15 binary, 10451 continuous
Clique table size: 5
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 8.1966472636e-08 NA 94.7
0 1 0 0 1.3656467828e-01 8.1966472636e-08 100.00 334.8
0 1 0 0 8.0854508065e-02 8.1966472636e-08 100.00 827.5
Cut generation started.
0 2 0 0 8.0854508065e-02 1.3094923508e-06 100.00 1168.1
Cut generation terminated. Time = 179.67
10 13 5 3 8.0854508065e-02 1.3094923508e-06 100.00 1875.1
Problem
Name :
Objective sense : min
Type : QO (quadratic optimization problem)
Constraints : 4631
Cones : 0
Scalar variables : 5991
Matrix variables : 0
Integer variables : 15 Optimizer started.
Quadratic to conic reformulation started.
Quadratic to conic reformulation terminated. Time: 0.04
Mixed integer optimizer started.
Threads used: 4
Presolve started.
Presolve terminated. Time = 0.09
Presolved problem: 10466 variables, 9044 constraints, 75112 non-zeros
Presolved problem: 0 general integer, 15 binary, 10451 continuous
Clique table size: 5
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 7.5010889879e-09 NA 0.9
0 1 0 0 8.7368995172e+00 7.5010889879e-09 100.00 1.9
0 1 0 0 1.0345133742e+00 7.5010889879e-09 100.00 4.3
Cut generation started.
0 2 0 0 1.0345133742e+00 7.5010889879e-09 100.00 5.7
Cut generation terminated. Time = 0.74
7 10 6 2 1.0155068171e+00 3.6612530424e-06 100.00 7.9
16 20 3 2 3.8085611918e-01 8.5668705719e-03 97.75 10.2
An optimal solution satisfying the relative gap tolerance of 1.00e-02(%) has been located.
The relative gap is 0.00e+00(%).
An optimal solution satisfying the absolute gap tolerance of 0.00e+00 has been located.
The absolute gap is 0.00e+00.Objective of best integer solution : 3.808561191811e-01
Best objective bound : 3.808561191811e-01
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 0
Number of branches : 23
Number of relaxations solved : 27
Number of interior point iterations: 175
Number of simplex iterations : 0
Time spend presolving the root : 0.09
Time spend in the heuristic : 0.00
Time spend in the sub optimizers : 0.00
Time spend optimizing the root : 0.36
Mixed integer optimizer terminated. Time: 12.00Optimizer terminated. Time: 12.60
Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 3.8085611920e-01 nrm: 2e+02 Viol. con: 1e-11 var: 0e+00 itg: 0e+00
Optimizer summary
Optimizer - time: 12.60
Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 27 time: 12.00 0.3809
x = [1 2 3 4 5 6]';
t = (0:0.02:2*pi)';
A = [sin(t) sin(2*t) sin(3*t) sin(4*t) sin(5*t) sin(6*t)];
e = (-4+8*rand(length(t),1));
e(100:115) = 30;
y = A*x+e;
plot(t,y);xhat = sdpvar(6,1);
residuals = y-A*xhat;
bound = sdpvar(length(residuals),1);
Constraints = [-bound <= residuals <= bound];optimize([],residuals'*residuals);
x_L2 = value(xhat);
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 7
Cones : 1
Scalar variables : 8
Matrix variables : 0
Integer variables : 0 Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.03
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 7
Cones : 1
Scalar variables : 8
Matrix variables : 0
Integer variables : 0 Optimizer - threads : 4
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 1
Optimizer - Scalar variables : 3 conic : 3
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.30e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 8.1e+00 1.8e+03 1.8e+03 0.00e+00 -4.642689611e+05 0.000000000e+00 1.0e+00 0.06
1 2.5e-01 5.6e+01 1.2e+01 -9.67e-01 -3.172855604e+05 -4.309318157e+03 3.1e-02 0.17
2 5.1e-02 1.2e+01 1.9e+00 -4.76e-01 -1.873123017e+05 -7.734495616e+03 6.4e-03 0.17
3 1.2e-02 2.8e+00 4.0e-01 -2.10e-01 -1.142541247e+05 -7.975961663e+03 1.5e-03 0.19
4 3.8e-03 8.6e-01 1.6e-01 1.87e-01 -6.362158487e+04 -1.325303579e+04 4.8e-04 0.19
5 1.4e-03 3.1e-01 4.1e-02 -2.22e-01 -5.817301764e+04 -3.880270535e+03 1.7e-04 0.20
6 2.4e-04 5.3e-02 4.2e-02 6.75e-01 -2.121694891e+04 -1.379814762e+04 2.9e-05 0.20
7 2.8e-05 6.3e-03 7.9e-03 5.12e-01 -1.395015666e+04 -1.263851936e+04 3.5e-06 0.20
8 1.5e-06 3.4e-04 1.6e-03 7.72e-01 -1.239402499e+04 -1.231194336e+04 1.9e-07 0.22
9 5.8e-08 1.3e-05 3.4e-04 1.02e+00 -1.231156217e+04 -1.230856177e+04 7.2e-09 0.22
10 4.0e-09 8.9e-07 8.9e-05 1.01e+00 -1.230818685e+04 -1.230798231e+04 4.9e-10 0.22
11 1.1e-10 2.4e-08 1.5e-05 9.99e-01 -1.230793202e+04 -1.230792650e+04 1.3e-11 0.23
12 2.9e-12 1.8e-09 1.2e-06 1.00e+00 -1.230792480e+04 -1.230792476e+04 1.0e-13 0.23
Optimizer terminated. Time: 0.33
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -1.2307924805e+04 nrm: 8e+03 Viol. con: 1e-09 var: 0e+00 cones: 4e-10
Dual. obj: -1.2307924765e+04 nrm: 5e+04 Viol. con: 0e+00 var: 2e-05 cones: 0e+00
Optimizer summary
Optimizer - time: 0.33
Interior-point - iterations : 12 time: 0.25
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00