Oh, yes. Now I see it.
I never used this type of meta-loop, but it does very well the trick. I leave the idea also here for accessibility:
# Configure the simulation with the length of interest to implement the changes in the "dynamic" parameter
sim = simulator.Simulator(
connectivity=connectivity.Connectivity.from_file(),
integrator=integrators.HeunDeterministic(dt=0.01),
model=models.MontbrioPazoRoxin(), monitors=[monitors.TemporalAverage(period=0.1)],
simulation_length=1.0).configure()
t = []
y = []
for i in range(10): # Simulate in loop changing the parameter and gather the data
sim.model.eta = sim.model.eta + 0.3 # Change the parameter of interest
(t_, y_) = sim.run() # Run the simulation from the state conditions where it was left last iteration
t.append(t_) # Gather the data
y.append(y_)
Thank you very much!
Cheers,