wrong hysteresis loop of Fe/PePt bilayer.

757 views
Skip to first unread message

phy.ash...@gmail.com

unread,
Oct 23, 2015, 8:54:26 PM10/23/15
to Vampire Users
Hi Richard,

First of all, thank you for providing the Vampire as an open-source code.

I am new to micromagnetic simulation and would like to do a test on a simple Fe(1 nm)/FePt(5 nm) bilayer. The exchange coupling between the two layers is switched of, so I expect step-like feature in the hysteresis loop (magnetization jumps twice at the coercivity of Fe and FePt). However, I did not observe this effect. I am afraid that I have set some parameters wrong. Since there is no tutorial of a hysteresis loop calculation, may I have your help to take a look at my inputs and help me to calibrate the parameters? The output magnetization is in attachment.

FePt-Fe.mat

#===================================================
# Sample vampire material file V3+
#===================================================

#---------------------------------------------------
# Number of Materials
#---------------------------------------------------
material:num-materials=2
#---------------------------------------------------
# Material 1 FePt
#---------------------------------------------------
material[1]:material-name=FePt
material[1]:damping-constant=0.2
material[1]:exchange-matrix[1]=3.0e-21
material[1]:exchange-matrix[2]=0
material[1]:atomic-spin-moment=1.458 !muB
material[1]:uniaxial-anisotropy-constant=4.94e-23
material[1]:uniaxial-anisotropy-direction= 0,0,1
#---------------------------------------------------
# Material 2 Fe
#---------------------------------------------------
material[2]:material-name=Fe
material[2]:damping-constant=0.01
material[2]:exchange-matrix[2]=4.2e-21
material[2]:exchange-matrix[1]=0
material[2]:atomic-spin-moment=2.2 !muB
material[2]:uniaxial-anisotropy-constant=0
material[2]:uniaxial-anisotropy-direction= 0,0,1

material[1]:minimum-height=0.0
material[1]:maximum-height=0.83
material[2]:minimum-height=0.83
material[2]:maximum-height=1.0


input
#------------------------------------------
# Vampire input file for M-H loop
#------------------------------------------

#------------------------------------------
# Creation attributes:
#------------------------------------------
create:crystal-structure=fcc
create:periodic-boundaries-x
create:periodic-boundaries-y


#------------------------------------------
# System Dimensions:
#------------------------------------------
dimensions:unit-cell-size-x = 3.85 !A
dimensions:unit-cell-size-y = 3.85 !A
dimensions:unit-cell-size-z = 3.73 !A
dimensions:system-size-x=4 !nm
dimensions:system-size-y=4 !nm
dimensions:system-size-z=6 !nm
#------------------------------------------
# Material Files:
#------------------------------------------
material:file=FePt-Fe.mat

#------------------------------------------
# Simulation attributes:
#------------------------------------------
sim:temperature=300
sim:equilibration-time-steps=10000
sim:loop-time-steps=10000
sim:maximum-applied-field-strength=10
sim:minimum-applied-field-strength=-10
sim:applied-field-strength-increment=0.1
sim:applied-field-unit-vector=0.00001,0,0.99999

#------------------------------------------
# Program and integrator details
#------------------------------------------
sim:program=hysteresis-loop
sim:integrator=llg-heun

#------------------------------------------
# data output
#------------------------------------------
output:applied-field-strength
output:magnetisation

screen:applied-field-strength
screen:magnetisation

config:atoms
config:atoms-output-rate=10

Thank you in advance!

Best regards,
Asher


output

richard....@gmail.com

unread,
Oct 27, 2015, 7:36:30 AM10/27/15
to Vampire Users
Hi Asher,

Yes - overall this looks fine. The problem comes from the damping parameter. In general hysteric properties are 'slow' and so to get loops comparable with experiment you would ordinarily wait a long time - hundreds of nanoseconds. However, this is obviously computationally expensive, so one can accelerate the process by using critical damping (material[2]:damping-constant=1.0) so that the magnetisation relaxes quickly. This still requires reasonably long simulation times (~10 - 20 ns for the whole loop) but allows the simulation to approach the Stoner-Wohlfarth limit for the coercivity. In general it is a good idea to increase the loop-time to check the convergence of the coercivity, which should be close to 2k_u/mu_s at 0K.

All the best,

Richard

BHANU PRAKASH PANT

unread,
Mar 23, 2017, 7:20:25 AM3/23/17
to Vampire Users
Hi Asher,

Can you please tell from where did you get the material file parametervaluesof FePt? Can you please link the source? 

Thanks.
Bhanu
Reply all
Reply to author
Forward
0 new messages