Hiii,
I am trying to compute specific components of the double covariant derivative of the weyl tensor in xCoba. Here is my code:
<< xAct`xCoba
DefManifold[M, 4, {\[Alpha], \[Beta], \[Gamma], \[Delta], \[Mu], \[Nu], \[Lambda], \[Sigma]}]
DefChart[ch, M, {0, 1, 2, 3}, {t[], r[], \[Theta][], \[Phi][]}, ChartColor -> Blue]
DefScalarFunction[f]
DefScalarFunction[h]
met = CTensor[DiagonalMatrix[{-h[r[]], 1/f[r[]], r[]^2,r[]^2 Sin[\[Theta][]]^2}], {-ch, -ch}];
SetCMetric[met, ch, SignatureOfMetric -> {3, 1, 0}]
cd = CovDOfMetric[met];
Now, I want to compute the double derivative of weyl Tensor as:
expr = cd[\[Mu]] [cd[\[Nu]] [Weyl[cd][-\[Alpha], -\[Beta], -\[Gamma], -\[Delta]]]];
result = Head[expr];
Now I want the specific component of the expr Tensor/Object.
Let's say I want \[Del]^2 [ \[Del]^3 [Weyl[-1, -2, -1, -3] ]], (where \[Del] is the covariant derivative) Then which one is the correct :
result[{1, -ch}, {2, -ch}, {1, -ch}, {3, -ch}, {3, ch}, {2, ch}];
or
result[{3, ch}, {2, ch}, {1, -ch}, {2, -ch}, {1, -ch}, {3, -ch}]
I also attached the nb.
Thank You.