The accident occurred during a test of the steam turbine's ability to power the emergency feedwater pumps in the event of a simultaneous loss of external power and coolant pipe rupture. Following an accidental drop in reactor power to near-zero, the operators restarted the reactor in preparation for the turbine test with a prohibited control rod configuration. Upon successful completion of the test, the reactor was then shut down for maintenance. Due to a variety of factors, this action resulted in a power surge at the base of the reactor which brought about the rupture of reactor components and the loss of coolant. This process led to steam explosions and a meltdown, which destroyed the containment building. This was followed by a reactor core fire which lasted until 4 May 1986, during which airborne radioactive contaminants were spread throughout the USSR and Europe.[7][8] In response to the initial accident, a 10-kilometre (6.2 mi) radius exclusion zone was created 36 hours after the accident, from which approximately 49,000 people were evacuated, primarily from Pripyat. The exclusion zone was later increased to a radius of 30 kilometres (19 mi), from which an additional 68,000 people were evacuated.[9]
Following the reactor explosion, which killed two engineers and severely burned two more, an emergency operation to put out the fires and stabilize the surviving reactor began, during which 237 workers were hospitalized, of whom 134 exhibited symptoms of acute radiation syndrome (ARS). Among those hospitalized, 28 died within the following three months. In the following 10 years, 14 more workers (9 of whom had been hospitalized with ARS) died of various causes mostly unrelated to radiation exposure.[10] It remains the only time in the history of commercial nuclear power that radiation-related fatalities occurred.[11][12] 15 childhood thyroid cancer deaths were attributed to the disaster as of 2011[update].[13] A United Nations committee found that to date fewer than 100 deaths have resulted from the fallout.[14] Model predictions of the eventual total death toll in the coming decades vary. The most widely cited study conducted by the World Health Organization in 2006, predicted 9,000 cancer-related fatalities in Ukraine, Belarus and Russia.[15]
Following the disaster, Pripyat was abandoned and eventually replaced by the new purpose-built city of Slavutych. The Chernobyl Nuclear Power Plant sarcophagus was built by December 1986. It reduced the spread of radioactive contamination from the wreckage and protected the site from weathering. The confinement shelter also provided radiological protection for the crews of the undamaged reactors at the site, which were restarted in late 1986 and 1987. However, the containment structure was only intended to last for 30 years, and required sizeable reinforcement in the early 2000s. The shelter was largely supplemented in 2017 by the Chernobyl New Safe Confinement, which was constructed around the old sarcophagus structure. The new enclosure aims to enable the removal of the sarcophagus and the reactor debris while containing the radioactive materials inside, with clean-up scheduled for completion by 2065.[16]
The operation of the reactor at the low power level (and high poisoning level) was accompanied by unstable core temperatures and coolant flow, and, possibly, by instability of neutron flux. The control room received repeated emergency signals regarding the low levels in one half of the steam/water separator drums, with accompanying drum separator pressure warnings. In response, personnel triggered several rapid influxes of feedwater. Relief valves opened to relieve excess steam into a turbine condenser.[citation needed]
When a power level of 200 MW was reattained, preparation for the experiment continued, although the power level was much lower than the prescribed 700 MW. As part of the test program, two additional main circulating (coolant) pumps were activated at 01:05. The increased coolant flow lowered the overall core temperature and reduced the existing steam voids in the core. Because water absorbs neutrons better than steam, the neutron flux and reactivity decreased. The operators responded by removing more manual control rods to maintain power.[30][31] It was around this time that the number of control rods inserted in the reactor fell below the required value of 15. This was not apparent to the operators, because the RBMK did not have any instruments capable of calculating the inserted rod worth in real time.
At 01:23:40, as recorded by the SKALA centralized control system, a scram (emergency shutdown) of the reactor was initiated[33] as the experiment was wrapping up.[34][non-primary source needed] The scram was started when the AZ-5 button (also known as the EPS-5 button) of the reactor emergency protection system was pressed: this engaged the drive mechanism on all control rods to fully insert them, including the manual control rods that had been withdrawn earlier.
When the AZ-5 button was pressed, the insertion of control rods into the reactor core began. The control rod insertion mechanism moved the rods at 0.4 metres per second (1.3 ft/s), so that the rods took 18 to 20 seconds to travel the full height of the core, about 7 metres (23 ft). A bigger problem was the design of the RBMK control rods, each of which had a graphite neutron moderator section attached to its end to boost reactor output by displacing water when the control rod section had been fully withdrawn from the reactor. That is, when a control rod was at maximum extraction, a neutron-moderating graphite extension was centered in the core with 1.25 metres (4.1 ft) columns of water above and below it.[23]
Instruments did not register the subsequent course of events; it was reconstructed through mathematical simulation. Per the simulation, the power spike would have caused an increase in fuel temperature and steam buildup, leading to a rapid increase in steam pressure. This caused the fuel cladding to fail, releasing the fuel elements into the coolant and rupturing the channels in which these elements were located.[40]
This explosion ruptured further fuel channels, as well as severing most of the coolant lines feeding the reactor chamber, and as a result, the remaining coolant flashed to steam and escaped the reactor core. The total water loss combined with a high positive void coefficient further increased the reactor's thermal power.[23]
A second, more powerful explosion occurred about two or three seconds after the first; this explosion dispersed the damaged core and effectively terminated the nuclear chain reaction. This explosion also compromised more of the reactor containment vessel and ejected hot lumps of graphite moderator. The ejected graphite and the demolished channels still in the remains of the reactor vessel caught fire on exposure to air, significantly contributing to the spread of radioactive fallout and the contamination of outlying areas.[30][b] The explosion is estimated to have had the power equivalent of 225 tons of TNT.[45]
After the larger explosion, several employees at the power station went outside to get a clearer view of the extent of the damage. One such survivor, Alexander Yuvchenko, said that once he stepped out and looked up towards the reactor hall, he saw a "very beautiful" laser-like beam of blue light caused by the ionized-air glow that appeared to be "flooding up into infinity".[46][47]
There were initially several hypotheses about the nature of the second explosion. One view was that the second explosion was caused by the combustion of hydrogen, which had been produced either by the overheated steam-zirconium reaction or by the reaction of red-hot graphite with steam that produced hydrogen and carbon monoxide. Another hypothesis, by Konstantin Checherov, published in 1998, was that the second explosion was a thermal explosion of the reactor due to the uncontrollable escape of fast neutrons caused by the complete water loss in the reactor core.[48]
Shortly after the accident, firefighters arrived to try to extinguish the fires.[32] First on the scene was a Chernobyl Power Station firefighter brigade under the command of Lieutenant Volodymyr Pravyk, who died on 11 May 1986 of acute radiation sickness. They were not told how dangerously radioactive the smoke and the debris were, and may not even have known that the accident was anything more than a regular electrical fire: "We didn't know it was the reactor. No one had told us."[49] Grigorii Khmel, the driver of one of the fire engines, later described what happened:
It was thought by some that the core fire was extinguished by a combined effort of helicopters dropping more than 5,000 tonnes (11 million pounds) of sand, lead, clay, and neutron-absorbing boron onto the burning reactor. It is now known that virtually none of these materials reached the core.[52] Historians estimate that about 600 Soviet pilots risked dangerous levels of radiation to fly the thousands of flights needed to cover reactor No. 4 in this attempt to seal off radiation.[53]
From eyewitness accounts of the firefighters involved before they died (as reported on the CBC television series Witness), one described his experience of the radiation as "tasting like metal", and feeling a sensation similar to that of pins and needles all over his face. This is consistent with the description given by Louis Slotin, a Manhattan Project physicist who died days after a fatal radiation overdose from a criticality accident.[54]
The explosion and fire threw hot particles of the nuclear fuel and also far more dangerous fission products (radioactive isotopes such as caesium-137, iodine-131, strontium-90, and other radionuclides) into the air. The residents of the surrounding area observed the radioactive cloud on the night of the explosion.[citation needed]
The nearby city of Pripyat was not immediately evacuated. The townspeople, in the early hours of the morning, at 01:23 local time, went about their usual business, completely oblivious to what had just happened. However, within a few hours of the explosion, dozens of people fell ill. Later, they reported severe headaches and metallic tastes in their mouths, along with uncontrollable fits of coughing and vomiting.[57][better source needed] As the plant was run by authorities in Moscow, the government of Ukraine did not receive prompt information on the accident.[58]
c80f0f1006