Hello, I am trying to calculate the Einstein tensor for the metric.
CTensor{{(-1 + (m r n)/(a^2 Cos[χ]^2 + r^2))/(1 + k Cos[χ] r)^2, 0, 0, -((a m r n Sin[χ]^2)/((1 + k Cos[χ] r)^2 (a^2 Cos[χ]^2 + r^2))), 0}, {0, (a^2 Cos[χ]^2 + r^2)/((1 + k Cos[χ] r)^2 (a^2 + r^2 - m r n)), 0, 0, 0}, {0, 0, (a^2 Cos[χ]^2 + r^2)/(1 + k Cos[χ] r)^2, 0, 0}, {-((a m r n Sin[χ]^2)/((1 + k Cos[χ] r)^2 (a^2 Cos[χ]^2 + r^2))), 0, 0, (Sin[χ]^2 (a^2 + r^2 + (a^2 m r n Sin[χ]^2)/(a^2 Cos[χ]^2 + r^2)))/(1 + k Cos[χ] r)^2, 0}, {0, 0, 0, 0, (Cos[χ]^2 r^2)/(1 + k Cos[χ] r)^2}}, {-B, -B}, 0]
I have followed the instructions:
<< xAct`xTras`
<< xAct`xTensor`
<< xAct`xCoba`
DefConstantSymbol[{a, m, k, n}]
....
DefManifold[M, 5, {α, β, γ, δ, ι, κ, λ, μ, o, Σ, ρ, σ, τ, Υ, ω, ν}]
DefChart[B, M, {0, 1, 2, 3, 4}, {t, r, χ, θ, φ}]
\[Rho]2 = r[]^2 + a^2 Cos[\[Chi][]]^2;
\[CapitalDelta] = r[]^2 - m*r[]^n + a^2;
schw1 = CTensor[....
SetCMetric[schw1, B, SignatureOfMetric -> {3, 1, 0}]
MetricCompute[schw1, B, All]
schw1[-\[Alpha], -\[Beta]]
CD = LC[schw1]
Einstein[CD][\[Alpha], -\[Beta]]
The system is unable to calculate the Einstein tensor. I also tried using MetricCompute[schw1, B, Einstein, All -> False]. Any recommendations? Thank you very much for reading. Atteched de file