Herma Label Designer Plus 1.1 De Download

0 views
Skip to first unread message

Heberto Calderon

unread,
Aug 20, 2024, 4:30:37 AM8/20/24
to versritcylo

HERMA Label Designer plus is a professional label software that allows users to create and design product and industrial labels. The program runs on a Windows platform and supports several languages.

HERMA Label Designer plus enables users to design labels quickly with the aid of texts, lines, circles, frames, bar codes, color progressions, photos, serial numbers and graphic elements. In addition, it offers a wide array of functions such as calculator, extensive image-processing, round text, banner lettering, integrated database with export functions, importation of database and graphics as well as OLE support and automatic reading of media storage structures among others. Moreover,it also features an exact printer adjustment for accurately positioned print-outs. Furthermore, the program provides a wide variety of pre-designed templates and clip-arts. These HERMA formats are pre-designed to accommodate modifications and addition of individual formats.



Herma Label Designer Plus 1.1 De Download


Download Zip https://psfmi.com/2A3fZp



File.org aims to be the go-to resource for file type- and related software information. We spend countless hours researching various file formats and software that can open, convert, create or otherwise work with those files.

KROY Label Designer is a design tool that can easily design and print various labels using KROY Thermal or Thermal Transfer printers. You can easily input Text, Graphics, and Bar Codes in the KROY Label Design Software. You may also import stored data and graphics from other applications. The Address Book allows the user to quickly import and print database information for many applications.

future of yarns / adaptive yarns / yarn innovation / adaptive archi-filament / future of textiles / textile architecture /2D to 3D patterns/ 3D printing textured mono-filament / fashion manufacturing with responsive materials / designing with climate/ co-creating fashion with nature / tailored by weather/ sustainable manufacturing/

Fashion manufactured by rain. The poetics of this novel design approach by Dutch designer Jef Montes is so captivating, that it is easy to miss his reinvention of the fashion system. While his Re-FREAM research started as a fashion collection, the process propelled Montes towards the development of a new fashion business model. The resulting Adaptive Archi-Filament radically redefines entrepreneurial strategy for fashion designers. Rather than simply using fibers to produce fashion, his signature creative filaments both shape and financially sustain his creative collections, becoming the foundation for his brand.

His final presentation demonstrates co-creation with rainy weather. 42 garment designs were exposed to rain in a dramatic roof installation over 30 days, showcasing and documenting the potential of manufacturing with the new hydro-responsive yarns. Meteorological conditions generated dynamic shapes. In the course of this design process, the Adaptive Archi-filament evolved into the resolution for a major fashion design challenge: creating commercially viable signature pieces without compromising design integrity.

Co-designing with nature means lowering energy consumption and waste. Montes re-situates the slowness of these natural processes into the field of the sublime. Deeply rooted in Conditional Design, the garments were given shape and evolve through the chance and rhythms of drizzle and downpours, or transpiration. The garments embody environmental consciousness, aesthetically drawing attention to the poetics of nature

Producing filament prototypes of his concept in both Spain and Austria, Montes was able to work with two different teams and outcomes. In addition, the testing provided by the EMPA lab allowed a comparison of the - more uniform - impact of weather on the textiles to the impact - more localized - sweat interaction. The collaborations allowed for not only material innovation, but also a vast collection of data on all the parameters of the filaments and their qualities, as well as a potential application analysis.

Yet the work reaches far beyond material innovation as a source for composing aesthetically sensational fashion. Intertwining his fashion expertise with that of technicians, scientists and industry experts, the project evolved from adaptive garments which morph through the weather into rethinking fashion entrepreneurship. Not just responsive filaments, but also frameworks, supply chains, and design processes which incorporate transition and new forms of interdisciplinary interplay. Adaptive manufacturing which responds to both humans and the environment.

First trials at Haratech tested 3D printing of recycled ocean plastics into moving spiral adaptive filament, with a coating filler of silicon. It became the 3D printed prototype for the layered multifilament yarn for the Johannes Kepler University and Wood K plus, which allowed the development of one type of filament production.

In terms of project accomplished goals, I would say that we reached 100% successful status. This is mainly reached because of the commitment and dedication of all project partners involved. I am very thankful to all of the amazing people that helped me during this journey. Design 33 would be the best result in terms of the original Marinero concept design. Next to that we have found more possibilities on several levels. This excites me to keep the research and development going for the upcoming years.

After analyzing the 36 garments it was clear that design 33 was the best one, but I had the idea of choosing a few of the other remaining best results and start an additional experiment named the conclusion category. The idea behind is was to create improved versions of designs 2 and 34. Each of them would get 3 variations, to see the difference between detailed style alternatives. I send this idea to TextielLab Tilburg and Judith already had a good idea how to approach these improved variations.

At first I needed to send an overview to Judith with images and ideas on how to improve these designs. This way we could prepare ourselves beforehand. The best part of this ambitious plan was that Jaime from Aitex and Jurgen from WK+ were willing to produce additional filament production. This made me super happy, because all the yarns produced before were almost finished. The Aitex version of the archi-filament is great to create tension in the fabric, that creates the new shape. The WK+ version adds the interesting texture on top of the deforming yarns, which create an interesting contrast woven together within a gradient.

The three variations from design 2 create the waist effect that I initially really wanted to reach. The balance here lies within the twill technique versus the Aitex archi-filament. These 2 work very well woven together and deformed result afterwards. The gradient of this design begins with the textured monofilament of WK+ and fades out towards the Aitex yarns within the center of the woven material.

Developing a commercial product is an interesting new step for me, because it opens a wider perspective on who will eventually use the textured monofilament. My initial target group are textiles designers and other creatives that work for example at TextielLab Tilburg. The TechTextilMesse Frankfurt will be an interesting platform to see what kind of new buyers I might attract. I love the unexpected things in life, so I might get surprised to see how all of this will unravel in the future.

The weaving mix category consists several materials like: Aitex Archi-Filament, Wood K Plus Textured and melt coated filament, soluble yarns, Rpet yarns, monofilaments and Seacell yarns. This category was intended to experiment with floats, but it did not seem to have worked out nicely in my opinion. I will continue to work on these fabrics by deconstructing some of the designs. I believe there is a potential when several filaments are removed.

The idea for this category was to work with multiple knitting techniques and see how the Archi-Filaments respond within these structures. We were inspired by the base blueprints of the weaving designs and transferred this information within knitting structures.

The overall conclusion for the first two installations is that the combination of weaving and knitting show the best potential of wearable quality. The knitted prototypes are developed with sharp technical filaments, but they still feel soft on the skin. My plan is that I will continue to work with the knitting techniques in the future and also to create wearable prototypes for the commercial fashion market. In terms of project Marinero there is one woven design that shows the best balance between weaving techniques and added yarns. Design 2 could be a commercial prototype by just adding a few adjustments, in terms of silicone hem finishing. But I would need to find a production company that could create this finishing for me.

The biggest challenge with technical filaments are that they need to get a special unconventional ( non fashion ) finishing, because the cut ends can feel a bit sharp on the skin. This issue could be solved, by for example dipping the ends of the warp filaments with liquid silicone. This would also help to keep the entire construction locked in its own shape. So, the quality of the woven design will also become much better.

The idea for installation 1 was to create the Seacell category. The first 6 designs were meant to be non deforming, but during the process we did add some of the Aitex Archi-Filaments. It was a good initial test to see how these yarns work in a woven structure.

With this project I am researching yarns and fabrics on a technical challenging level. Within this process I am shaping new design aesthetics, based on responsive technology interacting with meteorological conditions. The goal is to analyze the deforming behavior of 36 adaptive fabric designs. I can see what techniques work the best, based on the tailored by weather overview results. This information will allow me to improve high performing fabric blueprints in the future. The intention is also to optimize new and improved versions of the Archi-Filament. I would like to learn more about how I can push the boundaries between new materials and current technology. To eventually make the filament mechanically more powerful.

b37509886e
Reply all
Reply to author
Forward
0 new messages