Hello every one!!
I am actually trying to solving a Hinf norm problem using a pair of LMIs to design a discrete time Luenberger observer. I am using sedumi to solve the following LMIs.
Ap1 = [1.0000 0.0060 0; -0.0013 0.9870 0; 0.0048 0.0226 0.9930]
Bw1 = [ 0 0; 0.0070 0; 0 0.0070];
Ap2 = [0.9997 0.0000 0; -0.0009 0.9930 0;0.0035 0.0000 0.9930]
Bw2 = [ 0 0; 0.0070 0; 0 0.0070];
re = .95;
P = sdpvar(3,3,'symmetric');
Q = sdpvar(3,1);
gama = sdpvar(1);
C = [0 0 1];
M = [
P >= 1e-10;
gama >= 1e-10;
[-re*P, P*Ap1-Q*C, Bw1, zeros(3,3); Ap1'*P'-C'*Q', -re*P, zeros(3,2), eye(3); Bw1', zeros(2,3), -gama*eye(2), zeros(2,3); zeros(3,3), eye(3), zeros(3,2), -gama*(eye(3))]<=-1e-10;
[-re*P, P*Ap2-Q*C, Bw2, zeros(3,3); Ap2'*P'-C'*Q', -re*P, zeros(3,2), eye(3); Bw2', zeros(2,3), -gama*eye(2), zeros(2,3); zeros(3,3), eye(3), zeros(3,2), -gama*(eye(3))]<=-1e-10;
];
options = sdpsettings('solver','sedumi','showprogress','1');
optimize(M, gama, options);
P = double(P);
Q = double(Q);
L =(P^-1)*Q;
The problem si that sedumi can not solve them and I am trying to find error without succes.
As you can see the convergence ratio re = .99 is closed to the unit circle in the complex plane for discrete time Luenberger, so that means that it should be easy to sedumi find a solution but it is not. The results from sedumi are the following:
+ Solver chosen : SeDuMi-1.3
+ Processing objective function
+ Processing constraints
+ Calling SeDuMi-1.3
SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, theta = 0.250, beta = 0.500
eqs m = 10, order n = 27, dim = 253, blocks = 4
nnz(A) = 89 + 0, nnz(ADA) = 100, nnz(L) = 55
it : b*y gap delta rate t/tP* t/tD* feas cg cg prec
0 : 5.19E+00 0.000
1 : -3.45E+00 2.73E-01 0.000 0.0525 0.9900 0.9900 0.27 1 1 1.6E+00
2 : -6.75E+00 6.99E-02 0.000 0.2563 0.9000 0.9000 0.06 1 1 9.6E-01
3 : -1.16E+01 2.19E-02 0.000 0.3135 0.9000 0.9000 -0.19 1 1 6.3E-01
4 : -2.08E+01 6.45E-03 0.000 0.2944 0.9000 0.9000 -0.23 1 1 3.9E-01
5 : -3.21E+01 2.02E-03 0.000 0.3130 0.9000 0.9000 -0.08 1 1 2.2E-01
6 : -4.67E+01 6.95E-04 0.000 0.3439 0.9000 0.9000 -0.07 1 1 1.5E-01
7 : -6.22E+01 3.17E-04 0.000 0.4570 0.9000 0.9000 -0.18 1 1 1.2E-01
8 : -9.24E+01 1.21E-04 0.000 0.3827 0.9000 0.9000 -0.22 1 1 8.7E-02
9 : -1.22E+02 5.54E-05 0.000 0.4557 0.9000 0.9000 -0.21 1 1 7.0E-02
10 : -1.75E+02 2.05E-05 0.000 0.3703 0.9000 0.9000 -0.20 1 1 4.7E-02
11 : -2.26E+02 9.18E-06 0.000 0.4478 0.9000 0.9000 -0.21 1 1 3.8E-02
12 : -3.23E+02 3.33E-06 0.000 0.3632 0.9000 0.9000 -0.22 1 1 2.6E-02
13 : -4.19E+02 1.47E-06 0.000 0.4397 0.9000 0.9000 -0.23 1 1 2.1E-02
14 : -6.01E+02 5.29E-07 0.000 0.3611 0.9000 0.9000 -0.23 1 1 1.4E-02
15 : -7.78E+02 2.33E-07 0.000 0.4396 0.9000 0.9000 -0.24 1 1 1.1E-02
16 : -1.12E+03 8.40E-08 0.000 0.3608 0.9000 0.9000 -0.24 1 1 7.7E-03
17 : -1.44E+03 3.69E-08 0.000 0.4393 0.9000 0.9000 -0.25 1 1 6.1E-03
18 : -2.07E+03 1.33E-08 0.000 0.3594 0.9000 0.9000 -0.24 1 1 4.1E-03
19 : -2.68E+03 5.79E-09 0.000 0.4369 0.9000 0.9000 -0.25 1 1 3.3E-03
20 : -3.85E+03 2.08E-09 0.000 0.3590 0.9000 0.9000 -0.24 1 1 2.2E-03
21 : -4.98E+03 9.07E-10 0.000 0.4362 0.9000 0.9000 -0.25 1 1 1.8E-03
22 : -7.14E+03 3.25E-10 0.000 0.3587 0.9000 0.9000 -0.24 1 2 1.2E-03
23 : -9.24E+03 1.42E-10 0.000 0.4358 0.9000 0.9000 -0.25 2 2 9.5E-04
24 : -1.33E+04 5.09E-11 0.000 0.3588 0.9000 0.9000 -0.24 2 2 6.5E-04
25 : -1.72E+04 2.22E-11 0.000 0.4359 0.9000 0.9000 -0.25 2 2 5.1E-04
26 : -2.46E+04 7.95E-12 0.000 0.3586 0.9000 0.9000 -0.24 2 2 3.5E-04
27 : -3.19E+04 3.46E-12 0.000 0.4356 0.9000 0.9000 -0.25 2 2 2.8E-04
28 : -4.57E+04 1.24E-12 0.000 0.3585 0.9000 0.9000 -0.24 2 2 1.9E-04
29 : -5.92E+04 5.41E-13 0.000 0.4354 0.9000 0.9000 -0.25 2 2 1.5E-04
30 : -8.49E+04 1.94E-13 0.000 0.3584 0.9000 0.9000 -0.24 2 2 1.0E-04
31 : -1.10E+05 8.44E-14 0.000 0.4352 0.9000 0.9000 -0.25 3 2 8.0E-05
32 : -1.58E+05 3.02E-14 0.000 0.3584 0.9000 0.9000 -0.24 3 2 5.4E-05
33 : -2.04E+05 1.32E-14 0.000 0.4352 0.9000 0.9000 -0.25 3 3 4.3E-05
34 : -2.93E+05 4.72E-15 0.000 0.3584 0.9000 0.9000 -0.24 3 3 2.9E-05
35 : -3.79E+05 2.05E-15 0.000 0.4351 0.9000 0.9000 -0.25 3 3 2.3E-05
Run into numerical problems.
Dual infeasible, primal improving direction found.
iter seconds |Ax| [Ay]_+ |x| |y|
35 0.7 2.5e-06 6.1e-16 2.4e+05 1.5e-04
Detailed timing (sec)
Pre IPM Post
2.330E-01 5.630E-01 3.900E-02
Max-norms: ||b||=1, ||c|| = 2.000000e+00,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.51775.
I hope that you can help me to find the error in the LMIs system.
Best regards guys. Thanks for your replies