[PATCH v3 10/14] x86: Secure Launch SMP bringup support

15 views
Skip to first unread message

Ross Philipson

unread,
Aug 9, 2021, 12:31:14 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Intel, the APs are left in a well documented state after TXT performs
the late launch. Specifically they cannot have #INIT asserted on them so
a standard startup via INIT/SIPI/SIPI cannot be performed. Instead the
early SL stub code parked the APs in a pause/jmp loop waiting for an NMI.
The modified SMP boot code is called for the Secure Launch case. The
jump address for the RM piggy entry point is fixed up in the jump where
the APs are waiting and an NMI IPI is sent to the AP. The AP vectors to
the Secure Launch entry point in the RM piggy which mimics what the real
mode code would do then jumps the the standard RM piggy protected mode
entry point.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/include/asm/realmode.h | 3 ++
arch/x86/kernel/smpboot.c | 86 ++++++++++++++++++++++++++++++++++++
arch/x86/realmode/rm/header.S | 3 ++
arch/x86/realmode/rm/trampoline_64.S | 37 ++++++++++++++++
4 files changed, 129 insertions(+)

diff --git a/arch/x86/include/asm/realmode.h b/arch/x86/include/asm/realmode.h
index 5db5d08..ef37bf1 100644
--- a/arch/x86/include/asm/realmode.h
+++ b/arch/x86/include/asm/realmode.h
@@ -37,6 +37,9 @@ struct real_mode_header {
#ifdef CONFIG_X86_64
u32 machine_real_restart_seg;
#endif
+#ifdef CONFIG_SECURE_LAUNCH
+ u32 sl_trampoline_start32;
+#endif
};

/* This must match data at realmode/rm/trampoline_{32,64}.S */
diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c
index 9320285..aafe627 100644
--- a/arch/x86/kernel/smpboot.c
+++ b/arch/x86/kernel/smpboot.c
@@ -57,6 +57,7 @@
#include <linux/pgtable.h>
#include <linux/overflow.h>
#include <linux/syscore_ops.h>
+#include <linux/slaunch.h>

#include <asm/acpi.h>
#include <asm/desc.h>
@@ -1021,6 +1022,83 @@ int common_cpu_up(unsigned int cpu, struct task_struct *idle)
return 0;
}

+#ifdef CONFIG_SECURE_LAUNCH
+
+static atomic_t first_ap_only = {1};
+
+/*
+ * Called to fix the long jump address for the waiting APs to vector to
+ * the correct startup location in the Secure Launch stub in the rmpiggy.
+ */
+static int
+slaunch_fixup_jump_vector(void)
+{
+ struct sl_ap_wake_info *ap_wake_info;
+ u32 *ap_jmp_ptr = NULL;
+
+ if (!atomic_dec_and_test(&first_ap_only))
+ return 0;
+
+ ap_wake_info = slaunch_get_ap_wake_info();
+
+ ap_jmp_ptr = (u32 *)__va(ap_wake_info->ap_wake_block +
+ ap_wake_info->ap_jmp_offset);
+
+ *ap_jmp_ptr = real_mode_header->sl_trampoline_start32;
+
+ pr_info("TXT AP long jump address updated\n");
+
+ return 0;
+}
+
+/*
+ * TXT AP startup is quite different than normal. The APs cannot have #INIT
+ * asserted on them or receive SIPIs. The early Secure Launch code has parked
+ * the APs in a pause loop waiting to receive an NMI. This will wake the APs
+ * and have them jump to the protected mode code in the rmpiggy where the rest
+ * of the SMP boot of the AP will proceed normally.
+ */
+static int
+slaunch_wakeup_cpu_from_txt(int cpu, int apicid)
+{
+ unsigned long send_status = 0, accept_status = 0;
+
+ /* Only done once */
+ if (slaunch_fixup_jump_vector())
+ return -1;
+
+ /* Send NMI IPI to idling AP and wake it up */
+ apic_icr_write(APIC_DM_NMI, apicid);
+
+ if (init_udelay == 0)
+ udelay(10);
+ else
+ udelay(300);
+
+ send_status = safe_apic_wait_icr_idle();
+
+ if (init_udelay == 0)
+ udelay(10);
+ else
+ udelay(300);
+
+ accept_status = (apic_read(APIC_ESR) & 0xEF);
+
+ if (send_status)
+ pr_err("Secure Launch IPI never delivered???\n");
+ if (accept_status)
+ pr_err("Secure Launch IPI delivery error (%lx)\n",
+ accept_status);
+
+ return (send_status | accept_status);
+}
+
+#else
+
+#define slaunch_wakeup_cpu_from_txt(cpu, apicid) 0
+
+#endif /* !CONFIG_SECURE_LAUNCH */
+
/*
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
@@ -1075,6 +1153,13 @@ static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
cpumask_clear_cpu(cpu, cpu_initialized_mask);
smp_mb();

+ /* With Intel TXT, the AP startup is totally different */
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) ==
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) {
+ boot_error = slaunch_wakeup_cpu_from_txt(cpu, apicid);
+ goto txt_wake;
+ }
+
/*
* Wake up a CPU in difference cases:
* - Use the method in the APIC driver if it's defined
@@ -1087,6 +1172,7 @@ static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
cpu0_nmi_registered);

+txt_wake:
if (!boot_error) {
/*
* Wait 10s total for first sign of life from AP
diff --git a/arch/x86/realmode/rm/header.S b/arch/x86/realmode/rm/header.S
index 8c1db5b..9136bd5 100644
--- a/arch/x86/realmode/rm/header.S
+++ b/arch/x86/realmode/rm/header.S
@@ -36,6 +36,9 @@ SYM_DATA_START(real_mode_header)
#ifdef CONFIG_X86_64
.long __KERNEL32_CS
#endif
+#ifdef CONFIG_SECURE_LAUNCH
+ .long pa_sl_trampoline_start32
+#endif
SYM_DATA_END(real_mode_header)

/* End signature, used to verify integrity */
diff --git a/arch/x86/realmode/rm/trampoline_64.S b/arch/x86/realmode/rm/trampoline_64.S
index cc8391f..cdfc2c2 100644
--- a/arch/x86/realmode/rm/trampoline_64.S
+++ b/arch/x86/realmode/rm/trampoline_64.S
@@ -104,6 +104,43 @@ SYM_CODE_END(sev_es_trampoline_start)

.section ".text32","ax"
.code32
+#ifdef CONFIG_SECURE_LAUNCH
+ .balign 4
+SYM_CODE_START(sl_trampoline_start32)
+ /*
+ * The early secure launch stub AP wakeup code has taken care of all
+ * the vagaries of launching out of TXT. This bit just mimics what the
+ * 16b entry code does and jumps off to the real startup_32.
+ */
+ cli
+ wbinvd
+
+ /*
+ * The %ebx provided is not terribly useful since it is the physical
+ * address of tb_trampoline_start and not the base of the image.
+ * Use pa_real_mode_base, which is fixed up, to get a run time
+ * base register to use for offsets to location that do not have
+ * pa_ symbols.
+ */
+ movl $pa_real_mode_base, %ebx
+
+ /*
+ * This may seem a little odd but this is what %esp would have had in
+ * it on the jmp from real mode because all real mode fixups were done
+ * via the code segment. The base is added at the 32b entry.
+ */
+ movl rm_stack_end, %esp
+
+ lgdt tr_gdt(%ebx)
+ lidt tr_idt(%ebx)
+
+ movw $__KERNEL_DS, %dx # Data segment descriptor
+
+ /* Jump to where the 16b code would have jumped */
+ ljmpl $__KERNEL32_CS, $pa_startup_32
+SYM_CODE_END(sl_trampoline_start32)
+#endif
+
.balign 4
SYM_CODE_START(startup_32)
movl %edx, %ss
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:14 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Prior to running the next kernel via kexec, the Secure Launch code
closes down private SMX resources and does an SEXIT. This allows the
next kernel to start normally without any issues starting the APs etc.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/slaunch.c | 71 +++++++++++++++++++++++++++++++++++++++++++++++
kernel/kexec_core.c | 4 +++
2 files changed, 75 insertions(+)

diff --git a/arch/x86/kernel/slaunch.c b/arch/x86/kernel/slaunch.c
index f91f0b5..60a193a 100644
--- a/arch/x86/kernel/slaunch.c
+++ b/arch/x86/kernel/slaunch.c
@@ -458,3 +458,74 @@ void __init slaunch_setup_txt(void)

pr_info("Intel TXT setup complete\n");
}
+
+static inline void smx_getsec_sexit(void)
+{
+ asm volatile (".byte 0x0f,0x37\n"
+ : : "a" (SMX_X86_GETSEC_SEXIT));
+}
+
+void slaunch_finalize(int do_sexit)
+{
+ void __iomem *config;
+ u64 one = TXT_REGVALUE_ONE, val;
+
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) !=
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT))
+ return;
+
+ config = ioremap(TXT_PRIV_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!config) {
+ pr_emerg("Error SEXIT failed to ioremap TXT private reqs\n");
+ return;
+ }
+
+ /* Clear secrets bit for SEXIT */
+ memcpy_toio(config + TXT_CR_CMD_NO_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ /* Unlock memory configurations */
+ memcpy_toio(config + TXT_CR_CMD_UNLOCK_MEM_CONFIG, &one, sizeof(one));
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ /* Close the TXT private register space */
+ memcpy_toio(config + TXT_CR_CMD_CLOSE_PRIVATE, &one, sizeof(one));
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ /*
+ * Calls to iounmap are not being done because of the state of the
+ * system this late in the kexec process. Local IRQs are disabled and
+ * iounmap causes a TLB flush which in turn causes a warning. Leaving
+ * thse mappings is not an issue since the next kernel is going to
+ * completely re-setup memory management.
+ */
+
+ /* Map public registers and do a final read fence */
+ config = ioremap(TXT_PUB_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!config) {
+ pr_emerg("Error SEXIT failed to ioremap TXT public reqs\n");
+ return;
+ }
+
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ pr_emerg("TXT clear secrets bit and unlock memory complete.");
+
+ if (!do_sexit)
+ return;
+
+ if (smp_processor_id() != 0) {
+ pr_emerg("Error TXT SEXIT must be called on CPU 0\n");
+ return;
+ }
+
+ /* Disable SMX mode */
+ cr4_set_bits(X86_CR4_SMXE);
+
+ /* Do the SEXIT SMX operation */
+ smx_getsec_sexit();
+
+ pr_emerg("TXT SEXIT complete.");
+}
diff --git a/kernel/kexec_core.c b/kernel/kexec_core.c
index 4b34a9a..fdf0a27 100644
--- a/kernel/kexec_core.c
+++ b/kernel/kexec_core.c
@@ -39,6 +39,7 @@
#include <linux/hugetlb.h>
#include <linux/objtool.h>
#include <linux/kmsg_dump.h>
+#include <linux/slaunch.h>

#include <asm/page.h>
#include <asm/sections.h>
@@ -1179,6 +1180,9 @@ int kernel_kexec(void)
cpu_hotplug_enable();
pr_notice("Starting new kernel\n");
machine_shutdown();
+
+ /* Finalize TXT registers and do SEXIT */
+ slaunch_finalize(1);
}

kmsg_dump(KMSG_DUMP_SHUTDOWN);
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:14 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The focus of Trechboot project (https://github.com/TrenchBoot) is to
enhance the boot security and integrity. This requires the linux kernel
to be directly invoked by x86 Dynamic launch measurements to establish
Dynamic Root of Trust for Measurement (DRTM). The dynamic launch will
be initiated by a boot loader with associated support added to it, for
example the first targeted boot loader will be GRUB2. An integral part of
establishing the DRTM involves measuring everything that is intended to
be run (kernel image, initrd, etc) and everything that will configure
that kernel to run (command line, boot params, etc) into specific PCRs,
the DRTM PCRs (17-22), in the TPM. Another key aspect is the dynamic
launch is rooted in hardware, that is to say the hardware (CPU) is what
takes the first measurement for the chain of integrity measurements. On
Intel this is done using the GETSEC instruction provided by Intel's TXT
and the SKINIT instruction provided by AMD's AMD-V. Information on these
technologies can be readily found online. This patchset introduces Intel
TXT support.

To enable the kernel to be launched by GETSEC, a stub must be built
into the setup section of the compressed kernel to handle the specific
state that the dynamic launch process leaves the BSP in. Also this stub
must measure everything that is going to be used as early as possible.
This stub code and subsequent code must also deal with the specific
state that the dynamic launch leaves the APs in.

A quick note on terminology. The larger open source project itself is
called Trenchboot, which is hosted on Github (links below). The kernel
feature enabling the use of the x86 technology is referred to as "Secure
Launch" within the kernel code. As such the prefixes sl_/SL_ or
slaunch/SLAUNCH will be seen in the code. The stub code discussed above
is referred to as the SL stub.

The new feature starts with patch #4. There are several preceeding patches
before that. Patches 1 and 2 are fixes to an earlier patch set that
itroduced the x86 setup_data type setup_indirect. Patch 3 was authored
by Arvind Sankar. There is no further status on this patch at this point but
Secure Launch depends on it so it is included with the set.

The basic flow is:

- Entry from the dynamic launch jumps to the SL stub
- SL stub fixes up the world on the BSP
- For TXT, SL stub wakes the APs, fixes up their worlds
- For TXT, APs are left halted waiting for an NMI to wake them
- SL stub jumps to startup_32
- SL main locates the TPM event log and writes the measurements of
configuration and module information into it.
- Kernel boot proceeds normally from this point.
- During early setup, slaunch_setup() runs to finish some validation
and setup tasks.
- The SMP bringup code is modified to wake the waiting APs. APs vector
to rmpiggy and start up normally from that point.
- SL platform module is registered as a late initcall module. It reads
the TPM event log and extends the measurements taken into the TPM PCRs.
- SL platform module initializes the securityfs interface to allow
asccess to the TPM event log and TXT public registers.
- Kernel boot finishes booting normally
- SEXIT support to leave SMX mode is present on the kexec path and
the various reboot paths (poweroff, reset, halt).

Links:

The Trenchboot project including documentation:

https://github.com/trenchboot

Intel TXT is documented in its own specification and in the SDM Instruction Set volume:

https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://software.intel.com/en-us/articles/intel-sdm

AMD SKINIT is documented in the System Programming manual:

https://www.amd.com/system/files/TechDocs/24593.pdf

GRUB2 pre-launch support patchset (WIP):

https://lists.gnu.org/archive/html/grub-devel/2020-05/msg00011.html

Thanks
Ross Philipson and Daniel P. Smith

Changes in v2:

- Modified 32b entry code to prevent causing relocations in the compressed
kernel.
- Dropped patches for compressed kernel TPM PCR extender.
- Modified event log code to insert log delimiter events and not rely
on TPM access.
- Stop extending PCRs in the early Secure Launch stub code.
- Removed Kconfig options for hash algorithms and use the algorithms the
ACM used.
- Match Secure Launch measurement algorithm use to those reported in the
TPM 2.0 event log.
- Read the TPM events out of the TPM and extend them into the PCRs using
the mainline TPM driver. This is done in the late initcall module.
- Allow use of alternate PCR 19 and 20 for post ACM measurements.
- Add Kconfig constraints needed by Secure Launch (disable KASLR
and add x2apic dependency).
- Fix testing of SL_FLAGS when determining if Secure Launch is active
and the architecture is TXT.
- Use SYM_DATA_START_LOCAL macros in early entry point code.
- Security audit changes:
- Validate buffers passed to MLE do not overlap the MLE and are
properly laid out.
- Validate buffers and memory regions used by the MLE are
protected by IOMMU PMRs.
- Force IOMMU to not use passthrough mode during a Secure Launch.
- Prevent KASLR use during a Secure Launch.

Changes in v3:

- Introduce x86 documentation patch to provide background, overview
and configuration/ABI information for the Secure Launch kernel
feature.
- Remove the IOMMU patch with special cases for disabling IOMMU
passthrough. Configuring the IOMMU is now a documentation matter
in the previously mentioned new patch.
- Remove special case KASLR disabling code. Configuring KASLR is now
a documentation matter in the previously mentioned new patch.
- Fix incorrect panic on TXT public register read.
- Properly handle and measure setup_indirect bootparams in the early
launch code.
- Use correct compressed kernel image base address when testing buffers
in the early launch stub code. This bug was introduced by the changes
to avoid relocation in the compressed kernel.
- Use CPUID feature bits instead of CPUID vendor strings to determine
if SMX mode is supported and the system is Intel.
- Remove early NMI re-enable on the BSP. This can be safely done later
on the BSP after an IDT is setup.

Arvind Sankar (1):
x86/boot: Place kernel_info at a fixed offset

Daniel P. Smith (2):
x86: Add early SHA support for Secure Launch early measurements
x86: Secure Launch late initcall platform module

Ross Philipson (11):
x86/boot: Fix memremap of setup_indirect structures
x86/boot: Add missing handling of setup_indirect structures
Documentation/x86: Secure Launch kernel documentation
x86: Secure Launch Kconfig
x86: Secure Launch main header file
x86: Secure Launch kernel early boot stub
x86: Secure Launch kernel late boot stub
x86: Secure Launch SMP bringup support
kexec: Secure Launch kexec SEXIT support
reboot: Secure Launch SEXIT support on reboot paths
tpm: Allow locality 2 to be set when initializing the TPM for Secure
Launch

Documentation/x86/boot.rst | 13 +
Documentation/x86/index.rst | 1 +
Documentation/x86/secure-launch.rst | 714 ++++++++++++++++++++++++++++++++
arch/x86/Kconfig | 32 ++
arch/x86/boot/compressed/Makefile | 3 +
arch/x86/boot/compressed/early_sha1.c | 103 +++++
arch/x86/boot/compressed/early_sha1.h | 17 +
arch/x86/boot/compressed/early_sha256.c | 7 +
arch/x86/boot/compressed/head_64.S | 37 ++
arch/x86/boot/compressed/kernel_info.S | 53 ++-
arch/x86/boot/compressed/kernel_info.h | 12 +
arch/x86/boot/compressed/sl_main.c | 549 ++++++++++++++++++++++++
arch/x86/boot/compressed/sl_stub.S | 685 ++++++++++++++++++++++++++++++
arch/x86/boot/compressed/vmlinux.lds.S | 6 +
arch/x86/include/asm/realmode.h | 3 +
arch/x86/kernel/Makefile | 2 +
arch/x86/kernel/asm-offsets.c | 19 +
arch/x86/kernel/e820.c | 31 +-
arch/x86/kernel/kdebugfs.c | 28 +-
arch/x86/kernel/ksysfs.c | 56 ++-
arch/x86/kernel/reboot.c | 10 +
arch/x86/kernel/setup.c | 26 +-
arch/x86/kernel/slaunch.c | 531 ++++++++++++++++++++++++
arch/x86/kernel/slmodule.c | 495 ++++++++++++++++++++++
arch/x86/kernel/smpboot.c | 86 ++++
arch/x86/mm/ioremap.c | 34 +-
arch/x86/realmode/rm/header.S | 3 +
arch/x86/realmode/rm/trampoline_64.S | 37 ++
drivers/char/tpm/tpm-chip.c | 13 +-
drivers/iommu/intel/dmar.c | 4 +
include/linux/slaunch.h | 532 ++++++++++++++++++++++++
kernel/kexec_core.c | 4 +
lib/crypto/sha256.c | 8 +
lib/sha1.c | 4 +
34 files changed, 4108 insertions(+), 50 deletions(-)
create mode 100644 Documentation/x86/secure-launch.rst
create mode 100644 arch/x86/boot/compressed/early_sha1.c
create mode 100644 arch/x86/boot/compressed/early_sha1.h
create mode 100644 arch/x86/boot/compressed/early_sha256.c
create mode 100644 arch/x86/boot/compressed/kernel_info.h
create mode 100644 arch/x86/boot/compressed/sl_main.c
create mode 100644 arch/x86/boot/compressed/sl_stub.S
create mode 100644 arch/x86/kernel/slaunch.c
create mode 100644 arch/x86/kernel/slmodule.c
create mode 100644 include/linux/slaunch.h

--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:15 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: Arvind Sankar <nive...@alum.mit.edu>

There are use cases for storing the offset of a symbol in kernel_info.
For example, the trenchboot series [0] needs to store the offset of the
Measured Launch Environment header in kernel_info.

Since commit (note: commit ID from tip/master)

527afc212231 ("x86/boot: Check that there are no run-time relocations")

run-time relocations are not allowed in the compressed kernel, so simply
using the symbol in kernel_info, as

.long symbol

will cause a linker error because this is not position-independent.

With kernel_info being a separate object file and in a different section
from startup_32, there is no way to calculate the offset of a symbol
from the start of the image in a position-independent way.

To enable such use cases, put kernel_info into its own section which is
placed at a predetermined offset (KERNEL_INFO_OFFSET) via the linker
script. This will allow calculating the symbol offset in a
position-independent way, by adding the offset from the start of
kernel_info to KERNEL_INFO_OFFSET.

Ensure that kernel_info is aligned, and use the SYM_DATA.* macros
instead of bare labels. This stores the size of the kernel_info
structure in the ELF symbol table.

Signed-off-by: Arvind Sankar <nive...@alum.mit.edu>
Cc: Ross Philipson <ross.ph...@oracle.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/boot/compressed/kernel_info.S | 19 +++++++++++++++----
arch/x86/boot/compressed/kernel_info.h | 12 ++++++++++++
arch/x86/boot/compressed/vmlinux.lds.S | 6 ++++++
3 files changed, 33 insertions(+), 4 deletions(-)
create mode 100644 arch/x86/boot/compressed/kernel_info.h

diff --git a/arch/x86/boot/compressed/kernel_info.S b/arch/x86/boot/compressed/kernel_info.S
index f818ee8..c18f071 100644
--- a/arch/x86/boot/compressed/kernel_info.S
+++ b/arch/x86/boot/compressed/kernel_info.S
@@ -1,12 +1,23 @@
/* SPDX-License-Identifier: GPL-2.0 */

+#include <linux/linkage.h>
#include <asm/bootparam.h>
+#include "kernel_info.h"

- .section ".rodata.kernel_info", "a"
+/*
+ * If a field needs to hold the offset of a symbol from the start
+ * of the image, use the macro below, eg
+ * .long rva(symbol)
+ * This will avoid creating run-time relocations, which are not
+ * allowed in the compressed kernel.
+ */
+
+#define rva(X) (((X) - kernel_info) + KERNEL_INFO_OFFSET)

- .global kernel_info
+ .section ".rodata.kernel_info", "a"

-kernel_info:
+ .balign 16
+SYM_DATA_START(kernel_info)
/* Header, Linux top (structure). */
.ascii "LToP"
/* Size. */
@@ -19,4 +30,4 @@ kernel_info:

kernel_info_var_len_data:
/* Empty for time being... */
-kernel_info_end:
+SYM_DATA_END_LABEL(kernel_info, SYM_L_LOCAL, kernel_info_end)
diff --git a/arch/x86/boot/compressed/kernel_info.h b/arch/x86/boot/compressed/kernel_info.h
new file mode 100644
index 0000000..c127f84
--- /dev/null
+++ b/arch/x86/boot/compressed/kernel_info.h
@@ -0,0 +1,12 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef BOOT_COMPRESSED_KERNEL_INFO_H
+#define BOOT_COMPRESSED_KERNEL_INFO_H
+
+#ifdef CONFIG_X86_64
+#define KERNEL_INFO_OFFSET 0x500
+#else /* 32-bit */
+#define KERNEL_INFO_OFFSET 0x100
+#endif
+
+#endif /* BOOT_COMPRESSED_KERNEL_INFO_H */
diff --git a/arch/x86/boot/compressed/vmlinux.lds.S b/arch/x86/boot/compressed/vmlinux.lds.S
index 112b237..84c7b4d 100644
--- a/arch/x86/boot/compressed/vmlinux.lds.S
+++ b/arch/x86/boot/compressed/vmlinux.lds.S
@@ -7,6 +7,7 @@ OUTPUT_FORMAT(CONFIG_OUTPUT_FORMAT)

#include <asm/cache.h>
#include <asm/page_types.h>
+#include "kernel_info.h"

#ifdef CONFIG_X86_64
OUTPUT_ARCH(i386:x86-64)
@@ -27,6 +28,11 @@ SECTIONS
HEAD_TEXT
_ehead = . ;
}
+ .rodata.kernel_info KERNEL_INFO_OFFSET : {
+ *(.rodata.kernel_info)
+ }
+ ASSERT(ABSOLUTE(kernel_info) == KERNEL_INFO_OFFSET, "kernel_info at bad address!")
+
.rodata..compressed : {
*(.rodata..compressed)
}
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:15 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
One of the two functions in ioremap.c that handles setup_data was
missing the correct handling of setup_indirect structures.

Functionality missing from original commit:

commit b3c72fc9a78e (x86/boot: Introduce setup_indirect)

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/mm/ioremap.c | 21 +++++++++++++++++++--
1 file changed, 19 insertions(+), 2 deletions(-)

diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c
index ab74e4f..f2b34c5 100644
--- a/arch/x86/mm/ioremap.c
+++ b/arch/x86/mm/ioremap.c
@@ -669,17 +669,34 @@ static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,

paddr = boot_params.hdr.setup_data;
while (paddr) {
- unsigned int len;
+ unsigned int len, size;

if (phys_addr == paddr)
return true;

data = early_memremap_decrypted(paddr, sizeof(*data));
+ size = sizeof(*data);

paddr_next = data->next;
len = data->len;

- early_memunmap(data, sizeof(*data));
+ if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
+ early_memunmap(data, sizeof(*data));
+ return true;
+ }
+
+ if (data->type == SETUP_INDIRECT) {
+ size += len;
+ early_memunmap(data, sizeof(*data));
+ data = early_memremap_decrypted(paddr, size);
+
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
+ paddr = ((struct setup_indirect *)data->data)->addr;
+ len = ((struct setup_indirect *)data->data)->len;
+ }
+ }
+
+ early_memunmap(data, size);

if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
return true;
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:15 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Initial bits to bring in Secure Launch functionality. Add Kconfig
options for compiling in/out the Secure Launch code.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/Kconfig | 32 ++++++++++++++++++++++++++++++++
1 file changed, 32 insertions(+)

diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 88fb922..b5e25c5 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -1949,6 +1949,38 @@ config EFI_MIXED

If unsure, say N.

+config SECURE_LAUNCH
+ bool "Secure Launch support"
+ default n
+ depends on X86_64 && X86_X2APIC
+ help
+ The Secure Launch feature allows a kernel to be loaded
+ directly through an Intel TXT measured launch. Intel TXT
+ establishes a Dynamic Root of Trust for Measurement (DRTM)
+ where the CPU measures the kernel image. This feature then
+ continues the measurement chain over kernel configuration
+ information and init images.
+
+config SECURE_LAUNCH_ALT_PCR19
+ bool "Secure Launch Alternate PCR 19 usage"
+ default n
+ depends on SECURE_LAUNCH
+ help
+ In the post ACM environment, Secure Launch by default measures
+ configuration information into PCR18. This feature allows finer
+ control over measurements by moving configuration measurements
+ into PCR19.
+
+config SECURE_LAUNCH_ALT_PCR20
+ bool "Secure Launch Alternate PCR 20 usage"
+ default n
+ depends on SECURE_LAUNCH
+ help
+ In the post ACM environment, Secure Launch by default measures
+ image data like any external initrd into PCR17. This feature
+ allows finer control over measurements by moving image measurements
+ into PCR20.
+
source "kernel/Kconfig.hz"

config KEXEC
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:16 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Introduce background, overview and configuration/ABI information
for the Secure Launch kernel feature.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
Documentation/x86/index.rst | 1 +
Documentation/x86/secure-launch.rst | 714 ++++++++++++++++++++++++++++++++++++
2 files changed, 715 insertions(+)
create mode 100644 Documentation/x86/secure-launch.rst

diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst
index 3830483..e5a058f 100644
--- a/Documentation/x86/index.rst
+++ b/Documentation/x86/index.rst
@@ -31,6 +31,7 @@ x86-specific Documentation
tsx_async_abort
buslock
usb-legacy-support
+ secure-launch
i386/index
x86_64/index
sva
diff --git a/Documentation/x86/secure-launch.rst b/Documentation/x86/secure-launch.rst
new file mode 100644
index 0000000..cc5995c6
--- /dev/null
+++ b/Documentation/x86/secure-launch.rst
@@ -0,0 +1,714 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+Secure Launch
+=============
+
+Background
+==========
+
+The Trusted Computing Group (TCG) architecture defines two methods in
+which the target operating system is started, aka launched, on a system
+for which Intel and AMD provides implementations. These two launch types
+are static launch and dynamic launch. Static launch is referred to as
+such because it happens at one fixed point, at system startup, during
+the defined life-cycle of a system. Dynamic launch is referred to as
+such because it is not limited to being done once nor bound to system
+startup. It can in fact happen at anytime without incurring/requiring an
+associated power event for the system. Since dynamic launch can happen
+at anytime, this results in dynamic launch being split into two type of
+its own. The first is referred to as an early launch, where the dynamic
+launch is done in conjunction with the static lunch of the system. The
+second is referred to as a late launch, where a dynamic launch is
+initiated after the static launch was fully completed and the system was
+under the control of some target operating system or run-time kernel.
+These two top-level launch methods, static launch and dynamic launch
+provide different models for establishing the launch integrity, i.e. the
+load-time integrity, of the target operating system. When cryptographic
+hashing is used to create an integrity assessment for the launch
+integrity, then for a static launch this is referred to as the Static
+Root of Trust for Measurement (SRTM) and for dynamic launch it is
+referred to as the Dynamic Root of Trust for Measurement (DRTM).
+
+The reasoning for needing the two integrity models is driven by the fact
+that these models leverage what is referred to as a "transitive trust".
+A transitive trust is commonly referred to as a "trust chain", which is
+created through the process of an entity making an integrity assessment
+of another entity and upon success transfers control to the new entity.
+This process is then repeated by each entity until the Trusted Computing
+Base (TCB) of system has been established. A challenge for transitive
+trust is that the process is susceptible to cumulative error
+and in this case that error is inaccurate or improper integrity
+assessments. The way to address cumulative error is to reduce the
+number of instances that can create error involved in the process. In
+this case it would be to reduce then number of entities involved in the
+transitive trust. It is not possible to reduce the number of firmware
+components or the boot loader(s) involved during static launch. This is
+where dynamic launch comes in, as it introduces the concept for a CPU to
+provide an instruction that results in a transitive trust starting with
+the CPU doing an integrity assessment of a special loader that can then
+start a target operating system. This reduces the trust chain down to
+the CPU, a special loader, and the target operation system. It is also
+why it is said that the DRTM is rooted in hardware since the CPU is what
+does the first integrity assessment, i.e. the first measurement, in the
+trust chain.
+
+Overview
+========
+
+Prior to the start of the TrenchBoot project, the only active Open
+Source project supporting dynamic launch was Intel's Tboot project to
+support their implementation of dynamic launch known as Intel Trusted
+eXecution Technology (TXT). The approach taken by Tboot was to provide
+an exokernel that could handle the launch protocol implemented by
+Intel's special loader, the SINIT Authenticated Code Module (ACM [3]_)
+and remained in memory to manage the SMX CPU mode that a dynamic launch
+would put a system. While it is not precluded from being used for doing
+a late launch, Tboot's primary use case was to be used as an early
+launch solution. As a result the TrenchBoot project started the
+development of Secure Launch kernel feature to provide a more
+generalized approach. The focus of the effort is twofold, the first is to
+make the Linux kernel directly aware of the launch protocol used by
+Intel as well as AMD, and the second is to make the Linux kernel be able
+to initiate a dynamic launch. It is through this approach that the
+Secure Launch kernel feature creates a basis for the Linux kernel to be
+used in a variety of dynamic launch use cases.
+
+The first use case that the TrenchBoot project focused on was the
+ability for the Linux kernel to be started by a dynamic launch, in
+particular as part of an early launch sequence. In this case the dynamic
+launch will be initiated by a boot loader with associated support added
+to it, for example the first targeted boot loader in this case was
+GRUB2. An integral part of establishing a measurement-based launch
+integrity involves measuring everything that is intended to be executed
+(kernel image, initrd, etc) and everything that will configure that
+kernel to execute (command line, boot params, etc). Then storing those
+measurements in a protected manner. Both the Intel and AMD dynamic
+launch implementations leverage the Trusted Platform Module (TPM) to
+store those measurements. The TPM itself has been designed such that a
+dynamic launch unlocks a specific set of Platform Configuration
+Registers (PCR) for holding measurement taken during the dynamic launch.
+These are referred to as the DRTM PCRs, PCRs 17-22. Further details on
+this process can be found in the documentation for the GETSEC
+instruction provided by Intel's TXT and the SKINIT instruction provided
+by AMD's AMD-V. The documentation on these technologies can be readily
+found online; see the `Resources`_ section below for references.
+
+Currently only Intel TXT is supported in this first release of the Secure
+Launch feature. AMD/Hygon SKINIT support will be added in a subsequent
+release. Also this first version does not support a late relaunch which
+allows re-establishing the DRTM at various points post boot.
+
+To enable the kernel to be launched by GETSEC, a stub must be built
+into the setup section of the compressed kernel to handle the specific
+state that the dynamic launch process leaves the BSP in. Also this stub
+must measure everything that is going to be used as early as possible.
+This stub code and subsequent code must also deal with the specific
+state that the dynamic launch leaves the APs in.
+
+Basic Boot Flow:
+----------------
+
+Pre-launch: *Phase where the environment is prepared and configured to initiate the
+secure launch in the GRUB bootloader.*
+
+ - Prepare the CPU and the TPM for the launch.
+ - Load the kernel, initrd and ACM [3]_ into memory.
+ - Setup the TXT heap and page tables describing the MLE [1]_ per the
+ specification.
+ - Initiate the secure launch with the GETSET[SENTER] instruction.
+
+Post-launch: *Phase where control is passed from the ACM to the MLE and the secure
+kernel begins execution.*
+
+ - Entry from the dynamic launch jumps to the SL stub
+ - SL stub fixes up the world on the BSP
+ - For TXT, SL stub wakes the APs, fixes up their worlds
+ - For TXT, APs are left halted waiting for an NMI to wake them
+ - SL stub jumps to startup_32
+ - SL main locates the TPM event log and writes the measurements of
+ configuration and module information into it.
+ - Kernel boot proceeds normally from this point.
+ - During early setup, slaunch_setup() runs to finish some validation
+ and setup tasks.
+ - The SMP bringup code is modified to wake the waiting APs. APs vector
+ to rmpiggy and start up normally from that point.
+ - SL platform module is registered as a late initcall module. It reads
+ the TPM event log and extends the measurements taken into the TPM PCRs.
+ - SL platform module initializes the securityfs interface to allow
+ asccess to the TPM event log and TXT public registers.
+ - Kernel boot finishes booting normally
+ - SEXIT support to leave SMX mode is present on the kexec path and
+ the various reboot paths (poweroff, reset, halt).
+
+
+.. note::
+ A quick note on terminology. The larger open source project itself is
+ called TrenchBoot, which is hosted on GitHub (links below). The kernel
+ feature enabling the use of the x86 technology is referred to as "Secure
+ Launch" within the kernel code.
+
+Configuration
+=============
+
+The settings to enable Secure Launch using Kconfig are under::
+
+ "Processor type and features" --> "Secure Launch support"
+
+A kernel with this option enabled can still be booted using other supported
+methods. There are two Kconfig options for Secure Launch::
+
+ "Secure Launch Alternate PCR 19 usage"
+ "Secure Launch Alternate PCR 20 usage"
+
+The help indicates their usage as alternate post launch PCRs to separate
+measurements for more flexibility (both disabled by default).
+
+To reduce the Trusted Computing Base (TCB) of the MLE [1]_, the build
+configuration should be pared down as narrowly as one's use case allows.
+The fewer drivers (less active hardware) and features reduces the attack
+surface. E.g. in the extreme, the MLE could only have local disk access
+and no other hardware support. Or only network access for remote attestation.
+
+It is also desirable if possible to embed the initrd used with the MLE kernel
+image to reduce complexity.
+
+The following are a few important configuration necessities to always consider:
+
+KASLR Configuration
+-------------------
+
+Secure Launch does not interoperate with KASLR. If possible, the MLE should be
+built with KASLR disabled::
+
+ "Processor type and features" -->
+ "Build a relocatable kernel" -->
+ "Randomize the address of the kernel image (KASLR) [ ]"
+
+This unsets the Kconfig value CONFIG_RANDOMIZE_BASE.
+
+If not possible, KASLR must be disabled on the kernel command line when doing
+a Secure Launch as follows::
+
+ nokaslr
+
+IOMMU Configuration
+-------------------
+
+When doing a Secure Launch, the IOMMU should always be enabled and the drivers
+loaded. However, IOMMU passthrough mode should never be used. This leaves the
+MLE completely exposed to DMA after the PMR's [2]_ are disabled. First, IOMMU
+passthrough should be disabled by default in the build configuration::
+
+ "Device Drivers" -->
+ "IOMMU Hardware Support" -->
+ "IOMMU passthrough by default [ ]"
+
+This unset the Kconfig value CONFIG_IOMMU_DEFAULT_PASSTHROUGH.
+
+In addition, passthrough must be disabled on the kernel command line when doing
+a Secure Launch as follows::
+
+ iommu=nopt iommu.passthrough=0
+
+Interface
+=========
+
+The primary interfaces between the various components in TXT are the TXT MMIO
+registers and the TXT heap. The MMIO register banks are described in Appendix B
+of the TXT MLE [1]_ Developement Guide.
+
+The TXT heap is described in Appendix C of the TXT MLE [1]_ Development
+Guide. Most of the TXT heap is predefined in the specification. The heap is
+initialized by firmware and the pre-launch environment and is subsequently used
+by the SINIT ACM. One section, called the OS to MLE Data Table, is reserved for
+software to define. This table is the Secure Launch binary interface between
+the pre- and post-launch environments and is defined as follows::
+
+ /*
+ * Secure Launch defined MTRR saving structures
+ */
+ struct txt_mtrr_pair {
+ u64 mtrr_physbase;
+ u64 mtrr_physmask;
+ } __packed;
+
+ struct txt_mtrr_state {
+ u64 default_mem_type;
+ u64 mtrr_vcnt;
+ struct txt_mtrr_pair mtrr_pair[TXT_OS_MLE_MAX_VARIABLE_MTRRS];
+ } __packed;
+
+ /*
+ * Secure Launch defined OS/MLE TXT Heap table
+ */
+ struct txt_os_mle_data {
+ u32 version;
+ u32 boot_params_addr;
+ u64 saved_misc_enable_msr;
+ struct txt_mtrr_state saved_bsp_mtrrs;
+ u32 ap_wake_block;
+ u32 ap_wake_block_size;
+ u64 evtlog_addr;
+ u32 evtlog_size;
+ u8 mle_scratch[64];
+ } __packed;
+
+Description of structure:
+
+===================== ========================================================================
+Field Use
+===================== ========================================================================
+version Structure version, current value 1
+boot_params_addr Physical address of the zero page/kernel boot params
+saved_misc_enable_msr Original Misc Enable MSR (0x1a0) value stored by the pre-launch
+ environment. This value needs to be restored post launch - this is a
+ requirement.
+saved_bsp_mtrrs Original Fixed and Variable MTRR values stored by the pre-launch
+ environment. These values need to be restored post launch - this is a
+ requirement.
+ap_wake_block Pre-launch allocated memory block to wake up and park the APs post
+ launch until SMP support is ready. This block is validated by the MLE
+ before use.
+ap_wake_block_size Size of the ap_wake_block. A minimum of 16384b (4x4K pages) is required.
+evtlog_addr Pre-launch allocated memory block for the TPM event log. The event
+ log is formatted both by the pre-launch environment and the SINIT
+ ACM. his block is validated by the MLE before use.
+evtlog_size Size of the evtlog_addr block.
+mle_scratch Scratch area used post-launch by the MLE kernel. Fields:
+
+ - SL_SCRATCH_AP_EBX area to share %ebx base pointer among CPUs
+ - SL_SCRATCH_AP_JMP_OFFSET offset to abs. ljmp fixup location for APs
+===================== ========================================================================
+
+Resources
+=========
+
+The TrenchBoot project including documentation:
+
+https://github.com/trenchboot
+
+TXT documentation in the Intel TXT MLE Development Guide:
+
+https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
+
+TXT instructions documentation in the Intel SDM Instruction Set volume:
+
+https://software.intel.com/en-us/articles/intel-sdm
+
+AMD SKINIT documentation in the System Programming manual:
+
+https://www.amd.com/system/files/TechDocs/24593.pdf
+
+GRUB pre-launch support patchset (WIP):
+
+https://lists.gnu.org/archive/html/grub-devel/2020-05/msg00011.html
+
+Error Codes
+===========
+
+The TXT specification defines the layout for TXT 32 bit error code values.
+The bit encodings indicate where the error originated (e.g. with the CPU,
+in the SINIT ACM, in software). The error is written to a sticky TXT
+register that persists across resets called TXT.ERRORCODE (see the TXT
+MLE Development Guide). The errors defined by the Secure Launch feature are
+those generated in the MLE software. They have the format::
+
+ 0xc0008XXX
+
+The low 12 bits are free for defining the following Secure Launch specific
+error codes.
+
+====== ================
+Name: SL_ERROR_GENERIC
+Value: 0xc0008001
+====== ================
+
+Description:
+
+Generic catch all error. Currently unused.
+
+====== =================
+Name: SL_ERROR_TPM_INIT
+Value: 0xc0008002
+====== =================
+
+Description:
+
+The secure launch code failed to get an access to the TPM hardware interface.
+This is most likely to due to misconfigured hardware or kernel. Ensure the
+TPM chip is enabled and the kernel TPM support is built in (it should not be
+built as a module).
+
+====== ==========================
+Name: SL_ERROR_TPM_INVALID_LOG20
+Value: 0xc0008003
+====== ==========================
+
+Description:
+
+The secure launch code failed to find a valid event log descriptor for TPM
+version 2.0 or the event log descriptor is malformed. Usually this indicates
+that incompatible versions of the pre-launch environment (GRUB) and the MLE
+kernel. GRUB and the kernel share a structure in the TXT heap and if this
+structure (the OS-MLE table) is mismatched, this error is often seen. In
+addition, this value is set by the pre-launch environment, so the issue could
+originate there. It could be the sign of an attempted attack.
+
+====== ===========================
+Name: SL_ERROR_TPM_LOGGING_FAILED
+Value: 0xc0008004
+====== ===========================
+
+Description:
+
+There was a failed attempt to write a TPM event to the event log early in the
+secure launch process. This is likely the result of a malformed TPM event log
+buffer. Formatting of the event log buffer information is done by the
+pre-launch environment (GRUB) so the the issue originates there.
+
+====== ============================
+Name: SL_ERROR_REGION_STRADDLE_4GB
+Value: 0xc0008005
+====== ============================
+
+Description:
+
+During early validation a buffer or region was found to straddle the 4Gb
+boundary. Because of the way TXT does DMA memory protection, this is an
+unsafe configuration and is flagged as an error. This is most likely a
+configuration issue in the pre-launch environment. It could also be the sign of
+an attempted attack.
+
+====== ===================
+Name: SL_ERROR_TPM_EXTEND
+Value: 0xc0008006
+====== ===================
+
+Description:
+
+There was a failed attempt to extend a TPM PCR in the secure launch platform
+module. This is most likely to due to misconfigured hardware or kernel. Ensure
+the TPM chip is enabled and the kernel TPM support is built in (it should not
+be built as a module).
+
+====== ======================
+Name: SL_ERROR_MTRR_INV_VCNT
+Value: 0xc0008007
+====== ======================
+
+Description:
+
+During early secure launch validation an invalid variable MTRR count was found.
+The pre-launch environment passes a number of MSR values to the MLE to restore
+including the MTRRs. The values are restored by the secure launch early entry
+point code. After measuring the values supplied by the pre-launch environment,
+a discrepancy was found validating the values. It could be the sign of an
+attempted attack.
+
+====== ==========================
+Name: SL_ERROR_MTRR_INV_DEF_TYPE
+Value: 0xc0008008
+====== ==========================
+
+Description:
+
+During early secure launch validation an invalid default MTRR type was found.
+See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== ======================
+Name: SL_ERROR_MTRR_INV_BASE
+Value: 0xc0008009
+====== ======================
+
+Description:
+
+During early secure launch validation an invalid variable MTRR base value was
+found. See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== ======================
+Name: SL_ERROR_MTRR_INV_MASK
+Value: 0xc000800a
+====== ======================
+
+Description:
+
+During early secure launch validation an invalid variable MTRR mask value was
+found. See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== ========================
+Name: SL_ERROR_MSR_INV_MISC_EN
+Value: 0xc000800b
+====== ========================
+
+Description:
+
+During early secure launch validation an invalid miscellaneous enable MSR value
+was found. See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== =========================
+Name: SL_ERROR_INV_AP_INTERRUPT
+Value: 0xc000800c
+====== =========================
+
+Description:
+
+The application processors (APs) wait to be woken up by the SMP initialization
+code. The only interrupt that they expect is an NMI; all other interrupts
+should be masked. If an AP gets some other interrupt other than an NMI it will
+cause this error. This error is very unlikely to occur.
+
+====== =========================
+Name: SL_ERROR_INTEGER_OVERFLOW
+Value: 0xc000800d
+====== =========================
+
+Description:
+
+A buffer base and size passed to the MLE caused an integer overflow when
+added together. This is most likely a configuration issue in the pre-launch
+environment. It could also be the sign of an attempted attack.
+
+====== ==================
+Name: SL_ERROR_HEAP_WALK
+Value: 0xc000800e
+====== ==================
+
+Description:
+
+An error occurred in TXT heap walking code. The underlying issue is a failure to
+early_memremap() portions of the heap, most likely due to a resource shortage.
+
+====== =================
+Name: SL_ERROR_HEAP_MAP
+Value: 0xc000800f
+====== =================
+
+Description:
+
+This error is essentially the same as SL_ERROR_HEAP_WALK but occured during the
+actual early_memremap() operation.
+
+====== =========================
+Name: SL_ERROR_REGION_ABOVE_4GB
+Value: 0xc0008010
+====== =========================
+
+Description:
+
+A memory region used by the MLE is above 4GB. In general this is not a problem
+because memory > 4Gb can be protected from DMA. There are certain buffers that
+should never be above 4Gb though and one of these caused the violation. This is
+most likely a configuration issue in the pre-launch environment. It could also
+be the sign of an attempted attack.
+
+====== ==========================
+Name: SL_ERROR_HEAP_INVALID_DMAR
+Value: 0xc0008011
+====== ==========================
+
+Description:
+
+The backup copy of the ACPI DMAR table which is supposed to be located in the
+TXT heap could not be found. This is due to a bug in the platform's ACM module
+or in firmware.
+
+====== =======================
+Name: SL_ERROR_HEAP_DMAR_SIZE
+Value: 0xc0008012
+====== =======================
+
+Description:
+
+The backup copy of the ACPI DMAR table in the TXT heap is to large to be stored
+for later usage. This error is very unlikely to occur since the area reserved
+for the copy is far larger than the DMAR should be.
+
+====== ======================
+Name: SL_ERROR_HEAP_DMAR_MAP
+Value: 0xc0008013
+====== ======================
+
+Description:
+
+The backup copy of the ACPI DMAR table in the TXT heap could not be mapped. The
+underlying issue is a failure to early_memremap() the DMAR table, most likely
+due to a resource shortage.
+
+====== ====================
+Name: SL_ERROR_HI_PMR_BASE
+Value: 0xc0008014
+====== ====================
+
+Description:
+
+On a system with more than 4G of RAM, the high PMR [2]_ base address should be set
+to 4G. This error is due to that not being the case. This PMR value is set by
+the pre-launch environment so the issue originates there. It could also be the
+sign of an attempted attack.
+
+====== ====================
+Name: SL_ERROR_HI_PMR_SIZE
+Value: 0xc0008015
+====== ====================
+
+Description:
+
+On a system with more than 4G of RAM, the high PMR [2]_ size should be set to cover
+all RAM > 4G. This error is due to that not being the case. This PMR value is
+set by the pre-launch environment so the issue originates there. It could also
+be the sign of an attempted attack.
+
+====== ====================
+Name: SL_ERROR_LO_PMR_BASE
+Value: 0xc0008016
+====== ====================
+
+Description:
+
+The low PMR [2]_ base should always be set to address zero. This error is due to
+that not being the case. This PMR value is set by the pre-launch environment
+so the issue originates there. It could also be the sign of an attempted
+attack.
+
+====== ====================
+Name: SL_ERROR_LO_PMR_MLE
+Value: 0xc0008017
+====== ====================
+
+Description:
+
+This error indicates the MLE image is not covered by the low PMR [2]_ range. The
+PMR values are set by the pre-launch environment so the issue originates there.
+It could also be the sign of an attempted attack.
+
+====== =======================
+Name: SL_ERROR_INITRD_TOO_BIG
+Value: 0xc0008018
+====== =======================
+
+Description:
+
+The external initrd provided is larger than 4Gb. This is not a valid
+configuration for a secure launch due to managing DMA protection.
+
+====== =========================
+Name: SL_ERROR_HEAP_ZERO_OFFSET
+Value: 0xc0008019
+====== =========================
+
+Description:
+
+During a TXT heap walk an invalid/zero next table offset value was found. This
+indicates the TXT heap is malformed. The TXT heap is initialized by the
+pre-launch environment so the issue most likely originates there. It could also
+be a sign of an attempted attack. In addition, ACM is also responsible for
+manipulating parts of the TXT heap so the issue could be due to a bug in the
+platform's ACM module.
+
+====== =============================
+Name: SL_ERROR_WAKE_BLOCK_TOO_SMALL
+Value: 0xc000801a
+====== =============================
+
+Description:
+
+The AP wake block buffer passed to the MLE via the OS-MLE TXT heap table is not
+large enough. This value is set by the pre-launch environment so the issue
+originates there. It also could be the sign of an attempted attack.
+
+====== ===========================
+Name: SL_ERROR_MLE_BUFFER_OVERLAP
+Value: 0xc000801b
+====== ===========================
+
+Description:
+
+One of the buffers passed to the MLE via the OS-MLE TXT heap table overlaps
+with the MLE image in memory. This value is set by the pre-launch environment
+so the issue originates there. It could also be the sign of an attempted
+attack.
+
+====== ==========================
+Name: SL_ERROR_BUFFER_BEYOND_PMR
+Value: 0xc000801c
+====== ==========================
+
+Description:
+
+One of the buffers passed to the MLE via the OS-MLE TXT heap table is not
+protected by a PMR. This value is set by the pre-launch environment so the
+issue originates there. It could also be the sign of an attempted attack.
+
+====== =============================
+Name: SL_ERROR_OS_SINIT_BAD_VERSION
+Value: 0xc000801d
+====== =============================
+
+Description:
+
+The version of the OS-SINIT TXT heap table is bad. It must be 6 or greater.
+This value is set by the pre-launch environment so the issue originates
+there. It could also be the sign of an attempted attack. It is also possible
+though very unlikely that the platform is so old that the ACM being used
+requires an unsupported version.
+
+====== =====================
+Name: SL_ERROR_EVENTLOG_MAP
+Value: 0xc000801e
+====== =====================
+
+Description:
+
+An error occurred in the secure launch module while mapping the TPM event log.
+The underlying issue is memremap() failure, most likely due to a resource
+shortage.
+
+====== ========================
+Name: SL_ERROR_TPM_NUMBER_ALGS
+Value: 0xc000801f
+====== ========================
+
+Description:
+
+The TPM 2.0 event log reports an unsupported number of hashing algorithms.
+Secure launch currently only supports a maximum of two: SHA1 and SHA256.
+
+====== ===========================
+Name: SL_ERROR_TPM_UNKNOWN_DIGEST
+Value: 0xc0008020
+====== ===========================
+
+Description:
+
+The TPM 2.0 event log reports an unsupported hashing algorithm. Secure launch
+currently only supports two algorithms: SHA1 and SHA256.
+
+====== ==========================
+Name: SL_ERROR_TPM_INVALID_EVENT
+Value: 0xc0008021
+====== ==========================
+
+Description:
+
+An invalid/malformed event was found in the TPM event log while reading it.
+Since only trusted entities are supposed to be writing the event log, this
+would indicate either a bug or a possible attack.
+
+.. [1]
+ MLE: Measured Launch Environment is the binary runtime that is measured and
+ then run by the TXT SINIT ACM. The TXT MLE Development Guide describes the
+ requirements for the MLE in detail.
+
+.. [2]
+ PMR: Intel VTd has a feature in the IOMMU called Protected Memory Registers.
+ There are two of these registers and they allow all DMA to be blocked
+ to large areas of memory. The low PMR can cover all memory below 4Gb on 2Mb
+ boundaries. The high PMR can cover all RAM on the system, again on 2Mb
+ boundaries. This feature is used during a secure launch by TXT.
+
+.. [3]
+ ACM: Intel's Authenticated Code Module. This is the 32b bit binary blob that
+ is run securely by the GETSEC[SENTER] during a measured launch. It is described
+ in the Intel documentation on TXT and versions for various chipsets are
+ signed and distributed by Intel.
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:16 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
As documented, the setup_indirect structure is nested inside
the setup_data structures in the setup_data list. The code was
accessing the fields inside the setup_indirect structure but only
the sizeof(struct setup_data) was being memremapped. No crash
occured but this is just due to how the area was remapped under the
covers.

The setup_indirect structure was introduced in commit:

commit b3c72fc9a78e (x86/boot: Introduce setup_indirect)

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/e820.c | 31 ++++++++++++++++---------
arch/x86/kernel/kdebugfs.c | 28 ++++++++++++++++-------
arch/x86/kernel/ksysfs.c | 56 ++++++++++++++++++++++++++++++++++++----------
arch/x86/kernel/setup.c | 23 +++++++++++++------
arch/x86/mm/ioremap.c | 13 +++++++----
5 files changed, 109 insertions(+), 42 deletions(-)

diff --git a/arch/x86/kernel/e820.c b/arch/x86/kernel/e820.c
index bc0657f..e023950 100644
--- a/arch/x86/kernel/e820.c
+++ b/arch/x86/kernel/e820.c
@@ -996,7 +996,8 @@ static int __init parse_memmap_opt(char *str)
void __init e820__reserve_setup_data(void)
{
struct setup_data *data;
- u64 pa_data;
+ u64 pa_data, pa_next;
+ u32 len;

pa_data = boot_params.hdr.setup_data;
if (!pa_data)
@@ -1004,6 +1005,9 @@ void __init e820__reserve_setup_data(void)

while (pa_data) {
data = early_memremap(pa_data, sizeof(*data));
+ len = sizeof(*data);
+ pa_next = data->next;
+
e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);

/*
@@ -1015,18 +1019,23 @@ void __init e820__reserve_setup_data(void)
sizeof(*data) + data->len,
E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);

- if (data->type == SETUP_INDIRECT &&
- ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
- e820__range_update(((struct setup_indirect *)data->data)->addr,
- ((struct setup_indirect *)data->data)->len,
- E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
- e820__range_update_kexec(((struct setup_indirect *)data->data)->addr,
- ((struct setup_indirect *)data->data)->len,
- E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
+ if (data->type == SETUP_INDIRECT) {
+ len += data->len;
+ early_memunmap(data, sizeof(*data));
+ data = early_memremap(pa_data, len);
+
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
+ e820__range_update(((struct setup_indirect *)data->data)->addr,
+ ((struct setup_indirect *)data->data)->len,
+ E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
+ e820__range_update_kexec(((struct setup_indirect *)data->data)->addr,
+ ((struct setup_indirect *)data->data)->len,
+ E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
+ }
}

- pa_data = data->next;
- early_memunmap(data, sizeof(*data));
+ pa_data = pa_next;
+ early_memunmap(data, len);
}

e820__update_table(e820_table);
diff --git a/arch/x86/kernel/kdebugfs.c b/arch/x86/kernel/kdebugfs.c
index 64b6da9..2fa1b93 100644
--- a/arch/x86/kernel/kdebugfs.c
+++ b/arch/x86/kernel/kdebugfs.c
@@ -92,7 +92,8 @@ static int __init create_setup_data_nodes(struct dentry *parent)
struct setup_data *data;
int error;
struct dentry *d;
- u64 pa_data;
+ u64 pa_data, pa_next;
+ u32 len;
int no = 0;

d = debugfs_create_dir("setup_data", parent);
@@ -112,12 +113,23 @@ static int __init create_setup_data_nodes(struct dentry *parent)
error = -ENOMEM;
goto err_dir;
}
-
- if (data->type == SETUP_INDIRECT &&
- ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
- node->paddr = ((struct setup_indirect *)data->data)->addr;
- node->type = ((struct setup_indirect *)data->data)->type;
- node->len = ((struct setup_indirect *)data->data)->len;
+ pa_next = data->next;
+
+ if (data->type == SETUP_INDIRECT) {
+ len = sizeof(*data) + data->len;
+ memunmap(data);
+ data = memremap(pa_data, len, MEMREMAP_WB);
+ if (!data) {
+ kfree(node);
+ error = -ENOMEM;
+ goto err_dir;
+ }
+
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
+ node->paddr = ((struct setup_indirect *)data->data)->addr;
+ node->type = ((struct setup_indirect *)data->data)->type;
+ node->len = ((struct setup_indirect *)data->data)->len;
+ }
} else {
node->paddr = pa_data;
node->type = data->type;
@@ -125,7 +137,7 @@ static int __init create_setup_data_nodes(struct dentry *parent)
}

create_setup_data_node(d, no, node);
- pa_data = data->next;
+ pa_data = pa_next;

memunmap(data);
no++;
diff --git a/arch/x86/kernel/ksysfs.c b/arch/x86/kernel/ksysfs.c
index d0a1912..4cef401 100644
--- a/arch/x86/kernel/ksysfs.c
+++ b/arch/x86/kernel/ksysfs.c
@@ -93,24 +93,35 @@ static int __init get_setup_data_size(int nr, size_t *size)
{
int i = 0;
struct setup_data *data;
- u64 pa_data = boot_params.hdr.setup_data;
+ u64 pa_data = boot_params.hdr.setup_data, pa_next;
+ u32 len;

while (pa_data) {
data = memremap(pa_data, sizeof(*data), MEMREMAP_WB);
if (!data)
return -ENOMEM;
+ pa_next = data->next;
+
if (nr == i) {
- if (data->type == SETUP_INDIRECT &&
- ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
- *size = ((struct setup_indirect *)data->data)->len;
- else
+ if (data->type == SETUP_INDIRECT) {
+ len = sizeof(*data) + data->len;
+ memunmap(data);
+ data = memremap(pa_data, len, MEMREMAP_WB);
+ if (!data)
+ return -ENOMEM;
+
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
+ *size = ((struct setup_indirect *)data->data)->len;
+ else
+ *size = data->len;
+ } else
*size = data->len;

memunmap(data);
return 0;
}

- pa_data = data->next;
+ pa_data = pa_next;
memunmap(data);
i++;
}
@@ -122,6 +133,7 @@ static ssize_t type_show(struct kobject *kobj,
{
int nr, ret;
u64 paddr;
+ u32 len;
struct setup_data *data;

ret = kobj_to_setup_data_nr(kobj, &nr);
@@ -135,9 +147,14 @@ static ssize_t type_show(struct kobject *kobj,
if (!data)
return -ENOMEM;

- if (data->type == SETUP_INDIRECT)
+ if (data->type == SETUP_INDIRECT) {
+ len = sizeof(*data) + data->len;
+ memunmap(data);
+ data = memremap(paddr, len, MEMREMAP_WB);
+ if (!data)
+ return -ENOMEM;
ret = sprintf(buf, "0x%x\n", ((struct setup_indirect *)data->data)->type);
- else
+ } else
ret = sprintf(buf, "0x%x\n", data->type);
memunmap(data);
return ret;
@@ -165,10 +182,25 @@ static ssize_t setup_data_data_read(struct file *fp,
if (!data)
return -ENOMEM;

- if (data->type == SETUP_INDIRECT &&
- ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
- paddr = ((struct setup_indirect *)data->data)->addr;
- len = ((struct setup_indirect *)data->data)->len;
+ if (data->type == SETUP_INDIRECT) {
+ len = sizeof(*data) + data->len;
+ memunmap(data);
+ data = memremap(paddr, len, MEMREMAP_WB);
+ if (!data)
+ return -ENOMEM;
+
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
+ paddr = ((struct setup_indirect *)data->data)->addr;
+ len = ((struct setup_indirect *)data->data)->len;
+ } else {
+ /*
+ * Even though this is technically undefined, return
+ * the data as though it is a normal setup_data struct.
+ * This will at least allow it to be inspected.
+ */
+ paddr += sizeof(*data);
+ len = data->len;
+ }
} else {
paddr += sizeof(*data);
len = data->len;
diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c
index bff3a78..055a834 100644
--- a/arch/x86/kernel/setup.c
+++ b/arch/x86/kernel/setup.c
@@ -368,20 +368,29 @@ static void __init parse_setup_data(void)
static void __init memblock_x86_reserve_range_setup_data(void)
{
struct setup_data *data;
- u64 pa_data;
+ u64 pa_data, pa_next;
+ u32 len;

pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = early_memremap(pa_data, sizeof(*data));
+ len = sizeof(*data);
+ pa_next = data->next;
+
memblock_reserve(pa_data, sizeof(*data) + data->len);

- if (data->type == SETUP_INDIRECT &&
- ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
- memblock_reserve(((struct setup_indirect *)data->data)->addr,
- ((struct setup_indirect *)data->data)->len);
+ if (data->type == SETUP_INDIRECT) {
+ len += data->len;
+ early_memunmap(data, sizeof(*data));
+ data = early_memremap(pa_data, len);

- pa_data = data->next;
- early_memunmap(data, sizeof(*data));
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
+ memblock_reserve(((struct setup_indirect *)data->data)->addr,
+ ((struct setup_indirect *)data->data)->len);
+ }
+
+ pa_data = pa_next;
+ early_memunmap(data, len);
}
}

diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c
index 60ade7d..ab74e4f 100644
--- a/arch/x86/mm/ioremap.c
+++ b/arch/x86/mm/ioremap.c
@@ -635,10 +635,15 @@ static bool memremap_is_setup_data(resource_size_t phys_addr,
return true;
}

- if (data->type == SETUP_INDIRECT &&
- ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
- paddr = ((struct setup_indirect *)data->data)->addr;
- len = ((struct setup_indirect *)data->data)->len;
+ if (data->type == SETUP_INDIRECT) {
+ memunmap(data);
+ data = memremap(paddr, sizeof(*data) + len,
+ MEMREMAP_WB | MEMREMAP_DEC);
+
+ if (((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
+ paddr = ((struct setup_indirect *)data->data)->addr;
+ len = ((struct setup_indirect *)data->data)->len;
+ }
}

memunmap(data);
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:17 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: "Daniel P. Smith" <dps...@apertussolutions.com>

The Secure Launch platform module is a late init module. During the
init call, the TPM event log is read and measurements taken in the
early boot stub code are located. These measurements are extended
into the TPM PCRs using the mainline TPM kernel driver.

The platform module also registers the securityfs nodes to allow
access to TXT register fields on Intel along with the fetching of
and writing events to the late launch TPM log.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: garnetgrimm <gri...@ainfosec.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/Makefile | 1 +
arch/x86/kernel/slmodule.c | 495 +++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 496 insertions(+)
create mode 100644 arch/x86/kernel/slmodule.c

diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index d6ee904..09b730a 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -81,6 +81,7 @@ obj-$(CONFIG_IA32_EMULATION) += tls.o
obj-y += step.o
obj-$(CONFIG_INTEL_TXT) += tboot.o
obj-$(CONFIG_SECURE_LAUNCH) += slaunch.o
+obj-$(CONFIG_SECURE_LAUNCH) += slmodule.o
obj-$(CONFIG_ISA_DMA_API) += i8237.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += cpu/
diff --git a/arch/x86/kernel/slmodule.c b/arch/x86/kernel/slmodule.c
new file mode 100644
index 0000000..807f9ca
--- /dev/null
+++ b/arch/x86/kernel/slmodule.c
@@ -0,0 +1,495 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch late validation/setup, securityfs exposure and
+ * finalization support.
+ *
+ * Copyright (c) 2021 Apertus Solutions, LLC
+ * Copyright (c) 2021 Assured Information Security, Inc.
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ *
+ * Author(s):
+ * Daniel P. Smith <dps...@apertussolutions.com>
+ * Garnet T. Grimm <gri...@ainfosec.com>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/linkage.h>
+#include <linux/mm.h>
+#include <linux/io.h>
+#include <linux/uaccess.h>
+#include <linux/security.h>
+#include <linux/memblock.h>
+#include <asm/segment.h>
+#include <asm/sections.h>
+#include <crypto/sha2.h>
+#include <linux/slaunch.h>
+
+#define SL_FS_ENTRIES 10
+/* root directory node must be last */
+#define SL_ROOT_DIR_ENTRY (SL_FS_ENTRIES - 1)
+#define SL_TXT_DIR_ENTRY (SL_FS_ENTRIES - 2)
+#define SL_TXT_FILE_FIRST (SL_TXT_DIR_ENTRY - 1)
+#define SL_TXT_ENTRY_COUNT 7
+
+#define DECLARE_TXT_PUB_READ_U(size, fmt, msg_size) \
+static ssize_t txt_pub_read_u##size(unsigned int offset, \
+ loff_t *read_offset, \
+ size_t read_len, \
+ char __user *buf) \
+{ \
+ void __iomem *txt; \
+ char msg_buffer[msg_size]; \
+ u##size reg_value = 0; \
+ txt = ioremap(TXT_PUB_CONFIG_REGS_BASE, \
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE); \
+ if (IS_ERR(txt)) \
+ return PTR_ERR(txt); \
+ memcpy_fromio(&reg_value, txt + offset, sizeof(u##size)); \
+ iounmap(txt); \
+ snprintf(msg_buffer, msg_size, fmt, reg_value); \
+ return simple_read_from_buffer(buf, read_len, read_offset, \
+ &msg_buffer, msg_size); \
+}
+
+DECLARE_TXT_PUB_READ_U(8, "%#04x\n", 6);
+DECLARE_TXT_PUB_READ_U(32, "%#010x\n", 12);
+DECLARE_TXT_PUB_READ_U(64, "%#018llx\n", 20);
+
+#define DECLARE_TXT_FOPS(reg_name, reg_offset, reg_size) \
+static ssize_t txt_##reg_name##_read(struct file *flip, \
+ char __user *buf, size_t read_len, loff_t *read_offset) \
+{ \
+ return txt_pub_read_u##reg_size(reg_offset, read_offset, \
+ read_len, buf); \
+} \
+static const struct file_operations reg_name##_ops = { \
+ .read = txt_##reg_name##_read, \
+}
+
+DECLARE_TXT_FOPS(sts, TXT_CR_STS, 64);
+DECLARE_TXT_FOPS(ests, TXT_CR_ESTS, 8);
+DECLARE_TXT_FOPS(errorcode, TXT_CR_ERRORCODE, 32);
+DECLARE_TXT_FOPS(didvid, TXT_CR_DIDVID, 64);
+DECLARE_TXT_FOPS(e2sts, TXT_CR_E2STS, 64);
+DECLARE_TXT_FOPS(ver_emif, TXT_CR_VER_EMIF, 32);
+DECLARE_TXT_FOPS(scratchpad, TXT_CR_SCRATCHPAD, 64);
+
+/*
+ * Securityfs exposure
+ */
+struct memfile {
+ char *name;
+ void *addr;
+ size_t size;
+};
+
+static struct memfile sl_evtlog = {"eventlog", 0, 0};
+static void *txt_heap;
+static struct txt_heap_event_log_pointer2_1_element __iomem *evtlog20;
+static DEFINE_MUTEX(sl_evt_log_mutex);
+
+static ssize_t sl_evtlog_read(struct file *file, char __user *buf,
+ size_t count, loff_t *pos)
+{
+ ssize_t size;
+
+ if (!sl_evtlog.addr)
+ return 0;
+
+ mutex_lock(&sl_evt_log_mutex);
+ size = simple_read_from_buffer(buf, count, pos, sl_evtlog.addr,
+ sl_evtlog.size);
+ mutex_unlock(&sl_evt_log_mutex);
+
+ return size;
+}
+
+static ssize_t sl_evtlog_write(struct file *file, const char __user *buf,
+ size_t datalen, loff_t *ppos)
+{
+ char *data;
+ ssize_t result;
+
+ if (!sl_evtlog.addr)
+ return 0;
+
+ /* No partial writes. */
+ result = -EINVAL;
+ if (*ppos != 0)
+ goto out;
+
+ data = memdup_user(buf, datalen);
+ if (IS_ERR(data)) {
+ result = PTR_ERR(data);
+ goto out;
+ }
+
+ mutex_lock(&sl_evt_log_mutex);
+ if (evtlog20)
+ result = tpm20_log_event(evtlog20, sl_evtlog.addr,
+ sl_evtlog.size, datalen, data);
+ else
+ result = tpm12_log_event(sl_evtlog.addr, sl_evtlog.size,
+ datalen, data);
+ mutex_unlock(&sl_evt_log_mutex);
+
+ kfree(data);
+out:
+ return result;
+}
+
+static const struct file_operations sl_evtlog_ops = {
+ .read = sl_evtlog_read,
+ .write = sl_evtlog_write,
+ .llseek = default_llseek,
+};
+
+static struct dentry *fs_entries[SL_FS_ENTRIES];
+
+struct sfs_file {
+ int parent;
+ const char *name;
+ const struct file_operations *fops;
+};
+
+static const struct sfs_file sl_files[] = {
+ { SL_TXT_DIR_ENTRY, "sts", &sts_ops },
+ { SL_TXT_DIR_ENTRY, "ests", &ests_ops },
+ { SL_TXT_DIR_ENTRY, "errorcode", &errorcode_ops },
+ { SL_TXT_DIR_ENTRY, "didvid", &didvid_ops },
+ { SL_TXT_DIR_ENTRY, "ver_emif", &ver_emif_ops },
+ { SL_TXT_DIR_ENTRY, "scratchpad", &scratchpad_ops },
+ { SL_TXT_DIR_ENTRY, "e2sts", &e2sts_ops }
+};
+
+static int sl_create_file(int entry, int parent, const char *name,
+ const struct file_operations *ops)
+{
+ if (entry < 0 || entry > SL_TXT_DIR_ENTRY)
+ return -EINVAL;
+ fs_entries[entry] =
+ securityfs_create_file(name, 0440,
+ fs_entries[parent], NULL, ops);
+ if (IS_ERR(fs_entries[entry])) {
+ pr_err("Error creating securityfs %s file\n", name);
+ return PTR_ERR(fs_entries[entry]);
+ }
+ return 0;
+}
+
+static long slaunch_expose_securityfs(void)
+{
+ long ret = 0;
+ int i = 0;
+
+ fs_entries[SL_ROOT_DIR_ENTRY] = securityfs_create_dir("slaunch", NULL);
+ if (IS_ERR(fs_entries[SL_ROOT_DIR_ENTRY])) {
+ pr_err("Error creating securityfs slaunch root directory\n");
+ ret = PTR_ERR(fs_entries[SL_ROOT_DIR_ENTRY]);
+ goto err;
+ }
+
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ fs_entries[SL_TXT_DIR_ENTRY] =
+ securityfs_create_dir("txt",
+ fs_entries[SL_ROOT_DIR_ENTRY]);
+ if (IS_ERR(fs_entries[SL_TXT_DIR_ENTRY])) {
+ pr_err("Error creating securityfs txt directory\n");
+ ret = PTR_ERR(fs_entries[SL_TXT_DIR_ENTRY]);
+ goto err_dir;
+ }
+
+ for (i = 0; i < SL_TXT_ENTRY_COUNT; i++) {
+ ret = sl_create_file(SL_TXT_FILE_FIRST - i,
+ sl_files[i].parent, sl_files[i].name,
+ sl_files[i].fops);
+ if (ret)
+ goto err_dir;
+ }
+ }
+
+ if (sl_evtlog.addr > 0) {
+ ret = sl_create_file(0, SL_ROOT_DIR_ENTRY, sl_evtlog.name,
+ &sl_evtlog_ops);
+ if (ret)
+ goto err_dir;
+ }
+
+ return 0;
+
+err_dir:
+ for (i = 0; i <= SL_ROOT_DIR_ENTRY; i++)
+ securityfs_remove(fs_entries[i]);
+err:
+ return ret;
+}
+
+static void slaunch_teardown_securityfs(void)
+{
+ int i;
+
+ for (i = 0; i < SL_FS_ENTRIES; i++)
+ securityfs_remove(fs_entries[i]);
+
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ if (sl_evtlog.addr) {
+ memunmap(sl_evtlog.addr);
+ sl_evtlog.addr = NULL;
+ }
+ sl_evtlog.size = 0;
+ if (txt_heap) {
+ memunmap(txt_heap);
+ txt_heap = NULL;
+ }
+ }
+}
+
+static void slaunch_intel_evtlog(void __iomem *txt)
+{
+ struct txt_os_mle_data *params;
+ void *os_sinit_data;
+ u64 base, size;
+
+ memcpy_fromio(&base, txt + TXT_CR_HEAP_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_HEAP_SIZE, sizeof(size));
+
+ /* now map TXT heap */
+ txt_heap = memremap(base, size, MEMREMAP_WB);
+ if (!txt_heap)
+ slaunch_txt_reset(txt,
+ "Error failed to memremap TXT heap\n",
+ SL_ERROR_HEAP_MAP);
+
+ params = (struct txt_os_mle_data *)txt_os_mle_data_start(txt_heap);
+
+ sl_evtlog.size = params->evtlog_size;
+ sl_evtlog.addr = memremap(params->evtlog_addr, params->evtlog_size,
+ MEMREMAP_WB);
+ if (!sl_evtlog.addr)
+ slaunch_txt_reset(txt,
+ "Error failed to memremap TPM event log\n",
+ SL_ERROR_EVENTLOG_MAP);
+
+ /* Determine if this is TPM 1.2 or 2.0 event log */
+ if (memcmp(sl_evtlog.addr + sizeof(struct tcg_pcr_event),
+ TCG_SPECID_SIG, sizeof(TCG_SPECID_SIG)))
+ return; /* looks like it is not 2.0 */
+
+ /* For TPM 2.0 logs, the extended heap element must be located */
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ evtlog20 = tpm20_find_log2_1_element(os_sinit_data);
+
+ /*
+ * If this fails, things are in really bad shape. Any attempt to write
+ * events to the log will fail.
+ */
+ if (!evtlog20)
+ slaunch_txt_reset(txt,
+ "Error failed to find TPM20 event log element\n",
+ SL_ERROR_TPM_INVALID_LOG20);
+}
+
+static void slaunch_tpm20_extend_event(struct tpm_chip *tpm, void __iomem *txt,
+ struct tcg_pcr_event2_head *event)
+{
+ struct tpm_digest *digests;
+ u16 *alg_id_field = (u16 *)((u8 *)event +
+ sizeof(struct tcg_pcr_event2_head));
+ u8 *dptr;
+ int ret;
+ u32 i, j;
+
+ digests = kcalloc(tpm->nr_allocated_banks, sizeof(*digests),
+ GFP_KERNEL);
+ if (!digests)
+ slaunch_txt_reset(txt,
+ "Failed to allocate array of digests\n",
+ SL_ERROR_GENERIC);
+
+ for (i = 0; i < tpm->nr_allocated_banks; i++)
+ digests[i].alg_id = tpm->allocated_banks[i].alg_id;
+
+
+ /* Early SL code ensured there was a max count of 2 digests */
+ for (i = 0; i < event->count; i++) {
+ dptr = (u8 *)alg_id_field + sizeof(u16);
+
+ for (j = 0; j < tpm->nr_allocated_banks; j++) {
+ if (digests[j].alg_id != *alg_id_field)
+ continue;
+
+ switch (digests[j].alg_id) {
+ case TPM_ALG_SHA256:
+ memcpy(&digests[j].digest[0], dptr,
+ SHA256_DIGEST_SIZE);
+ alg_id_field = (u16 *)((u8 *)alg_id_field +
+ SHA256_DIGEST_SIZE + sizeof(u16));
+ break;
+ case TPM_ALG_SHA1:
+ memcpy(&digests[j].digest[0], dptr,
+ SHA1_DIGEST_SIZE);
+ alg_id_field = (u16 *)((u8 *)alg_id_field +
+ SHA1_DIGEST_SIZE + sizeof(u16));
+ break;
+ default:
+ ;
+ }
+ }
+ }
+
+ ret = tpm_pcr_extend(tpm, event->pcr_idx, digests);
+ if (ret) {
+ pr_err("Error extending TPM20 PCR, result: %d\n", ret);
+ slaunch_txt_reset(txt,
+ "Failed to extend TPM20 PCR\n",
+ SL_ERROR_TPM_EXTEND);
+ }
+
+ kfree(digests);
+}
+
+static void slaunch_tpm20_extend(struct tpm_chip *tpm, void __iomem *txt)
+{
+ struct tcg_pcr_event *event_header =
+ (struct tcg_pcr_event *)(sl_evtlog.addr +
+ evtlog20->first_record_offset);
+ /* Skip first TPM 1.2 event to get to first TPM 2.0 event */
+ struct tcg_pcr_event2_head *event =
+ (struct tcg_pcr_event2_head *)((u8 *)event_header +
+ sizeof(struct tcg_pcr_event) +
+ event_header->event_size);
+ int start = 0, end = 0, size;
+
+ while ((void *)event < sl_evtlog.addr + evtlog20->next_record_offset) {
+ size = __calc_tpm2_event_size(event, event_header, false);
+ if (!size)
+ slaunch_txt_reset(txt,
+ "TPM20 invalid event in event log\n",
+ SL_ERROR_TPM_INVALID_EVENT);
+
+ /*
+ * Marker events indicate where the Secure Launch early stub
+ * started and ended adding post launch events.
+ */
+ if (event->event_type == TXT_EVTYPE_SLAUNCH_END) {
+ end = 1;
+ break;
+ } else if (event->event_type == TXT_EVTYPE_SLAUNCH_START) {
+ start = 1;
+ goto next;
+ }
+
+ if (start)
+ slaunch_tpm20_extend_event(tpm, txt, event);
+
+next:
+ event = (struct tcg_pcr_event2_head *)((u8 *)event + size);
+ }
+
+ if (!start || !end)
+ slaunch_txt_reset(txt,
+ "Missing start or end events for extending TPM20 PCRs\n",
+ SL_ERROR_TPM_EXTEND);
+}
+
+static void slaunch_tpm12_extend(struct tpm_chip *tpm, void __iomem *txt)
+{
+ struct tpm12_event_log_header *event_header =
+ (struct tpm12_event_log_header *)sl_evtlog.addr;
+ struct tcg_pcr_event *event =
+ (struct tcg_pcr_event *)((u8 *)event_header +
+ sizeof(struct tpm12_event_log_header));
+ struct tpm_digest digest;
+ int start = 0, end = 0, size, ret;
+
+ while ((void *)event < sl_evtlog.addr + event_header->next_event_offset) {
+ size = sizeof(struct tcg_pcr_event) + event->event_size;
+
+ /*
+ * Marker events indicate where the Secure Launch early stub
+ * started and ended adding post launch events.
+ */
+ if (event->event_type == TXT_EVTYPE_SLAUNCH_END) {
+ end = 1;
+ break;
+ } else if (event->event_type == TXT_EVTYPE_SLAUNCH_START) {
+ start = 1;
+ goto next;
+ }
+
+ if (start) {
+ memset(&digest.digest[0], 0, TPM_MAX_DIGEST_SIZE);
+ digest.alg_id = TPM_ALG_SHA1;
+ memcpy(&digest.digest[0], &event->digest[0],
+ SHA1_DIGEST_SIZE);
+
+ ret = tpm_pcr_extend(tpm, event->pcr_idx, &digest);
+ if (ret) {
+ pr_err("Error extending TPM12 PCR, result: %d\n", ret);
+ slaunch_txt_reset(txt,
+ "Failed to extend TPM12 PCR\n",
+ SL_ERROR_TPM_EXTEND);
+ }
+ }
+
+next:
+ event = (struct tcg_pcr_event *)((u8 *)event + size);
+ }
+
+ if (!start || !end)
+ slaunch_txt_reset(txt,
+ "Missing start or end events for extending TPM12 PCRs\n",
+ SL_ERROR_TPM_EXTEND);
+}
+
+static void slaunch_pcr_extend(void __iomem *txt)
+{
+ struct tpm_chip *tpm;
+
+ tpm = tpm_default_chip();
+ if (!tpm)
+ slaunch_txt_reset(txt,
+ "Could not get default TPM chip\n",
+ SL_ERROR_TPM_INIT);
+ if (evtlog20)
+ slaunch_tpm20_extend(tpm, txt);
+ else
+ slaunch_tpm12_extend(tpm, txt);
+}
+
+static int __init slaunch_module_init(void)
+{
+ void __iomem *txt;
+
+ /* Check to see if Secure Launch happened */
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) !=
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT))
+ return 0;
+
+ txt = ioremap(TXT_PRIV_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!txt)
+ panic("Error ioremap of TXT priv registers\n");
+
+ /* Only Intel TXT is supported at this point */
+ slaunch_intel_evtlog(txt);
+
+ slaunch_pcr_extend(txt);
+
+ iounmap(txt);
+
+ return slaunch_expose_securityfs();
+}
+
+static void __exit slaunch_module_exit(void)
+{
+ slaunch_teardown_securityfs();
+}
+
+late_initcall(slaunch_module_init);
+
+__exitcall(slaunch_module_exit);
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:17 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The Secure Launch (SL) stub provides the entry point for Intel TXT (and
later AMD SKINIT) to vector to during the late launch. The symbol
sl_stub_entry is that entry point and its offset into the kernel is
conveyed to the launching code using the MLE (Measured Launch
Environment) header in the structure named mle_header. The offset of the
MLE header is set in the kernel_info. The routine sl_stub contains the
very early late launch setup code responsible for setting up the basic
environment to allow the normal kernel startup_32 code to proceed. It is
also responsible for properly waking and handling the APs on Intel
platforms. The routine sl_main which runs after entering 64b mode is
responsible for measuring configuration and module information before
it is used like the boot params, the kernel command line, the TXT heap,
an external initramfs, etc.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
Documentation/x86/boot.rst | 13 +
arch/x86/boot/compressed/Makefile | 3 +-
arch/x86/boot/compressed/head_64.S | 37 ++
arch/x86/boot/compressed/kernel_info.S | 34 ++
arch/x86/boot/compressed/sl_main.c | 549 ++++++++++++++++++++++++++
arch/x86/boot/compressed/sl_stub.S | 685 +++++++++++++++++++++++++++++++++
arch/x86/kernel/asm-offsets.c | 19 +
7 files changed, 1339 insertions(+), 1 deletion(-)
create mode 100644 arch/x86/boot/compressed/sl_main.c
create mode 100644 arch/x86/boot/compressed/sl_stub.S

diff --git a/Documentation/x86/boot.rst b/Documentation/x86/boot.rst
index 894a198..2fbcb77 100644
--- a/Documentation/x86/boot.rst
+++ b/Documentation/x86/boot.rst
@@ -1026,6 +1026,19 @@ Offset/size: 0x000c/4

This field contains maximal allowed type for setup_data and setup_indirect structs.

+============ =================
+Field name: mle_header_offset
+Offset/size: 0x0010/4
+============ =================
+
+ This field contains the offset to the Secure Launch Measured Launch Environment
+ (MLE) header. This offset is used to locate information needed during a secure
+ late launch using Intel TXT. If the offset is zero, the kernel does not have
+ Secure Launch capabilities. The MLE entry point is called from TXT on the BSP
+ following a success measured launch. The specific state of the processors is
+ outlined in the TXT Software Development Guide, the latest can be found here:
+ https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
+

The Image Checksum
==================
diff --git a/arch/x86/boot/compressed/Makefile b/arch/x86/boot/compressed/Makefile
index 059d49a..1fe55a5 100644
--- a/arch/x86/boot/compressed/Makefile
+++ b/arch/x86/boot/compressed/Makefile
@@ -102,7 +102,8 @@ vmlinux-objs-$(CONFIG_ACPI) += $(obj)/acpi.o
vmlinux-objs-$(CONFIG_EFI_MIXED) += $(obj)/efi_thunk_$(BITS).o
efi-obj-$(CONFIG_EFI_STUB) = $(objtree)/drivers/firmware/efi/libstub/lib.a

-vmlinux-objs-$(CONFIG_SECURE_LAUNCH) += $(obj)/early_sha1.o $(obj)/early_sha256.o
+vmlinux-objs-$(CONFIG_SECURE_LAUNCH) += $(obj)/early_sha1.o $(obj)/early_sha256.o \
+ $(obj)/sl_main.o $(obj)/sl_stub.o

$(obj)/vmlinux: $(vmlinux-objs-y) $(efi-obj-y) FORCE
$(call if_changed,ld)
diff --git a/arch/x86/boot/compressed/head_64.S b/arch/x86/boot/compressed/head_64.S
index a2347de..b35e072 100644
--- a/arch/x86/boot/compressed/head_64.S
+++ b/arch/x86/boot/compressed/head_64.S
@@ -498,6 +498,17 @@ trampoline_return:
pushq $0
popfq

+#ifdef CONFIG_SECURE_LAUNCH
+ pushq %rsi
+
+ /* Ensure the relocation region coverd by a PMR */
+ movq %rbx, %rdi
+ movl $(_bss - startup_32), %esi
+ callq sl_check_region
+
+ popq %rsi
+#endif
+
/*
* Copy the compressed kernel to the end of our buffer
* where decompression in place becomes safe.
@@ -556,6 +567,32 @@ SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
shrq $3, %rcx
rep stosq

+#ifdef CONFIG_SECURE_LAUNCH
+ /*
+ * Have to do the final early sl stub work in 64b area.
+ *
+ * *********** NOTE ***********
+ *
+ * Several boot params get used before we get a chance to measure
+ * them in this call. This is a known issue and we currently don't
+ * have a solution. The scratch field doesn't matter. There is no
+ * obvious way to do anything about the use of kernel_alignment or
+ * init_size though these seem low risk with all the PMR and overlap
+ * checks in place.
+ */
+ pushq %rsi
+
+ movq %rsi, %rdi
+ callq sl_main
+
+ /* Ensure the decompression location is coverd by a PMR */
+ movq %rbp, %rdi
+ movq output_len(%rip), %rsi
+ callq sl_check_region
+
+ popq %rsi
+#endif
+
/*
* If running as an SEV guest, the encryption mask is required in the
* page-table setup code below. When the guest also has SEV-ES enabled
diff --git a/arch/x86/boot/compressed/kernel_info.S b/arch/x86/boot/compressed/kernel_info.S
index c18f071..e199b87 100644
--- a/arch/x86/boot/compressed/kernel_info.S
+++ b/arch/x86/boot/compressed/kernel_info.S
@@ -28,6 +28,40 @@ SYM_DATA_START(kernel_info)
/* Maximal allowed type for setup_data and setup_indirect structs. */
.long SETUP_TYPE_MAX

+ /* Offset to the MLE header structure */
+#if IS_ENABLED(CONFIG_SECURE_LAUNCH)
+ .long rva(mle_header)
+#else
+ .long 0
+#endif
+
kernel_info_var_len_data:
/* Empty for time being... */
SYM_DATA_END_LABEL(kernel_info, SYM_L_LOCAL, kernel_info_end)
+
+#if IS_ENABLED(CONFIG_SECURE_LAUNCH)
+ /*
+ * The MLE Header per the TXT Specification, section 2.1
+ * MLE capabilities, see table 4. Capabilities set:
+ * bit 0: Support for GETSEC[WAKEUP] for RLP wakeup
+ * bit 1: Support for RLP wakeup using MONITOR address
+ * bit 2: The ECX register will contain the pointer to the MLE page table
+ * bit 5: TPM 1.2 family: Details/authorities PCR usage support
+ * bit 9: Supported format of TPM 2.0 event log - TCG compliant
+ */
+SYM_DATA_START(mle_header)
+ .long 0x9082ac5a /* UUID0 */
+ .long 0x74a7476f /* UUID1 */
+ .long 0xa2555c0f /* UUID2 */
+ .long 0x42b651cb /* UUID3 */
+ .long 0x00000034 /* MLE header size */
+ .long 0x00020002 /* MLE version 2.2 */
+ .long rva(sl_stub_entry) /* Linear entry point of MLE (virt. address) */
+ .long 0x00000000 /* First valid page of MLE */
+ .long 0x00000000 /* Offset within binary of first byte of MLE */
+ .long rva(_edata) /* Offset within binary of last byte + 1 of MLE */
+ .long 0x00000227 /* Bit vector of MLE-supported capabilities */
+ .long 0x00000000 /* Starting linear address of command line (unused) */
+ .long 0x00000000 /* Ending linear address of command line (unused) */
+SYM_DATA_END(mle_header)
+#endif
diff --git a/arch/x86/boot/compressed/sl_main.c b/arch/x86/boot/compressed/sl_main.c
new file mode 100644
index 0000000..6ba59e7
--- /dev/null
+++ b/arch/x86/boot/compressed/sl_main.c
@@ -0,0 +1,549 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch early measurement and validation routines.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/linkage.h>
+#include <linux/efi.h>
+#include <asm/segment.h>
+#include <asm/boot.h>
+#include <asm/msr.h>
+#include <asm/io.h>
+#include <asm/mtrr.h>
+#include <asm/processor-flags.h>
+#include <asm/asm-offsets.h>
+#include <asm/bootparam.h>
+#include <asm/efi.h>
+#include <asm/bootparam_utils.h>
+#include <linux/slaunch.h>
+#include <crypto/sha1.h>
+#include <crypto/sha2.h>
+
+#include "misc.h"
+#include "early_sha1.h"
+
+#define CAPS_VARIABLE_MTRR_COUNT_MASK 0xff
+
+#define SL_TPM12_LOG 1
+#define SL_TPM20_LOG 2
+
+#define SL_TPM20_MAX_ALGS 2
+
+#define SL_MAX_EVENT_DATA 64
+#define SL_TPM12_LOG_SIZE (sizeof(struct tcg_pcr_event) + \
+ SL_MAX_EVENT_DATA)
+#define SL_TPM20_LOG_SIZE (sizeof(struct tcg_pcr_event2_head) + \
+ SHA1_DIGEST_SIZE + SHA256_DIGEST_SIZE + \
+ sizeof(struct tcg_event_field) + \
+ SL_MAX_EVENT_DATA)
+
+static void *evtlog_base;
+static u32 evtlog_size;
+static struct txt_heap_event_log_pointer2_1_element *log20_elem;
+static u32 tpm_log_ver = SL_TPM12_LOG;
+struct tcg_efi_specid_event_algs tpm_algs[SL_TPM20_MAX_ALGS] = {0};
+
+#if !IS_ENABLED(CONFIG_SECURE_LAUNCH_ALT_PCR19)
+static u32 pcr_config = SL_DEF_CONFIG_PCR18;
+#else
+static u32 pcr_config = SL_ALT_CONFIG_PCR19;
+#endif
+
+#if !IS_ENABLED(CONFIG_SECURE_LAUNCH_ALT_PCR20)
+static u32 pcr_image = SL_DEF_IMAGE_PCR17;
+#else
+static u32 pcr_image = SL_ALT_IMAGE_PCR20;
+#endif
+
+extern u32 sl_cpu_type;
+extern u32 sl_mle_start;
+
+u32 slaunch_get_cpu_type(void)
+{
+ return sl_cpu_type;
+}
+
+static u64 sl_txt_read(u32 reg)
+{
+ return readq((void *)(u64)(TXT_PRIV_CONFIG_REGS_BASE + reg));
+}
+
+static void sl_txt_write(u32 reg, u64 val)
+{
+ writeq(val, (void *)(u64)(TXT_PRIV_CONFIG_REGS_BASE + reg));
+}
+
+static void __noreturn sl_txt_reset(u64 error)
+{
+ /* Reading the E2STS register acts as a barrier for TXT registers */
+ sl_txt_write(TXT_CR_ERRORCODE, error);
+ sl_txt_read(TXT_CR_E2STS);
+ sl_txt_write(TXT_CR_CMD_UNLOCK_MEM_CONFIG, 1);
+ sl_txt_read(TXT_CR_E2STS);
+ sl_txt_write(TXT_CR_CMD_RESET, 1);
+
+ for ( ; ; )
+ asm volatile ("hlt");
+
+ unreachable();
+}
+
+static u64 sl_rdmsr(u32 reg)
+{
+ u64 lo, hi;
+
+ asm volatile ("rdmsr" : "=a" (lo), "=d" (hi) : "c" (reg));
+
+ return (hi << 32) | lo;
+}
+
+static void sl_check_pmr_coverage(void *base, u32 size, bool allow_hi)
+{
+ void *end = base + size;
+ struct txt_os_sinit_data *os_sinit_data;
+ void *txt_heap;
+
+ if (!(sl_cpu_type & SL_CPU_INTEL))
+ return;
+
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ if ((end >= (void *)0x100000000ULL) &&
+ (base < (void *)0x100000000ULL))
+ sl_txt_reset(SL_ERROR_REGION_STRADDLE_4GB);
+
+ /*
+ * Note that the late stub code validates that the hi PMR covers
+ * all memory above 4G. At this point the code can only check that
+ * regions are within the hi PMR but that is sufficient.
+ */
+ if ((end > (void *)0x100000000ULL) &&
+ (base >= (void *)0x100000000ULL)) {
+ if (allow_hi) {
+ if (end >= (void *)(os_sinit_data->vtd_pmr_hi_base +
+ os_sinit_data->vtd_pmr_hi_size))
+ sl_txt_reset(SL_ERROR_BUFFER_BEYOND_PMR);
+ } else
+ sl_txt_reset(SL_ERROR_REGION_ABOVE_4GB);
+ }
+
+ if (end >= (void *)os_sinit_data->vtd_pmr_lo_size)
+ sl_txt_reset(SL_ERROR_BUFFER_BEYOND_PMR);
+}
+
+/*
+ * Some MSRs are modified by the pre-launch code including the MTRRs.
+ * The early MLE code has to restore these values. This code validates
+ * the values after they are measured.
+ */
+static void sl_txt_validate_msrs(struct txt_os_mle_data *os_mle_data)
+{
+ u64 mtrr_caps, mtrr_def_type, mtrr_var, misc_en_msr;
+ u32 vcnt, i;
+ struct txt_mtrr_state *saved_bsp_mtrrs =
+ &(os_mle_data->saved_bsp_mtrrs);
+
+ mtrr_caps = sl_rdmsr(MSR_MTRRcap);
+ vcnt = (u32)(mtrr_caps & CAPS_VARIABLE_MTRR_COUNT_MASK);
+
+ if (saved_bsp_mtrrs->mtrr_vcnt > vcnt)
+ sl_txt_reset(SL_ERROR_MTRR_INV_VCNT);
+ if (saved_bsp_mtrrs->mtrr_vcnt > TXT_OS_MLE_MAX_VARIABLE_MTRRS)
+ sl_txt_reset(SL_ERROR_MTRR_INV_VCNT);
+
+ mtrr_def_type = sl_rdmsr(MSR_MTRRdefType);
+ if (saved_bsp_mtrrs->default_mem_type != mtrr_def_type)
+ sl_txt_reset(SL_ERROR_MTRR_INV_DEF_TYPE);
+
+ for (i = 0; i < saved_bsp_mtrrs->mtrr_vcnt; i++) {
+ mtrr_var = sl_rdmsr(MTRRphysBase_MSR(i));
+ if (saved_bsp_mtrrs->mtrr_pair[i].mtrr_physbase != mtrr_var)
+ sl_txt_reset(SL_ERROR_MTRR_INV_BASE);
+ mtrr_var = sl_rdmsr(MTRRphysMask_MSR(i));
+ if (saved_bsp_mtrrs->mtrr_pair[i].mtrr_physmask != mtrr_var)
+ sl_txt_reset(SL_ERROR_MTRR_INV_MASK);
+ }
+
+ misc_en_msr = sl_rdmsr(MSR_IA32_MISC_ENABLE);
+ if (os_mle_data->saved_misc_enable_msr != misc_en_msr)
+ sl_txt_reset(SL_ERROR_MSR_INV_MISC_EN);
+}
+
+static void sl_find_event_log(void)
+{
+ struct txt_os_mle_data *os_mle_data;
+ struct txt_os_sinit_data *os_sinit_data;
+ void *txt_heap;
+
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+
+ os_mle_data = txt_os_mle_data_start(txt_heap);
+ evtlog_base = (void *)os_mle_data->evtlog_addr;
+ evtlog_size = os_mle_data->evtlog_size;
+
+ /*
+ * For TPM 2.0, the event log 2.1 extended data structure has to also
+ * be located and fixed up.
+ */
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ /*
+ * Only support version 6 and later that properly handle the
+ * list of ExtDataElements in the OS-SINIT structure.
+ */
+ if (os_sinit_data->version < 6)
+ sl_txt_reset(SL_ERROR_OS_SINIT_BAD_VERSION);
+
+ /* Find the TPM2.0 logging extended heap element */
+ log20_elem = tpm20_find_log2_1_element(os_sinit_data);
+
+ /* If found, this implies TPM20 log and family */
+ if (log20_elem)
+ tpm_log_ver = SL_TPM20_LOG;
+}
+
+static void sl_validate_event_log_buffer(void)
+{
+ void *mle_base = (void *)(u64)sl_mle_start;
+ void *mle_end;
+ struct txt_os_sinit_data *os_sinit_data;
+ void *txt_heap;
+ void *txt_heap_end;
+ void *evtlog_end;
+
+ if ((u64)evtlog_size > (LLONG_MAX - (u64)evtlog_base))
+ sl_txt_reset(SL_ERROR_INTEGER_OVERFLOW);
+ evtlog_end = evtlog_base + evtlog_size;
+
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+ txt_heap_end = txt_heap + sl_txt_read(TXT_CR_HEAP_SIZE);
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ mle_end = mle_base + os_sinit_data->mle_size;
+
+ /*
+ * This check is to ensure the event log buffer does not overlap with
+ * the MLE image.
+ */
+ if ((evtlog_base >= mle_end) &&
+ (evtlog_end > mle_end))
+ goto pmr_check; /* above */
+
+ if ((evtlog_end <= mle_base) &&
+ (evtlog_base < mle_base))
+ goto pmr_check; /* below */
+
+ sl_txt_reset(SL_ERROR_MLE_BUFFER_OVERLAP);
+
+pmr_check:
+ /*
+ * The TXT heap is protected by the DPR. If the TPM event log is
+ * inside the TXT heap, there is no need for a PMR check.
+ */
+ if ((evtlog_base > txt_heap) &&
+ (evtlog_end < txt_heap_end))
+ return;
+
+ sl_check_pmr_coverage(evtlog_base, evtlog_size, true);
+}
+
+static void sl_find_event_log_algorithms(void)
+{
+ struct tcg_efi_specid_event_head *efi_head =
+ (struct tcg_efi_specid_event_head *)(evtlog_base +
+ log20_elem->first_record_offset +
+ sizeof(struct tcg_pcr_event));
+
+ if (efi_head->num_algs == 0 || efi_head->num_algs > 2)
+ sl_txt_reset(SL_ERROR_TPM_NUMBER_ALGS);
+
+ memcpy(&tpm_algs[0], &efi_head->digest_sizes[0],
+ sizeof(struct tcg_efi_specid_event_algs) * efi_head->num_algs);
+}
+
+static void sl_tpm12_log_event(u32 pcr, u32 event_type,
+ const u8 *data, u32 length,
+ const u8 *event_data, u32 event_size)
+{
+ struct tcg_pcr_event *pcr_event;
+ struct sha1_state sctx = {0};
+ u32 total_size;
+ u8 log_buf[SL_TPM12_LOG_SIZE] = {0};
+ u8 sha1_hash[SHA1_DIGEST_SIZE] = {0};
+
+ pcr_event = (struct tcg_pcr_event *)log_buf;
+ pcr_event->pcr_idx = pcr;
+ pcr_event->event_type = event_type;
+ if (length > 0) {
+ early_sha1_init(&sctx);
+ early_sha1_update(&sctx, data, length);
+ early_sha1_final(&sctx, &sha1_hash[0]);
+ memcpy(&pcr_event->digest[0], &sha1_hash[0], SHA1_DIGEST_SIZE);
+ }
+ pcr_event->event_size = event_size;
+ if (event_size > 0)
+ memcpy((u8 *)pcr_event + sizeof(struct tcg_pcr_event),
+ event_data, event_size);
+
+ total_size = sizeof(struct tcg_pcr_event) + event_size;
+
+ if (tpm12_log_event(evtlog_base, evtlog_size, total_size, pcr_event))
+ sl_txt_reset(SL_ERROR_TPM_LOGGING_FAILED);
+}
+
+static void sl_tpm20_log_event(u32 pcr, u32 event_type,
+ const u8 *data, u32 length,
+ const u8 *event_data, u32 event_size)
+{
+ struct tcg_pcr_event2_head *head;
+ struct tcg_event_field *event;
+ struct sha1_state sctx1 = {0};
+ struct sha256_state sctx256 = {0};
+ u32 total_size;
+ u16 *alg_ptr;
+ u8 *dgst_ptr;
+ u8 log_buf[SL_TPM20_LOG_SIZE] = {0};
+ u8 sha1_hash[SHA1_DIGEST_SIZE] = {0};
+ u8 sha256_hash[SHA256_DIGEST_SIZE] = {0};
+
+ head = (struct tcg_pcr_event2_head *)log_buf;
+ head->pcr_idx = pcr;
+ head->event_type = event_type;
+ total_size = sizeof(struct tcg_pcr_event2_head);
+ alg_ptr = (u16 *)(log_buf + sizeof(struct tcg_pcr_event2_head));
+
+ for ( ; head->count < 2; head->count++) {
+ if (!tpm_algs[head->count].alg_id)
+ break;
+
+ *alg_ptr = tpm_algs[head->count].alg_id;
+ dgst_ptr = (u8 *)alg_ptr + sizeof(u16);
+
+ if (tpm_algs[head->count].alg_id == TPM_ALG_SHA256 &&
+ length) {
+ sha256_init(&sctx256);
+ sha256_update(&sctx256, data, length);
+ sha256_final(&sctx256, &sha256_hash[0]);
+ } else if (tpm_algs[head->count].alg_id == TPM_ALG_SHA1 &&
+ length) {
+ early_sha1_init(&sctx1);
+ early_sha1_update(&sctx1, data, length);
+ early_sha1_final(&sctx1, &sha1_hash[0]);
+ }
+
+ if (tpm_algs[head->count].alg_id == TPM_ALG_SHA256) {
+ memcpy(dgst_ptr, &sha256_hash[0], SHA256_DIGEST_SIZE);
+ total_size += SHA256_DIGEST_SIZE + sizeof(u16);
+ alg_ptr = (u16 *)((u8 *)alg_ptr + SHA256_DIGEST_SIZE + sizeof(u16));
+ } else if (tpm_algs[head->count].alg_id == TPM_ALG_SHA1) {
+ memcpy(dgst_ptr, &sha1_hash[0], SHA1_DIGEST_SIZE);
+ total_size += SHA1_DIGEST_SIZE + sizeof(u16);
+ alg_ptr = (u16 *)((u8 *)alg_ptr + SHA1_DIGEST_SIZE + sizeof(u16));
+ } else
+ sl_txt_reset(SL_ERROR_TPM_UNKNOWN_DIGEST);
+ }
+
+ event = (struct tcg_event_field *)(log_buf + total_size);
+ event->event_size = event_size;
+ if (event_size > 0)
+ memcpy((u8 *)event + sizeof(struct tcg_event_field),
+ event_data, event_size);
+ total_size += sizeof(struct tcg_event_field) + event_size;
+
+ if (tpm20_log_event(log20_elem, evtlog_base, evtlog_size,
+ total_size, &log_buf[0]))
+ sl_txt_reset(SL_ERROR_TPM_LOGGING_FAILED);
+}
+
+static void sl_tpm_extend_evtlog(u32 pcr, u32 type,
+ const u8 *data, u32 length, const char *desc)
+{
+ if (tpm_log_ver == SL_TPM20_LOG)
+ sl_tpm20_log_event(pcr, type, data, length,
+ (const u8 *)desc, strlen(desc));
+ else
+ sl_tpm12_log_event(pcr, type, data, length,
+ (const u8 *)desc, strlen(desc));
+}
+
+static struct setup_data *sl_handle_setup_data(struct setup_data *curr)
+{
+ struct setup_data *next;
+ struct setup_indirect *ind;
+
+ if (!curr)
+ return NULL;
+
+ next = (struct setup_data *)(unsigned long)curr->next;
+
+ /* SETUP_INDIRECT instances have to be handled differently */
+ if (curr->type == SETUP_INDIRECT) {
+ ind = (struct setup_indirect *)
+ ((u8 *)curr + offsetof(struct setup_data, data));
+
+ sl_check_pmr_coverage((void *)ind->addr, ind->len, true);
+
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ (void *)ind->addr, ind->len,
+ "Measured Kernel setup_indirect");
+
+ return next;
+ }
+
+ sl_check_pmr_coverage(((u8 *)curr) + sizeof(struct setup_data),
+ curr->len, true);
+
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ ((u8 *)curr) + sizeof(struct setup_data),
+ curr->len,
+ "Measured Kernel setup_data");
+
+ return next;
+}
+
+asmlinkage __visible void sl_check_region(void *base, u32 size)
+{
+ sl_check_pmr_coverage(base, size, false);
+}
+
+asmlinkage __visible void sl_main(void *bootparams)
+{
+ struct boot_params *bp;
+ struct setup_data *data;
+ struct txt_os_mle_data *os_mle_data;
+ struct txt_os_mle_data os_mle_tmp = {0};
+ const char *signature;
+ unsigned long mmap = 0;
+ void *txt_heap;
+ u32 data_count;
+
+ /*
+ * Currently only Intel TXT is supported for Secure Launch. Testing
+ * this value also indicates that the kernel was booted successfully
+ * through the Secure Launch entry point and is in SMX mode.
+ */
+ if (!(sl_cpu_type & SL_CPU_INTEL))
+ return;
+
+ /* Locate the TPM event log. */
+ sl_find_event_log();
+
+ /* Validate the location of the event log buffer before using it */
+ sl_validate_event_log_buffer();
+
+ /*
+ * Find the TPM hash algorithms used by the ACM and recorded in the
+ * event log.
+ */
+ if (tpm_log_ver == SL_TPM20_LOG)
+ sl_find_event_log_algorithms();
+
+ /* Sanitize them before measuring */
+ boot_params = (struct boot_params *)bootparams;
+ sanitize_boot_params(boot_params);
+
+ /* Place event log NO_ACTION tags before and after measurements */
+ sl_tpm_extend_evtlog(17, TXT_EVTYPE_SLAUNCH_START, NULL, 0, "");
+
+ sl_check_pmr_coverage(bootparams, PAGE_SIZE, false);
+
+ /* Measure the zero page/boot params */
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ bootparams, PAGE_SIZE,
+ "Measured boot parameters");
+
+ /* Now safe to use boot params */
+ bp = (struct boot_params *)bootparams;
+
+ /* Measure the command line */
+ if (bp->hdr.cmdline_size > 0) {
+ u64 cmdline = (u64)bp->hdr.cmd_line_ptr;
+
+ if (bp->ext_cmd_line_ptr > 0)
+ cmdline = cmdline | ((u64)bp->ext_cmd_line_ptr << 32);
+
+ sl_check_pmr_coverage((void *)cmdline,
+ bp->hdr.cmdline_size, true);
+
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ (u8 *)cmdline,
+ bp->hdr.cmdline_size,
+ "Measured Kernel command line");
+ }
+
+ /*
+ * Measuring the boot params measured the fixed e820 memory map.
+ * Measure any setup_data entries including e820 extended entries.
+ */
+ data = (struct setup_data *)(unsigned long)bp->hdr.setup_data;
+ while (data)
+ data = sl_handle_setup_data(data);
+
+ /* If bootloader was EFI, measure the memory map passed across */
+ signature =
+ (const char *)&bp->efi_info.efi_loader_signature;
+
+ if (!strncmp(signature, EFI32_LOADER_SIGNATURE, 4))
+ mmap = bp->efi_info.efi_memmap;
+ else if (!strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
+ mmap = (bp->efi_info.efi_memmap |
+ ((u64)bp->efi_info.efi_memmap_hi << 32));
+
+ if (mmap)
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ (void *)mmap,
+ bp->efi_info.efi_memmap_size,
+ "Measured EFI memory map");
+
+ /* Measure any external initrd */
+ if (bp->hdr.ramdisk_image != 0 && bp->hdr.ramdisk_size != 0) {
+ u64 ramdisk = (u64)bp->hdr.ramdisk_image;
+
+ if (bp->ext_ramdisk_size > 0)
+ sl_txt_reset(SL_ERROR_INITRD_TOO_BIG);
+
+ if (bp->ext_ramdisk_image > 0)
+ ramdisk = ramdisk |
+ ((u64)bp->ext_ramdisk_image << 32);
+
+ sl_check_pmr_coverage((void *)ramdisk,
+ bp->hdr.ramdisk_size, true);
+
+ sl_tpm_extend_evtlog(pcr_image, TXT_EVTYPE_SLAUNCH,
+ (u8 *)(ramdisk),
+ bp->hdr.ramdisk_size,
+ "Measured initramfs");
+ }
+
+ /*
+ * Some extra work to do on Intel, have to measure the OS-MLE
+ * heap area.
+ */
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+ os_mle_data = txt_os_mle_data_start(txt_heap);
+
+ /* Measure only portions of OS-MLE data, not addresses/sizes etc. */
+ os_mle_tmp.version = os_mle_data->version;
+ os_mle_tmp.saved_misc_enable_msr = os_mle_data->saved_misc_enable_msr;
+ os_mle_tmp.saved_bsp_mtrrs = os_mle_data->saved_bsp_mtrrs;
+
+ /* No PMR check is needed, the TXT heap is covered by the DPR */
+
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ (u8 *)&os_mle_tmp,
+ sizeof(struct txt_os_mle_data),
+ "Measured TXT OS-MLE data");
+
+ sl_tpm_extend_evtlog(17, TXT_EVTYPE_SLAUNCH_END, NULL, 0, "");
+
+ /*
+ * Now that the OS-MLE data is measured, ensure the MTRR and
+ * misc enable MSRs are what we expect.
+ */
+ sl_txt_validate_msrs(os_mle_data);
+}
diff --git a/arch/x86/boot/compressed/sl_stub.S b/arch/x86/boot/compressed/sl_stub.S
new file mode 100644
index 0000000..e36ef62
--- /dev/null
+++ b/arch/x86/boot/compressed/sl_stub.S
@@ -0,0 +1,685 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+/*
+ * Secure Launch protected mode entry point.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+ .code32
+ .text
+#include <linux/linkage.h>
+#include <asm/segment.h>
+#include <asm/msr.h>
+#include <asm/processor-flags.h>
+#include <asm/asm-offsets.h>
+#include <asm/bootparam.h>
+#include <asm/page_types.h>
+#include <asm/irq_vectors.h>
+#include <linux/slaunch.h>
+
+/* CPUID: leaf 1, ECX, SMX feature bit */
+#define X86_FEATURE_BIT_SMX 6
+
+/* Can't include apiddef.h in asm */
+#define XAPIC_ENABLE (1 << 11)
+#define X2APIC_ENABLE (1 << 10)
+
+/* Can't include traps.h in asm */
+#define X86_TRAP_NMI 2
+
+/* Can't include mtrr.h in asm */
+#define MTRRphysBase0 0x200
+
+#define IDT_VECTOR_LO_BITS 0
+#define IDT_VECTOR_HI_BITS 6
+
+/*
+ * See the comment in head_64.S for detailed informatoin on what this macro
+ * is used for.
+ */
+#define rva(X) ((X) - sl_stub_entry)
+
+/*
+ * The GETSEC op code is open coded because older versions of
+ * GCC do not support the getsec mnemonic.
+ */
+.macro GETSEC leaf
+ pushl %ebx
+ xorl %ebx, %ebx /* Must be zero for SMCTRL */
+ movl \leaf, %eax /* Leaf function */
+ .byte 0x0f, 0x37 /* GETSEC opcode */
+ popl %ebx
+.endm
+
+.macro TXT_RESET error
+ /*
+ * Set a sticky error value and reset. Note the movs to %eax act as
+ * TXT register barriers.
+ */
+ movl \error, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_ERRORCODE)
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_E2STS), %eax
+ movl $1, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_CMD_NO_SECRETS)
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_E2STS), %eax
+ movl $1, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_CMD_UNLOCK_MEM_CONFIG)
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_E2STS), %eax
+ movl $1, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_CMD_RESET)
+1:
+ hlt
+ jmp 1b
+.endm
+
+ .code32
+SYM_FUNC_START(sl_stub_entry)
+ cli
+ cld
+
+ /*
+ * On entry, %ebx has the entry abs offset to sl_stub_entry. This
+ * will be correctly scaled using the rva macro and avoid causing
+ * relocations. Only %cs and %ds segments are known good.
+ */
+
+ /* Load GDT, set segment regs and lret to __SL32_CS */
+ leal rva(sl_gdt_desc)(%ebx), %eax
+ addl %eax, 2(%eax)
+ lgdt (%eax)
+
+ movl $(__SL32_DS), %eax
+ movw %ax, %ds
+ movw %ax, %es
+ movw %ax, %fs
+ movw %ax, %gs
+ movw %ax, %ss
+
+ /*
+ * Now that %ss is known good, take the first stack for the BSP. The
+ * AP stacks are only used on Intel.
+ */
+ leal rva(sl_stacks_end)(%ebx), %esp
+
+ leal rva(.Lsl_cs)(%ebx), %eax
+ pushl $(__SL32_CS)
+ pushl %eax
+ lret
+
+.Lsl_cs:
+ /* Save our base pointer reg and page table for MLE */
+ pushl %ebx
+ pushl %ecx
+
+ /* See if SMX feature is supported. */
+ movl $1, %eax
+ cpuid
+ testl $(X86_FEATURE_BIT_SMX), %ecx
+ jz .Ldo_unknown_cpu
+
+ popl %ecx
+ popl %ebx
+
+ /* Know it is Intel */
+ movl $(SL_CPU_INTEL), rva(sl_cpu_type)(%ebx)
+
+ /* Locate the base of the MLE using the page tables in %ecx */
+ call sl_find_mle_base
+
+ /* Increment CPU count for BSP */
+ incl rva(sl_txt_cpu_count)(%ebx)
+
+ /*
+ * Enable SMI with GETSEC[SMCTRL] which were disabled by SENTER.
+ * NMIs were also disabled by SENTER. Since there is no IDT for the BSP,
+ * allow the mainline kernel re-enable them in the normal course of
+ * booting.
+ */
+ GETSEC $(SMX_X86_GETSEC_SMCTRL)
+
+ /* Clear the TXT error registers for a clean start of day */
+ movl $0, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_ERRORCODE)
+ movl $0xffffffff, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_ESTS)
+
+ /* On Intel, the zero page address is passed in the TXT heap */
+ /* Read physical base of heap into EAX */
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_HEAP_BASE), %eax
+ /* Read the size of the BIOS data into ECX (first 8 bytes) */
+ movl (%eax), %ecx
+ /* Skip over BIOS data and size of OS to MLE data section */
+ leal 8(%eax, %ecx), %eax
+
+ /* Need to verify the values in the OS-MLE struct passed in */
+ call sl_txt_verify_os_mle_struct
+
+ /*
+ * Get the boot params address from the heap. Note %esi and %ebx MUST
+ * be preserved across calls and operations.
+ */
+ movl SL_boot_params_addr(%eax), %esi
+
+ /* Save %ebx so the APs can find their way home */
+ movl %ebx, (SL_mle_scratch + SL_SCRATCH_AP_EBX)(%eax)
+
+ /* Fetch the AP wake code block address from the heap */
+ movl SL_ap_wake_block(%eax), %edi
+ movl %edi, rva(sl_txt_ap_wake_block)(%ebx)
+
+ /* Store the offset in the AP wake block to the jmp address */
+ movl $(sl_ap_jmp_offset - sl_txt_ap_wake_begin), \
+ (SL_mle_scratch + SL_SCRATCH_AP_JMP_OFFSET)(%eax)
+
+ /* %eax still is the base of the OS-MLE block, save it */
+ pushl %eax
+
+ /* Relocate the AP wake code to the safe block */
+ call sl_txt_reloc_ap_wake
+
+ /*
+ * Wake up all APs that are blocked in the ACM and wait for them to
+ * halt. This should be done before restoring the MTRRs so the ACM is
+ * still properly in WB memory.
+ */
+ call sl_txt_wake_aps
+
+ /*
+ * Pop OS-MLE base address (was in %eax above) for call to load
+ * MTRRs/MISC MSR
+ */
+ popl %edi
+ call sl_txt_load_regs
+
+ jmp .Lcpu_setup_done
+
+.Ldo_unknown_cpu:
+ /* Non-Intel CPUs are not yet supported */
+ ud2
+
+.Lcpu_setup_done:
+ /*
+ * Don't enable MCE at this point. The kernel will enable
+ * it on the BSP later when it is ready.
+ */
+
+ /* Done, jump to normal 32b pm entry */
+ jmp startup_32
+SYM_FUNC_END(sl_stub_entry)
+
+SYM_FUNC_START(sl_find_mle_base)
+ /* %ecx has PDPT, get first PD */
+ movl (%ecx), %eax
+ andl $(PAGE_MASK), %eax
+ /* Get first PT from first PDE */
+ movl (%eax), %eax
+ andl $(PAGE_MASK), %eax
+ /* Get MLE base from first PTE */
+ movl (%eax), %eax
+ andl $(PAGE_MASK), %eax
+
+ movl %eax, rva(sl_mle_start)(%ebx)
+ ret
+SYM_FUNC_END(sl_find_mle_base)
+
+SYM_FUNC_START(sl_check_buffer_mle_overlap)
+ /* %ecx: buffer begin %edx: buffer end */
+ /* %ebx: MLE begin %edi: MLE end */
+
+ cmpl %edi, %ecx
+ jb .Lnext_check
+ cmpl %edi, %edx
+ jbe .Lnext_check
+ jmp .Lvalid /* Buffer above MLE */
+
+.Lnext_check:
+ cmpl %ebx, %edx
+ ja .Linvalid
+ cmpl %ebx, %ecx
+ jae .Linvalid
+ jmp .Lvalid /* Buffer below MLE */
+
+.Linvalid:
+ TXT_RESET $(SL_ERROR_MLE_BUFFER_OVERLAP)
+
+.Lvalid:
+ ret
+SYM_FUNC_END(sl_check_buffer_mle_overlap)
+
+SYM_FUNC_START(sl_txt_verify_os_mle_struct)
+ pushl %ebx
+ /*
+ * %eax points to the base of the OS-MLE struct. Need to also
+ * read some values from the OS-SINIT struct too.
+ */
+ movl -8(%eax), %ecx
+ /* Skip over OS to MLE data section and size of OS-SINIT structure */
+ leal (%eax, %ecx), %edx
+
+ /* Load MLE image base absolute offset */
+ movl rva(sl_mle_start)(%ebx), %ebx
+
+ /* Verify the value of the low PMR base. It should always be 0. */
+ movl SL_vtd_pmr_lo_base(%edx), %esi
+ cmpl $0, %esi
+ jz .Lvalid_pmr_base
+ TXT_RESET $(SL_ERROR_LO_PMR_BASE)
+
+.Lvalid_pmr_base:
+ /* Grab some values from OS-SINIT structure */
+ movl SL_mle_size(%edx), %edi
+ addl %ebx, %edi
+ jc .Loverflow_detected
+ movl SL_vtd_pmr_lo_size(%edx), %esi
+
+ /* Check the AP wake block */
+ movl SL_ap_wake_block(%eax), %ecx
+ movl SL_ap_wake_block_size(%eax), %edx
+ addl %ecx, %edx
+ jc .Loverflow_detected
+ call sl_check_buffer_mle_overlap
+ cmpl %esi, %edx
+ ja .Lbuffer_beyond_pmr
+
+ /* Check the boot params */
+ movl SL_boot_params_addr(%eax), %ecx
+ movl $(PAGE_SIZE), %edx
+ addl %ecx, %edx
+ jc .Loverflow_detected
+ call sl_check_buffer_mle_overlap
+ cmpl %esi, %edx
+ ja .Lbuffer_beyond_pmr
+
+ /* Check that the AP wake block is big enough */
+ cmpl $(sl_txt_ap_wake_end - sl_txt_ap_wake_begin), \
+ SL_ap_wake_block_size(%eax)
+ jae .Lwake_block_ok
+ TXT_RESET $(SL_ERROR_WAKE_BLOCK_TOO_SMALL)
+
+.Lwake_block_ok:
+ popl %ebx
+ ret
+
+.Loverflow_detected:
+ TXT_RESET $(SL_ERROR_INTEGER_OVERFLOW)
+
+.Lbuffer_beyond_pmr:
+ TXT_RESET $(SL_ERROR_BUFFER_BEYOND_PMR)
+SYM_FUNC_END(sl_txt_verify_os_mle_struct)
+
+SYM_FUNC_START(sl_txt_ap_entry)
+ cli
+ cld
+ /*
+ * The %cs and %ds segments are known good after waking the AP.
+ * First order of business is to find where we are and
+ * save it in %ebx.
+ */
+
+ /* Read physical base of heap into EAX */
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_HEAP_BASE), %eax
+ /* Read the size of the BIOS data into ECX (first 8 bytes) */
+ movl (%eax), %ecx
+ /* Skip over BIOS data and size of OS to MLE data section */
+ leal 8(%eax, %ecx), %eax
+
+ /* Saved %ebx from the BSP and stash OS-MLE pointer */
+ movl (SL_mle_scratch + SL_SCRATCH_AP_EBX)(%eax), %ebx
+ /* Save OS-MLE base in %edi for call to sl_txt_load_regs */
+ movl %eax, %edi
+
+ /* Lock and get our stack index */
+ movl $1, %ecx
+.Lspin:
+ xorl %eax, %eax
+ lock cmpxchgl %ecx, rva(sl_txt_spin_lock)(%ebx)
+ pause
+ jnz .Lspin
+
+ /* Increment the stack index and use the next value inside lock */
+ incl rva(sl_txt_stack_index)(%ebx)
+ movl rva(sl_txt_stack_index)(%ebx), %eax
+
+ /* Unlock */
+ movl $0, rva(sl_txt_spin_lock)(%ebx)
+
+ /* Location of the relocated AP wake block */
+ movl rva(sl_txt_ap_wake_block)(%ebx), %ecx
+
+ /* Load reloc GDT, set segment regs and lret to __SL32_CS */
+ lgdt (sl_ap_gdt_desc - sl_txt_ap_wake_begin)(%ecx)
+
+ movl $(__SL32_DS), %edx
+ movw %dx, %ds
+ movw %dx, %es
+ movw %dx, %fs
+ movw %dx, %gs
+ movw %dx, %ss
+
+ /* Load our reloc AP stack */
+ movl $(TXT_BOOT_STACK_SIZE), %edx
+ mull %edx
+ leal (sl_stacks_end - sl_txt_ap_wake_begin)(%ecx), %esp
+ subl %eax, %esp
+
+ /* Switch to AP code segment */
+ leal rva(.Lsl_ap_cs)(%ebx), %eax
+ pushl $(__SL32_CS)
+ pushl %eax
+ lret
+
+.Lsl_ap_cs:
+ /* Load the relocated AP IDT */
+ lidt (sl_ap_idt_desc - sl_txt_ap_wake_begin)(%ecx)
+
+ /* Fixup MTRRs and misc enable MSR on APs too */
+ call sl_txt_load_regs
+
+ /* Enable SMI with GETSEC[SMCTRL] */
+ GETSEC $(SMX_X86_GETSEC_SMCTRL)
+
+ /* IRET-to-self can be used to enable NMIs which SENTER disabled */
+ leal rva(.Lnmi_enabled_ap)(%ebx), %eax
+ pushfl
+ pushl $(__SL32_CS)
+ pushl %eax
+ iret
+
+.Lnmi_enabled_ap:
+ /* Put APs in X2APIC mode like the BSP */
+ movl $(MSR_IA32_APICBASE), %ecx
+ rdmsr
+ orl $(XAPIC_ENABLE | X2APIC_ENABLE), %eax
+ wrmsr
+
+ /*
+ * Basically done, increment the CPU count and jump off to the AP
+ * wake block to wait.
+ */
+ lock incl rva(sl_txt_cpu_count)(%ebx)
+
+ movl rva(sl_txt_ap_wake_block)(%ebx), %eax
+ jmp *%eax
+SYM_FUNC_END(sl_txt_ap_entry)
+
+SYM_FUNC_START(sl_txt_reloc_ap_wake)
+ /* Save boot params register */
+ pushl %esi
+
+ movl rva(sl_txt_ap_wake_block)(%ebx), %edi
+
+ /* Fixup AP IDT and GDT descriptor before relocating */
+ leal rva(sl_ap_idt_desc)(%ebx), %eax
+ addl %edi, 2(%eax)
+ leal rva(sl_ap_gdt_desc)(%ebx), %eax
+ addl %edi, 2(%eax)
+
+ /*
+ * Copy the AP wake code and AP GDT/IDT to the protected wake block
+ * provided by the loader. Destination already in %edi.
+ */
+ movl $(sl_txt_ap_wake_end - sl_txt_ap_wake_begin), %ecx
+ leal rva(sl_txt_ap_wake_begin)(%ebx), %esi
+ rep movsb
+
+ /* Setup the IDT for the APs to use in the relocation block */
+ movl rva(sl_txt_ap_wake_block)(%ebx), %ecx
+ addl $(sl_ap_idt - sl_txt_ap_wake_begin), %ecx
+ xorl %edx, %edx
+
+ /* Form the default reset vector relocation address */
+ movl rva(sl_txt_ap_wake_block)(%ebx), %esi
+ addl $(sl_txt_int_reset - sl_txt_ap_wake_begin), %esi
+
+1:
+ cmpw $(NR_VECTORS), %dx
+ jz .Lap_idt_done
+
+ cmpw $(X86_TRAP_NMI), %dx
+ jz 2f
+
+ /* Load all other fixed vectors with reset handler */
+ movl %esi, %eax
+ movw %ax, (IDT_VECTOR_LO_BITS)(%ecx)
+ shrl $16, %eax
+ movw %ax, (IDT_VECTOR_HI_BITS)(%ecx)
+ jmp 3f
+
+2:
+ /* Load single wake NMI IPI vector at the relocation address */
+ movl rva(sl_txt_ap_wake_block)(%ebx), %eax
+ addl $(sl_txt_int_ipi_wake - sl_txt_ap_wake_begin), %eax
+ movw %ax, (IDT_VECTOR_LO_BITS)(%ecx)
+ shrl $16, %eax
+ movw %ax, (IDT_VECTOR_HI_BITS)(%ecx)
+
+3:
+ incw %dx
+ addl $8, %ecx
+ jmp 1b
+
+.Lap_idt_done:
+ popl %esi
+ ret
+SYM_FUNC_END(sl_txt_reloc_ap_wake)
+
+SYM_FUNC_START(sl_txt_load_regs)
+ /* Save base pointer register */
+ pushl %ebx
+
+ /*
+ * On Intel, the original variable MTRRs and Misc Enable MSR are
+ * restored on the BSP at early boot. Each AP will also restore
+ * its MTRRs and Misc Enable MSR.
+ */
+ pushl %edi
+ addl $(SL_saved_bsp_mtrrs), %edi
+ movl (%edi), %ebx
+ pushl %ebx /* default_mem_type lo */
+ addl $4, %edi
+ movl (%edi), %ebx
+ pushl %ebx /* default_mem_type hi */
+ addl $4, %edi
+ movl (%edi), %ebx /* mtrr_vcnt lo, don't care about hi part */
+ addl $8, %edi /* now at MTRR pair array */
+ /* Write the variable MTRRs */
+ movl $(MTRRphysBase0), %ecx
+1:
+ cmpl $0, %ebx
+ jz 2f
+
+ movl (%edi), %eax /* MTRRphysBaseX lo */
+ addl $4, %edi
+ movl (%edi), %edx /* MTRRphysBaseX hi */
+ wrmsr
+ addl $4, %edi
+ incl %ecx
+ movl (%edi), %eax /* MTRRphysMaskX lo */
+ addl $4, %edi
+ movl (%edi), %edx /* MTRRphysMaskX hi */
+ wrmsr
+ addl $4, %edi
+ incl %ecx
+
+ decl %ebx
+ jmp 1b
+2:
+ /* Write the default MTRR register */
+ popl %edx
+ popl %eax
+ movl $(MSR_MTRRdefType), %ecx
+ wrmsr
+
+ /* Return to beginning and write the misc enable msr */
+ popl %edi
+ addl $(SL_saved_misc_enable_msr), %edi
+ movl (%edi), %eax /* saved_misc_enable_msr lo */
+ addl $4, %edi
+ movl (%edi), %edx /* saved_misc_enable_msr hi */
+ movl $(MSR_IA32_MISC_ENABLE), %ecx
+ wrmsr
+
+ popl %ebx
+ ret
+SYM_FUNC_END(sl_txt_load_regs)
+
+SYM_FUNC_START(sl_txt_wake_aps)
+ /* Save boot params register */
+ pushl %esi
+
+ /* First setup the MLE join structure and load it into TXT reg */
+ leal rva(sl_gdt)(%ebx), %eax
+ leal rva(sl_txt_ap_entry)(%ebx), %ecx
+ leal rva(sl_smx_rlp_mle_join)(%ebx), %edx
+ movl %eax, SL_rlp_gdt_base(%edx)
+ movl %ecx, SL_rlp_entry_point(%edx)
+ movl %edx, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_MLE_JOIN)
+
+ /* Another TXT heap walk to find various values needed to wake APs */
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_HEAP_BASE), %eax
+ /* At BIOS data size, find the number of logical processors */
+ movl (SL_num_logical_procs + 8)(%eax), %edx
+ /* Skip over BIOS data */
+ movl (%eax), %ecx
+ addl %ecx, %eax
+ /* Skip over OS to MLE */
+ movl (%eax), %ecx
+ addl %ecx, %eax
+ /* At OS-SNIT size, get capabilities to know how to wake up the APs */
+ movl (SL_capabilities + 8)(%eax), %esi
+ /* Skip over OS to SNIT */
+ movl (%eax), %ecx
+ addl %ecx, %eax
+ /* At SINIT-MLE size, get the AP wake MONITOR address */
+ movl (SL_rlp_wakeup_addr + 8)(%eax), %edi
+
+ /* Determine how to wake up the APs */
+ testl $(1 << TXT_SINIT_MLE_CAP_WAKE_MONITOR), %esi
+ jz .Lwake_getsec
+
+ /* Wake using MWAIT MONITOR */
+ movl $1, (%edi)
+ jmp .Laps_awake
+
+.Lwake_getsec:
+ /* Wake using GETSEC(WAKEUP) */
+ GETSEC $(SMX_X86_GETSEC_WAKEUP)
+
+.Laps_awake:
+ /*
+ * All of the APs are woken up and rendesvous in the relocated wake
+ * block starting at sl_txt_ap_wake_begin. Wait for all of them to
+ * halt.
+ */
+ pause
+ cmpl rva(sl_txt_cpu_count)(%ebx), %edx
+ jne .Laps_awake
+
+ popl %esi
+ ret
+SYM_FUNC_END(sl_txt_wake_aps)
+
+/* This is the beginning of the relocated AP wake code block */
+ .global sl_txt_ap_wake_begin
+sl_txt_ap_wake_begin:
+
+ /*
+ * Wait for NMI IPI in the relocated AP wake block which was provided
+ * and protected in the memory map by the prelaunch code. Leave all
+ * other interrupts masked since we do not expect anything but an NMI.
+ */
+ xorl %edx, %edx
+
+1:
+ hlt
+ testl %edx, %edx
+ jz 1b
+
+ /*
+ * This is the long absolute jump to the 32b Secure Launch protected
+ * mode stub code in the rmpiggy. The jump address will be fixed in
+ * the SMP boot code when the first AP is brought up. This whole area
+ * is provided and protected in the memory map by the prelaunch code.
+ */
+ .byte 0xea
+sl_ap_jmp_offset:
+ .long 0x00000000
+ .word __SL32_CS
+
+SYM_FUNC_START(sl_txt_int_ipi_wake)
+ movl $1, %edx
+
+ /* NMI context, just IRET */
+ iret
+SYM_FUNC_END(sl_txt_int_ipi_wake)
+
+SYM_FUNC_START(sl_txt_int_reset)
+ TXT_RESET $(SL_ERROR_INV_AP_INTERRUPT)
+SYM_FUNC_END(sl_txt_int_reset)
+
+ .balign 8
+SYM_DATA_START_LOCAL(sl_ap_idt_desc)
+ .word sl_ap_idt_end - sl_ap_idt - 1 /* Limit */
+ .long sl_ap_idt - sl_txt_ap_wake_begin /* Base */
+SYM_DATA_END_LABEL(sl_ap_idt_desc, SYM_L_LOCAL, sl_ap_idt_desc_end)
+
+ .balign 8
+SYM_DATA_START_LOCAL(sl_ap_idt)
+ .rept NR_VECTORS
+ .word 0x0000 /* Offset 15 to 0 */
+ .word __SL32_CS /* Segment selector */
+ .word 0x8e00 /* Present, DPL=0, 32b Vector, Interrupt */
+ .word 0x0000 /* Offset 31 to 16 */
+ .endr
+SYM_DATA_END_LABEL(sl_ap_idt, SYM_L_LOCAL, sl_ap_idt_end)
+
+ .balign 8
+SYM_DATA_START_LOCAL(sl_ap_gdt_desc)
+ .word sl_ap_gdt_end - sl_ap_gdt - 1
+ .long sl_ap_gdt - sl_txt_ap_wake_begin
+SYM_DATA_END_LABEL(sl_ap_gdt_desc, SYM_L_LOCAL, sl_ap_gdt_desc_end)
+
+ .balign 8
+SYM_DATA_START_LOCAL(sl_ap_gdt)
+ .quad 0x0000000000000000 /* NULL */
+ .quad 0x00cf9a000000ffff /* __SL32_CS */
+ .quad 0x00cf92000000ffff /* __SL32_DS */
+SYM_DATA_END_LABEL(sl_ap_gdt, SYM_L_LOCAL, sl_ap_gdt_end)
+
+ /* Small stacks for BSP and APs to work with */
+ .balign 4
+SYM_DATA_START_LOCAL(sl_stacks)
+ .fill (TXT_MAX_CPUS * TXT_BOOT_STACK_SIZE), 1, 0
+SYM_DATA_END_LABEL(sl_stacks, SYM_L_LOCAL, sl_stacks_end)
+
+/* This is the end of the relocated AP wake code block */
+ .global sl_txt_ap_wake_end
+sl_txt_ap_wake_end:
+
+ .data
+ .balign 8
+SYM_DATA_START_LOCAL(sl_gdt_desc)
+ .word sl_gdt_end - sl_gdt - 1
+ .long sl_gdt - sl_gdt_desc
+SYM_DATA_END_LABEL(sl_gdt_desc, SYM_L_LOCAL, sl_gdt_desc_end)
+
+ .balign 8
+SYM_DATA_START_LOCAL(sl_gdt)
+ .quad 0x0000000000000000 /* NULL */
+ .quad 0x00cf9a000000ffff /* __SL32_CS */
+ .quad 0x00cf92000000ffff /* __SL32_DS */
+SYM_DATA_END_LABEL(sl_gdt, SYM_L_LOCAL, sl_gdt_end)
+
+ .balign 8
+SYM_DATA_START_LOCAL(sl_smx_rlp_mle_join)
+ .long sl_gdt_end - sl_gdt - 1 /* GDT limit */
+ .long 0x00000000 /* GDT base */
+ .long __SL32_CS /* Seg Sel - CS (DS, ES, SS = seg_sel+8) */
+ .long 0x00000000 /* Entry point physical address */
+SYM_DATA_END(sl_smx_rlp_mle_join)
+
+SYM_DATA(sl_cpu_type, .long 0x00000000)
+
+SYM_DATA(sl_mle_start, .long 0x00000000)
+
+SYM_DATA_LOCAL(sl_txt_spin_lock, .long 0x00000000)
+
+SYM_DATA_LOCAL(sl_txt_stack_index, .long 0x00000000)
+
+SYM_DATA_LOCAL(sl_txt_cpu_count, .long 0x00000000)
+
+SYM_DATA_LOCAL(sl_txt_ap_wake_block, .long 0x00000000)
diff --git a/arch/x86/kernel/asm-offsets.c b/arch/x86/kernel/asm-offsets.c
index ecd3fd6..b665c51 100644
--- a/arch/x86/kernel/asm-offsets.c
+++ b/arch/x86/kernel/asm-offsets.c
@@ -12,6 +12,7 @@
#include <linux/hardirq.h>
#include <linux/suspend.h>
#include <linux/kbuild.h>
+#include <linux/slaunch.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/sigframe.h>
@@ -93,4 +94,22 @@ static void __used common(void)
OFFSET(TSS_sp0, tss_struct, x86_tss.sp0);
OFFSET(TSS_sp1, tss_struct, x86_tss.sp1);
OFFSET(TSS_sp2, tss_struct, x86_tss.sp2);
+
+#ifdef CONFIG_SECURE_LAUNCH
+ BLANK();
+ OFFSET(SL_boot_params_addr, txt_os_mle_data, boot_params_addr);
+ OFFSET(SL_saved_misc_enable_msr, txt_os_mle_data, saved_misc_enable_msr);
+ OFFSET(SL_saved_bsp_mtrrs, txt_os_mle_data, saved_bsp_mtrrs);
+ OFFSET(SL_ap_wake_block, txt_os_mle_data, ap_wake_block);
+ OFFSET(SL_ap_wake_block_size, txt_os_mle_data, ap_wake_block_size);
+ OFFSET(SL_mle_scratch, txt_os_mle_data, mle_scratch);
+ OFFSET(SL_num_logical_procs, txt_bios_data, num_logical_procs);
+ OFFSET(SL_capabilities, txt_os_sinit_data, capabilities);
+ OFFSET(SL_mle_size, txt_os_sinit_data, mle_size);
+ OFFSET(SL_vtd_pmr_lo_base, txt_os_sinit_data, vtd_pmr_lo_base);
+ OFFSET(SL_vtd_pmr_lo_size, txt_os_sinit_data, vtd_pmr_lo_size);
+ OFFSET(SL_rlp_wakeup_addr, txt_sinit_mle_data, rlp_wakeup_addr);
+ OFFSET(SL_rlp_gdt_base, smx_rlp_mle_join, rlp_gdt_base);
+ OFFSET(SL_rlp_entry_point, smx_rlp_mle_join, rlp_entry_point);
+#endif
}
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:19 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The routine slaunch_setup is called out of the x86 specific setup_arch
routine during early kernel boot. After determining what platform is
present, various operations specific to that platform occur. This
includes finalizing setting for the platform late launch and verifying
that memory protections are in place.

For TXT, this code also reserves the original compressed kernel setup
area where the APs were left looping so that this memory cannot be used.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/Makefile | 1 +
arch/x86/kernel/setup.c | 3 +
arch/x86/kernel/slaunch.c | 460 +++++++++++++++++++++++++++++++++++++++++++++
drivers/iommu/intel/dmar.c | 4 +
4 files changed, 468 insertions(+)
create mode 100644 arch/x86/kernel/slaunch.c

diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index 3e625c6..d6ee904 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -80,6 +80,7 @@ obj-$(CONFIG_X86_32) += tls.o
obj-$(CONFIG_IA32_EMULATION) += tls.o
obj-y += step.o
obj-$(CONFIG_INTEL_TXT) += tboot.o
+obj-$(CONFIG_SECURE_LAUNCH) += slaunch.o
obj-$(CONFIG_ISA_DMA_API) += i8237.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += cpu/
diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c
index 055a834..482bd76 100644
--- a/arch/x86/kernel/setup.c
+++ b/arch/x86/kernel/setup.c
@@ -19,6 +19,7 @@
#include <linux/root_dev.h>
#include <linux/hugetlb.h>
#include <linux/tboot.h>
+#include <linux/slaunch.h>
#include <linux/usb/xhci-dbgp.h>
#include <linux/static_call.h>
#include <linux/swiotlb.h>
@@ -976,6 +977,8 @@ void __init setup_arch(char **cmdline_p)
early_gart_iommu_check();
#endif

+ slaunch_setup_txt();
+
/*
* partially used pages are not usable - thus
* we are rounding upwards:
diff --git a/arch/x86/kernel/slaunch.c b/arch/x86/kernel/slaunch.c
new file mode 100644
index 0000000..f91f0b5
--- /dev/null
+++ b/arch/x86/kernel/slaunch.c
@@ -0,0 +1,460 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch late validation/setup and finalization support.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/linkage.h>
+#include <linux/mm.h>
+#include <linux/io.h>
+#include <linux/uaccess.h>
+#include <linux/security.h>
+#include <linux/memblock.h>
+#include <asm/segment.h>
+#include <asm/sections.h>
+#include <asm/tlbflush.h>
+#include <asm/e820/api.h>
+#include <asm/setup.h>
+#include <linux/slaunch.h>
+
+static u32 sl_flags;
+static struct sl_ap_wake_info ap_wake_info;
+static u64 evtlog_addr;
+static u32 evtlog_size;
+static u64 vtd_pmr_lo_size;
+
+/* This should be plenty of room */
+static u8 txt_dmar[PAGE_SIZE] __aligned(16);
+
+u32 slaunch_get_flags(void)
+{
+ return sl_flags;
+}
+EXPORT_SYMBOL(slaunch_get_flags);
+
+struct sl_ap_wake_info *slaunch_get_ap_wake_info(void)
+{
+ return &ap_wake_info;
+}
+
+struct acpi_table_header *slaunch_get_dmar_table(struct acpi_table_header *dmar)
+{
+ /* The DMAR is only stashed and provided via TXT on Intel systems */
+ if (memcmp(txt_dmar, "DMAR", 4))
+ return dmar;
+
+ return (struct acpi_table_header *)(&txt_dmar[0]);
+}
+
+void __noreturn slaunch_txt_reset(void __iomem *txt,
+ const char *msg, u64 error)
+{
+ u64 one = 1, val;
+
+ pr_err("%s", msg);
+
+ /*
+ * This performs a TXT reset with a sticky error code. The reads of
+ * TXT_CR_E2STS act as barriers.
+ */
+ memcpy_toio(txt + TXT_CR_ERRORCODE, &error, sizeof(error));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_NO_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_UNLOCK_MEM_CONFIG, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_RESET, &one, sizeof(one));
+
+ for ( ; ; )
+ asm volatile ("hlt");
+
+ unreachable();
+}
+
+/*
+ * The TXT heap is too big to map all at once with early_ioremap
+ * so it is done a table at a time.
+ */
+static void __init *txt_early_get_heap_table(void __iomem *txt, u32 type,
+ u32 bytes)
+{
+ void *heap;
+ u64 base, size, offset = 0;
+ int i;
+
+ if (type > TXT_SINIT_TABLE_MAX)
+ slaunch_txt_reset(txt,
+ "Error invalid table type for early heap walk\n",
+ SL_ERROR_HEAP_WALK);
+
+ memcpy_fromio(&base, txt + TXT_CR_HEAP_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_HEAP_SIZE, sizeof(size));
+
+ /* Iterate over heap tables looking for table of "type" */
+ for (i = 0; i < type; i++) {
+ base += offset;
+ heap = early_memremap(base, sizeof(u64));
+ if (!heap)
+ slaunch_txt_reset(txt,
+ "Error early_memremap of heap for heap walk\n",
+ SL_ERROR_HEAP_MAP);
+
+ offset = *((u64 *)heap);
+
+ /*
+ * After the first iteration, any offset of zero is invalid and
+ * implies the TXT heap is corrupted.
+ */
+ if (!offset)
+ slaunch_txt_reset(txt,
+ "Error invalid 0 offset in heap walk\n",
+ SL_ERROR_HEAP_ZERO_OFFSET);
+
+ early_memunmap(heap, sizeof(u64));
+ }
+
+ /* Skip the size field at the head of each table */
+ base += sizeof(u64);
+ heap = early_memremap(base, bytes);
+ if (!heap)
+ slaunch_txt_reset(txt,
+ "Error early_memremap of heap section\n",
+ SL_ERROR_HEAP_MAP);
+
+ return heap;
+}
+
+static void __init txt_early_put_heap_table(void *addr, unsigned long size)
+{
+ early_memunmap(addr, size);
+}
+
+/*
+ * TXT uses a special set of VTd registers to protect all of memory from DMA
+ * until the IOMMU can be programmed to protect memory. There is the low
+ * memory PMR that can protect all memory up to 4G. The high memory PRM can
+ * be setup to protect all memory beyond 4Gb. Validate that these values cover
+ * what is expected.
+ */
+static void __init slaunch_verify_pmrs(void __iomem *txt)
+{
+ struct txt_os_sinit_data *os_sinit_data;
+ unsigned long last_pfn;
+ u32 field_offset, err = 0;
+ const char *errmsg = "";
+
+ field_offset = offsetof(struct txt_os_sinit_data, lcp_po_base);
+ os_sinit_data = txt_early_get_heap_table(txt, TXT_OS_SINIT_DATA_TABLE,
+ field_offset);
+
+ /* Save a copy */
+ vtd_pmr_lo_size = os_sinit_data->vtd_pmr_lo_size;
+
+ last_pfn = e820__end_of_ram_pfn();
+
+ /*
+ * First make sure the hi PMR covers all memory above 4G. In the
+ * unlikely case where there is < 4G on the system, the hi PMR will
+ * not be set.
+ */
+ if (os_sinit_data->vtd_pmr_hi_base != 0x0ULL) {
+ if (os_sinit_data->vtd_pmr_hi_base != 0x100000000ULL) {
+ err = SL_ERROR_HI_PMR_BASE;
+ errmsg = "Error hi PMR base\n";
+ goto out;
+ }
+
+ if (PFN_PHYS(last_pfn) > os_sinit_data->vtd_pmr_hi_base +
+ os_sinit_data->vtd_pmr_hi_size) {
+ err = SL_ERROR_HI_PMR_SIZE;
+ errmsg = "Error hi PMR size\n";
+ goto out;
+ }
+ }
+
+ /*
+ * Lo PMR base should always be 0. This was already checked in
+ * early stub.
+ */
+
+ /*
+ * Check that if the kernel was loaded below 4G, that it is protected
+ * by the lo PMR. Note this is the decompressed kernel. The ACM would
+ * have ensured the compressed kernel (the MLE image) was protected.
+ */
+ if ((__pa_symbol(_end) < 0x100000000ULL) &&
+ (__pa_symbol(_end) > os_sinit_data->vtd_pmr_lo_size)) {
+ err = SL_ERROR_LO_PMR_MLE;
+ errmsg = "Error lo PMR does not cover MLE kernel\n";
+ }
+
+ /*
+ * Other regions of interest like boot param, AP wake block, cmdline
+ * already checked for PMR coverage in the early stub code.
+ */
+
+out:
+ txt_early_put_heap_table(os_sinit_data, field_offset);
+
+ if (err)
+ slaunch_txt_reset(txt, errmsg, err);
+}
+
+static void __init slaunch_txt_reserve_range(u64 base, u64 size)
+{
+ int type;
+
+ type = e820__get_entry_type(base, base + size - 1);
+ if (type == E820_TYPE_RAM) {
+ pr_info("memblock reserve base: %llx size: %llx\n", base, size);
+ memblock_reserve(base, size);
+ }
+}
+
+/*
+ * For Intel, certain regions of memory must be marked as reserved by putting
+ * them on the memblock reserved list if they are not already e820 reserved.
+ * This includes:
+ * - The TXT HEAP
+ * - The ACM area
+ * - The TXT private register bank
+ * - The MDR list sent to the MLE by the ACM (see TXT specification)
+ * (Normally the above are properly reserved by firmware but if it was not
+ * done, reserve them now)
+ * - The AP wake block
+ * - TPM log external to the TXT heap
+ *
+ * Also if the low PMR doesn't cover all memory < 4G, any RAM regions above
+ * the low PMR must be reservered too.
+ */
+static void __init slaunch_txt_reserve(void __iomem *txt)
+{
+ struct txt_sinit_memory_descriptor_record *mdr;
+ struct txt_sinit_mle_data *sinit_mle_data;
+ void *mdrs;
+ u64 base, size, heap_base, heap_size;
+ u32 field_offset, mdrnum, mdroffset, mdrslen, i;
+
+ base = TXT_PRIV_CONFIG_REGS_BASE;
+ size = TXT_PUB_CONFIG_REGS_BASE - TXT_PRIV_CONFIG_REGS_BASE;
+ slaunch_txt_reserve_range(base, size);
+
+ memcpy_fromio(&heap_base, txt + TXT_CR_HEAP_BASE, sizeof(heap_base));
+ memcpy_fromio(&heap_size, txt + TXT_CR_HEAP_SIZE, sizeof(heap_size));
+ slaunch_txt_reserve_range(heap_base, heap_size);
+
+ memcpy_fromio(&base, txt + TXT_CR_SINIT_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_SINIT_SIZE, sizeof(size));
+ slaunch_txt_reserve_range(base, size);
+
+ field_offset = offsetof(struct txt_sinit_mle_data,
+ sinit_vtd_dmar_table_size);
+ sinit_mle_data = txt_early_get_heap_table(txt, TXT_SINIT_MLE_DATA_TABLE,
+ field_offset);
+
+ mdrnum = sinit_mle_data->num_of_sinit_mdrs;
+ mdroffset = sinit_mle_data->sinit_mdrs_table_offset;
+
+ txt_early_put_heap_table(sinit_mle_data, field_offset);
+
+ if (!mdrnum)
+ goto nomdr;
+
+ mdrslen = (mdrnum * sizeof(struct txt_sinit_memory_descriptor_record));
+
+ mdrs = txt_early_get_heap_table(txt, TXT_SINIT_MLE_DATA_TABLE,
+ mdroffset + mdrslen - 8);
+
+ mdr = (struct txt_sinit_memory_descriptor_record *)
+ (mdrs + mdroffset - 8);
+
+ for (i = 0; i < mdrnum; i++, mdr++) {
+ /* Spec says some entries can have length 0, ignore them */
+ if (mdr->type > 0 && mdr->length > 0)
+ slaunch_txt_reserve_range(mdr->address, mdr->length);
+ }
+
+ txt_early_put_heap_table(mdrs, mdroffset + mdrslen - 8);
+
+nomdr:
+ slaunch_txt_reserve_range(ap_wake_info.ap_wake_block,
+ ap_wake_info.ap_wake_block_size);
+
+ /*
+ * Earlier checks ensured that the event log was properly situated
+ * either inside the TXT heap or outside. This is a check to see if the
+ * event log needs to be reserved. If it is in the TXT heap, it is
+ * already reserved.
+ */
+ if (evtlog_addr < heap_base || evtlog_addr > (heap_base + heap_size))
+ slaunch_txt_reserve_range(evtlog_addr, evtlog_size);
+
+ for (i = 0; i < e820_table->nr_entries; i++) {
+ base = e820_table->entries[i].addr;
+ size = e820_table->entries[i].size;
+ if ((base >= vtd_pmr_lo_size) && (base < 0x100000000ULL))
+ slaunch_txt_reserve_range(base, size);
+ else if ((base < vtd_pmr_lo_size) &&
+ (base + size > vtd_pmr_lo_size))
+ slaunch_txt_reserve_range(vtd_pmr_lo_size,
+ base + size - vtd_pmr_lo_size);
+ }
+}
+
+/*
+ * TXT stashes a safe copy of the DMAR ACPI table to prevent tampering.
+ * It is stored in the TXT heap. Fetch it from there and make it available
+ * to the IOMMU driver.
+ */
+static void __init slaunch_copy_dmar_table(void __iomem *txt)
+{
+ struct txt_sinit_mle_data *sinit_mle_data;
+ void *dmar;
+ u32 field_offset, dmar_size, dmar_offset;
+
+ memset(&txt_dmar, 0, PAGE_SIZE);
+
+ field_offset = offsetof(struct txt_sinit_mle_data,
+ processor_scrtm_status);
+ sinit_mle_data = txt_early_get_heap_table(txt, TXT_SINIT_MLE_DATA_TABLE,
+ field_offset);
+
+ dmar_size = sinit_mle_data->sinit_vtd_dmar_table_size;
+ dmar_offset = sinit_mle_data->sinit_vtd_dmar_table_offset;
+
+ txt_early_put_heap_table(sinit_mle_data, field_offset);
+
+ if (!dmar_size || !dmar_offset)
+ slaunch_txt_reset(txt,
+ "Error invalid DMAR table values\n",
+ SL_ERROR_HEAP_INVALID_DMAR);
+
+ if (unlikely(dmar_size > PAGE_SIZE))
+ slaunch_txt_reset(txt,
+ "Error DMAR too big to store\n",
+ SL_ERROR_HEAP_DMAR_SIZE);
+
+
+ dmar = txt_early_get_heap_table(txt, TXT_SINIT_MLE_DATA_TABLE,
+ dmar_offset + dmar_size - 8);
+ if (!dmar)
+ slaunch_txt_reset(txt,
+ "Error early_ioremap of DMAR\n",
+ SL_ERROR_HEAP_DMAR_MAP);
+
+ memcpy(&txt_dmar[0], dmar + dmar_offset - 8, dmar_size);
+
+ txt_early_put_heap_table(dmar, dmar_offset + dmar_size - 8);
+}
+
+/*
+ * The location of the safe AP wake code block is stored in the TXT heap.
+ * Fetch it here in the early init code for later use in SMP startup.
+ *
+ * Also get the TPM event log values that may have to be put on the
+ * memblock reserve list later.
+ */
+static void __init slaunch_fetch_os_mle_fields(void __iomem *txt)
+{
+ struct txt_os_mle_data *os_mle_data;
+ u8 *jmp_offset;
+
+ os_mle_data = txt_early_get_heap_table(txt, TXT_OS_MLE_DATA_TABLE,
+ sizeof(*os_mle_data));
+
+ ap_wake_info.ap_wake_block = os_mle_data->ap_wake_block;
+ ap_wake_info.ap_wake_block_size = os_mle_data->ap_wake_block_size;
+
+ jmp_offset = os_mle_data->mle_scratch + SL_SCRATCH_AP_JMP_OFFSET;
+ ap_wake_info.ap_jmp_offset = *((u32 *)jmp_offset);
+
+ evtlog_addr = os_mle_data->evtlog_addr;
+ evtlog_size = os_mle_data->evtlog_size;
+
+ txt_early_put_heap_table(os_mle_data, sizeof(*os_mle_data));
+}
+
+/*
+ * Intel TXT specific late stub setup and validation.
+ */
+void __init slaunch_setup_txt(void)
+{
+ void __iomem *txt;
+ u64 one = TXT_REGVALUE_ONE, val;
+
+ if (!boot_cpu_has(X86_FEATURE_SMX))
+ return;
+
+ /*
+ * First see if SENTER was done and not by TBOOT by reading the status
+ * register in the public space. If the public register space cannot
+ * be read, TXT is disabled.
+ */
+ txt = early_ioremap(TXT_PUB_CONFIG_REGS_BASE,
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+ if (!txt)
+ return;
+
+ memcpy_fromio(&val, txt + TXT_CR_STS, sizeof(val));
+ early_iounmap(txt, TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+
+ /* Was SENTER done? */
+ if (!(val & TXT_SENTER_DONE_STS))
+ return;
+
+ /* Was it done by TBOOT? */
+ if (boot_params.tboot_addr)
+ return;
+
+ /* Now we want to use the private register space */
+ txt = early_ioremap(TXT_PRIV_CONFIG_REGS_BASE,
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+ if (!txt) {
+ /* This is really bad, no where to go from here */
+ panic("Error early_ioremap of TXT priv registers\n");
+ }
+
+ /*
+ * Try to read the Intel VID from the TXT private registers to see if
+ * TXT measured launch happened properly and the private space is
+ * available.
+ */
+ memcpy_fromio(&val, txt + TXT_CR_DIDVID, sizeof(val));
+ if ((u16)(val & 0xffff) != 0x8086) {
+ /*
+ * Can't do a proper TXT reset since it appears something is
+ * wrong even though SENTER happened and it should be in SMX
+ * mode.
+ */
+ panic("Invalid TXT vendor ID, not in SMX mode\n");
+ }
+
+ /* Set flags so subsequent code knows the status of the launch */
+ sl_flags |= (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT);
+
+ /*
+ * Reading the proper DIDVID from the private register space means we
+ * are in SMX mode and private registers are open for read/write.
+ */
+
+ /* On Intel, have to handle TPM localities via TXT */
+ memcpy_toio(txt + TXT_CR_CMD_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_OPEN_LOCALITY1, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+
+ slaunch_fetch_os_mle_fields(txt);
+
+ slaunch_verify_pmrs(txt);
+
+ slaunch_txt_reserve(txt);
+
+ slaunch_copy_dmar_table(txt);
+
+ early_iounmap(txt, TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+
+ pr_info("Intel TXT setup complete\n");
+}
diff --git a/drivers/iommu/intel/dmar.c b/drivers/iommu/intel/dmar.c
index d66f79a..d167e5d 100644
--- a/drivers/iommu/intel/dmar.c
+++ b/drivers/iommu/intel/dmar.c
@@ -29,6 +29,7 @@
#include <linux/iommu.h>
#include <linux/numa.h>
#include <linux/limits.h>
+#include <linux/slaunch.h>
#include <asm/irq_remapping.h>
#include <asm/iommu_table.h>
#include <trace/events/intel_iommu.h>
@@ -663,6 +664,9 @@ static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
*/
dmar_tbl = tboot_get_dmar_table(dmar_tbl);

+ /* If Secure Launch is active, it has similar logic */
+ dmar_tbl = slaunch_get_dmar_table(dmar_tbl);
+
dmar = (struct acpi_table_dmar *)dmar_tbl;
if (!dmar)
return -ENODEV;
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:19 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The Secure Launch MLE environment uses PCRs that are only accessible from
the DRTM locality 2. By default the TPM drivers always initialize the
locality to 0. When a Secure Launch is in progress, initialize the
locality to 2.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
drivers/char/tpm/tpm-chip.c | 13 +++++++++++--
1 file changed, 11 insertions(+), 2 deletions(-)

diff --git a/drivers/char/tpm/tpm-chip.c b/drivers/char/tpm/tpm-chip.c
index ddaeceb..48b9351 100644
--- a/drivers/char/tpm/tpm-chip.c
+++ b/drivers/char/tpm/tpm-chip.c
@@ -23,6 +23,7 @@
#include <linux/major.h>
#include <linux/tpm_eventlog.h>
#include <linux/hw_random.h>
+#include <linux/slaunch.h>
#include "tpm.h"

DEFINE_IDR(dev_nums_idr);
@@ -34,12 +35,20 @@

static int tpm_request_locality(struct tpm_chip *chip)
{
- int rc;
+ int rc, locality;

if (!chip->ops->request_locality)
return 0;

- rc = chip->ops->request_locality(chip, 0);
+ if (slaunch_get_flags() & SL_FLAG_ACTIVE) {
+ dev_dbg(&chip->dev, "setting TPM locality to 2 for MLE\n");
+ locality = 2;
+ } else {
+ dev_dbg(&chip->dev, "setting TPM locality to 0\n");
+ locality = 0;
+ }
+
+ rc = chip->ops->request_locality(chip, locality);
if (rc < 0)
return rc;

--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:20 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: "Daniel P. Smith" <dps...@apertussolutions.com>

The SHA algorithms are necessary to measure configuration information into
the TPM as early as possible before using the values. This implementation
uses the established approach of #including the SHA libraries directly in
the code since the compressed kernel is not uncompressed at this point.

The SHA code here has its origins in the code from the main kernel, commit
c4d5b9ffa31f (crypto: sha1 - implement base layer for SHA-1). That code could
not be pulled directly into the setup portion of the compressed kernel because
of other dependencies it pulls in. The result is this is a modified copy of
that code that still leverages the core SHA algorithms.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/boot/compressed/Makefile | 2 +
arch/x86/boot/compressed/early_sha1.c | 103 ++++++++++++++++++++++++++++++++
arch/x86/boot/compressed/early_sha1.h | 17 ++++++
arch/x86/boot/compressed/early_sha256.c | 7 +++
lib/crypto/sha256.c | 8 +++
lib/sha1.c | 4 ++
6 files changed, 141 insertions(+)
create mode 100644 arch/x86/boot/compressed/early_sha1.c
create mode 100644 arch/x86/boot/compressed/early_sha1.h
create mode 100644 arch/x86/boot/compressed/early_sha256.c

diff --git a/arch/x86/boot/compressed/Makefile b/arch/x86/boot/compressed/Makefile
index 431bf7f..059d49a 100644
--- a/arch/x86/boot/compressed/Makefile
+++ b/arch/x86/boot/compressed/Makefile
@@ -102,6 +102,8 @@ vmlinux-objs-$(CONFIG_ACPI) += $(obj)/acpi.o
vmlinux-objs-$(CONFIG_EFI_MIXED) += $(obj)/efi_thunk_$(BITS).o
efi-obj-$(CONFIG_EFI_STUB) = $(objtree)/drivers/firmware/efi/libstub/lib.a

+vmlinux-objs-$(CONFIG_SECURE_LAUNCH) += $(obj)/early_sha1.o $(obj)/early_sha256.o
+
$(obj)/vmlinux: $(vmlinux-objs-y) $(efi-obj-y) FORCE
$(call if_changed,ld)

diff --git a/arch/x86/boot/compressed/early_sha1.c b/arch/x86/boot/compressed/early_sha1.c
new file mode 100644
index 0000000..74f4654
--- /dev/null
+++ b/arch/x86/boot/compressed/early_sha1.c
@@ -0,0 +1,103 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2021 Apertus Solutions, LLC.
+ */
+
+#include <linux/init.h>
+#include <linux/linkage.h>
+#include <linux/string.h>
+#include <asm/boot.h>
+#include <asm/unaligned.h>
+
+#include "early_sha1.h"
+
+#define SHA1_DISABLE_EXPORT
+#include "../../../../lib/sha1.c"
+
+/* The SHA1 implementation in lib/sha1.c was written to get the workspace
+ * buffer as a parameter. This wrapper function provides a container
+ * around a temporary workspace that is cleared after the transform completes.
+ */
+static void __sha_transform(u32 *digest, const char *data)
+{
+ u32 ws[SHA1_WORKSPACE_WORDS];
+
+ sha1_transform(digest, data, ws);
+
+ memset(ws, 0, sizeof(ws));
+ /*
+ * As this is cryptographic code, prevent the memset 0 from being
+ * optimized out potentially leaving secrets in memory.
+ */
+ wmb();
+
+}
+
+void early_sha1_init(struct sha1_state *sctx)
+{
+ sha1_init(sctx->state);
+ sctx->count = 0;
+}
+
+void early_sha1_update(struct sha1_state *sctx,
+ const u8 *data,
+ unsigned int len)
+{
+ unsigned int partial = sctx->count % SHA1_BLOCK_SIZE;
+
+ sctx->count += len;
+
+ if (likely((partial + len) >= SHA1_BLOCK_SIZE)) {
+ int blocks;
+
+ if (partial) {
+ int p = SHA1_BLOCK_SIZE - partial;
+
+ memcpy(sctx->buffer + partial, data, p);
+ data += p;
+ len -= p;
+
+ __sha_transform(sctx->state, sctx->buffer);
+ }
+
+ blocks = len / SHA1_BLOCK_SIZE;
+ len %= SHA1_BLOCK_SIZE;
+
+ if (blocks) {
+ while (blocks--) {
+ __sha_transform(sctx->state, data);
+ data += SHA1_BLOCK_SIZE;
+ }
+ }
+ partial = 0;
+ }
+
+ if (len)
+ memcpy(sctx->buffer + partial, data, len);
+}
+
+void early_sha1_final(struct sha1_state *sctx, u8 *out)
+{
+ const int bit_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
+ __be64 *bits = (__be64 *)(sctx->buffer + bit_offset);
+ __be32 *digest = (__be32 *)out;
+ unsigned int partial = sctx->count % SHA1_BLOCK_SIZE;
+ int i;
+
+ sctx->buffer[partial++] = 0x80;
+ if (partial > bit_offset) {
+ memset(sctx->buffer + partial, 0x0, SHA1_BLOCK_SIZE - partial);
+ partial = 0;
+
+ __sha_transform(sctx->state, sctx->buffer);
+ }
+
+ memset(sctx->buffer + partial, 0x0, bit_offset - partial);
+ *bits = cpu_to_be64(sctx->count << 3);
+ __sha_transform(sctx->state, sctx->buffer);
+
+ for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(__be32); i++)
+ put_unaligned_be32(sctx->state[i], digest++);
+
+ *sctx = (struct sha1_state){};
+}
diff --git a/arch/x86/boot/compressed/early_sha1.h b/arch/x86/boot/compressed/early_sha1.h
new file mode 100644
index 0000000..6584ea5
--- /dev/null
+++ b/arch/x86/boot/compressed/early_sha1.h
@@ -0,0 +1,17 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2021 Apertus Solutions, LLC
+ */
+
+#ifndef BOOT_COMPRESSED_EARLY_SHA1_H
+#define BOOT_COMPRESSED_EARLY_SHA1_H
+
+#include <crypto/sha1.h>
+
+void early_sha1_init(struct sha1_state *sctx);
+void early_sha1_update(struct sha1_state *sctx,
+ const u8 *data,
+ unsigned int len);
+void early_sha1_final(struct sha1_state *sctx, u8 *out);
+
+#endif /* BOOT_COMPRESSED_EARLY_SHA1_H */
diff --git a/arch/x86/boot/compressed/early_sha256.c b/arch/x86/boot/compressed/early_sha256.c
new file mode 100644
index 0000000..db8d784
--- /dev/null
+++ b/arch/x86/boot/compressed/early_sha256.c
@@ -0,0 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2021 Apertus Solutions, LLC
+ */
+
+#define SHA256_DISABLE_EXPORT
+#include "../../../../lib/crypto/sha256.c"
diff --git a/lib/crypto/sha256.c b/lib/crypto/sha256.c
index 72a4b0b..e532220 100644
--- a/lib/crypto/sha256.c
+++ b/lib/crypto/sha256.c
@@ -149,13 +149,17 @@ void sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len)
}
memcpy(sctx->buf + partial, src, len - done);
}
+#ifndef SHA256_DISABLE_EXPORT
EXPORT_SYMBOL(sha256_update);
+#endif

void sha224_update(struct sha256_state *sctx, const u8 *data, unsigned int len)
{
sha256_update(sctx, data, len);
}
+#ifndef SHA256_DISABLE_EXPORT
EXPORT_SYMBOL(sha224_update);
+#endif

static void __sha256_final(struct sha256_state *sctx, u8 *out, int digest_words)
{
@@ -188,13 +192,17 @@ void sha256_final(struct sha256_state *sctx, u8 *out)
{
__sha256_final(sctx, out, 8);
}
+#ifndef SHA256_DISABLE_EXPORT
EXPORT_SYMBOL(sha256_final);
+#endif

void sha224_final(struct sha256_state *sctx, u8 *out)
{
__sha256_final(sctx, out, 7);
}
+#ifndef SHA256_DISABLE_EXPORT
EXPORT_SYMBOL(sha224_final);
+#endif

void sha256(const u8 *data, unsigned int len, u8 *out)
{
diff --git a/lib/sha1.c b/lib/sha1.c
index 9bd1935..0598efd 100644
--- a/lib/sha1.c
+++ b/lib/sha1.c
@@ -187,7 +187,9 @@ void sha1_transform(__u32 *digest, const char *data, __u32 *array)
digest[3] += D;
digest[4] += E;
}
+#ifndef SHA1_DISABLE_EXPORT
EXPORT_SYMBOL(sha1_transform);
+#endif

/**
* sha1_init - initialize the vectors for a SHA1 digest
@@ -201,4 +203,6 @@ void sha1_init(__u32 *buf)
buf[3] = 0x10325476;
buf[4] = 0xc3d2e1f0;
}
+#ifndef SHA1_DISABLE_EXPORT
EXPORT_SYMBOL(sha1_init);
+#endif
--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:26 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
If the MLE kernel is being powered off, rebooted or halted,
then SEXIT must be called. Note that the SEXIT GETSEC leaf
can only be called after a machine_shutdown() has been done on
these paths. The machine_shutdown() is not called on a few paths
like when poweroff action does not have a poweroff callback (into
ACPI code) or when an emergency reset is done. In these cases,
just the TXT registers are finalized but SEXIT is skipped.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/reboot.c | 10 ++++++++++
1 file changed, 10 insertions(+)

diff --git a/arch/x86/kernel/reboot.c b/arch/x86/kernel/reboot.c
index ebfb911..fe9d8cc 100644
--- a/arch/x86/kernel/reboot.c
+++ b/arch/x86/kernel/reboot.c
@@ -12,6 +12,7 @@
#include <linux/delay.h>
#include <linux/objtool.h>
#include <linux/pgtable.h>
+#include <linux/slaunch.h>
#include <acpi/reboot.h>
#include <asm/io.h>
#include <asm/apic.h>
@@ -731,6 +732,7 @@ static void native_machine_restart(char *__unused)

if (!reboot_force)
machine_shutdown();
+ slaunch_finalize(!reboot_force);
__machine_emergency_restart(0);
}

@@ -741,6 +743,9 @@ static void native_machine_halt(void)

tboot_shutdown(TB_SHUTDOWN_HALT);

+ /* SEXIT done after machine_shutdown() to meet TXT requirements */
+ slaunch_finalize(1);
+
stop_this_cpu(NULL);
}

@@ -749,8 +754,12 @@ static void native_machine_power_off(void)
if (pm_power_off) {
if (!reboot_force)
machine_shutdown();
+ slaunch_finalize(!reboot_force);
pm_power_off();
+ } else {
+ slaunch_finalize(0);
}
+
/* A fallback in case there is no PM info available */
tboot_shutdown(TB_SHUTDOWN_HALT);
}
@@ -778,6 +787,7 @@ void machine_shutdown(void)

void machine_emergency_restart(void)
{
+ slaunch_finalize(0);
__machine_emergency_restart(1);
}

--
1.8.3.1

Ross Philipson

unread,
Aug 9, 2021, 12:31:26 PM8/9/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Introduce the main Secure Launch header file used in the early SL stub
and the early setup code.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
include/linux/slaunch.h | 532 ++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 532 insertions(+)
create mode 100644 include/linux/slaunch.h

diff --git a/include/linux/slaunch.h b/include/linux/slaunch.h
new file mode 100644
index 0000000..c125b67
--- /dev/null
+++ b/include/linux/slaunch.h
@@ -0,0 +1,532 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Main Secure Launch header file.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+
+#ifndef _LINUX_SLAUNCH_H
+#define _LINUX_SLAUNCH_H
+
+/*
+ * Secure Launch Defined State Flags
+ */
+#define SL_FLAG_ACTIVE 0x00000001
+#define SL_FLAG_ARCH_SKINIT 0x00000002
+#define SL_FLAG_ARCH_TXT 0x00000004
+
+/*
+ * Secure Launch CPU Type
+ */
+#define SL_CPU_AMD 1
+#define SL_CPU_INTEL 2
+
+#if IS_ENABLED(CONFIG_SECURE_LAUNCH)
+
+#define __SL32_CS 0x0008
+#define __SL32_DS 0x0010
+
+/*
+ * Intel Safer Mode Extensions (SMX)
+ *
+ * Intel SMX provides a programming interface to establish a Measured Launched
+ * Environment (MLE). The measurement and protection mechanisms supported by the
+ * capabilities of an Intel Trusted Execution Technology (TXT) platform. SMX is
+ * the processor’s programming interface in an Intel TXT platform.
+ *
+ * See Intel SDM Volume 2 - 6.1 "Safer Mode Extensions Reference"
+ */
+
+/*
+ * SMX GETSEC Leaf Functions
+ */
+#define SMX_X86_GETSEC_SEXIT 5
+#define SMX_X86_GETSEC_SMCTRL 7
+#define SMX_X86_GETSEC_WAKEUP 8
+
+/*
+ * Intel Trusted Execution Technology MMIO Registers Banks
+ */
+#define TXT_PUB_CONFIG_REGS_BASE 0xfed30000
+#define TXT_PRIV_CONFIG_REGS_BASE 0xfed20000
+#define TXT_NR_CONFIG_PAGES ((TXT_PUB_CONFIG_REGS_BASE - \
+ TXT_PRIV_CONFIG_REGS_BASE) >> PAGE_SHIFT)
+
+/*
+ * Intel Trusted Execution Technology (TXT) Registers
+ */
+#define TXT_CR_STS 0x0000
+#define TXT_CR_ESTS 0x0008
+#define TXT_CR_ERRORCODE 0x0030
+#define TXT_CR_CMD_RESET 0x0038
+#define TXT_CR_CMD_CLOSE_PRIVATE 0x0048
+#define TXT_CR_DIDVID 0x0110
+#define TXT_CR_VER_EMIF 0x0200
+#define TXT_CR_CMD_UNLOCK_MEM_CONFIG 0x0218
+#define TXT_CR_SINIT_BASE 0x0270
+#define TXT_CR_SINIT_SIZE 0x0278
+#define TXT_CR_MLE_JOIN 0x0290
+#define TXT_CR_HEAP_BASE 0x0300
+#define TXT_CR_HEAP_SIZE 0x0308
+#define TXT_CR_SCRATCHPAD 0x0378
+#define TXT_CR_CMD_OPEN_LOCALITY1 0x0380
+#define TXT_CR_CMD_CLOSE_LOCALITY1 0x0388
+#define TXT_CR_CMD_OPEN_LOCALITY2 0x0390
+#define TXT_CR_CMD_CLOSE_LOCALITY2 0x0398
+#define TXT_CR_CMD_SECRETS 0x08e0
+#define TXT_CR_CMD_NO_SECRETS 0x08e8
+#define TXT_CR_E2STS 0x08f0
+
+/* TXT default register value */
+#define TXT_REGVALUE_ONE 0x1ULL
+
+/* TXTCR_STS status bits */
+#define TXT_SENTER_DONE_STS (1<<0)
+#define TXT_SEXIT_DONE_STS (1<<1)
+
+/*
+ * SINIT/MLE Capabilities Field Bit Definitions
+ */
+#define TXT_SINIT_MLE_CAP_WAKE_GETSEC 0
+#define TXT_SINIT_MLE_CAP_WAKE_MONITOR 1
+
+/*
+ * OS/MLE Secure Launch Specific Definitions
+ */
+#define TXT_OS_MLE_STRUCT_VERSION 1
+#define TXT_OS_MLE_MAX_VARIABLE_MTRRS 32
+
+/*
+ * TXT Heap Table Enumeration
+ */
+#define TXT_BIOS_DATA_TABLE 1
+#define TXT_OS_MLE_DATA_TABLE 2
+#define TXT_OS_SINIT_DATA_TABLE 3
+#define TXT_SINIT_MLE_DATA_TABLE 4
+#define TXT_SINIT_TABLE_MAX TXT_SINIT_MLE_DATA_TABLE
+
+/*
+ * Secure Launch Defined Error Codes used in MLE-initiated TXT resets.
+ *
+ * TXT Specification
+ * Appendix I ACM Error Codes
+ */
+#define SL_ERROR_GENERIC 0xc0008001
+#define SL_ERROR_TPM_INIT 0xc0008002
+#define SL_ERROR_TPM_INVALID_LOG20 0xc0008003
+#define SL_ERROR_TPM_LOGGING_FAILED 0xc0008004
+#define SL_ERROR_REGION_STRADDLE_4GB 0xc0008005
+#define SL_ERROR_TPM_EXTEND 0xc0008006
+#define SL_ERROR_MTRR_INV_VCNT 0xc0008007
+#define SL_ERROR_MTRR_INV_DEF_TYPE 0xc0008008
+#define SL_ERROR_MTRR_INV_BASE 0xc0008009
+#define SL_ERROR_MTRR_INV_MASK 0xc000800a
+#define SL_ERROR_MSR_INV_MISC_EN 0xc000800b
+#define SL_ERROR_INV_AP_INTERRUPT 0xc000800c
+#define SL_ERROR_INTEGER_OVERFLOW 0xc000800d
+#define SL_ERROR_HEAP_WALK 0xc000800e
+#define SL_ERROR_HEAP_MAP 0xc000800f
+#define SL_ERROR_REGION_ABOVE_4GB 0xc0008010
+#define SL_ERROR_HEAP_INVALID_DMAR 0xc0008011
+#define SL_ERROR_HEAP_DMAR_SIZE 0xc0008012
+#define SL_ERROR_HEAP_DMAR_MAP 0xc0008013
+#define SL_ERROR_HI_PMR_BASE 0xc0008014
+#define SL_ERROR_HI_PMR_SIZE 0xc0008015
+#define SL_ERROR_LO_PMR_BASE 0xc0008016
+#define SL_ERROR_LO_PMR_MLE 0xc0008017
+#define SL_ERROR_INITRD_TOO_BIG 0xc0008018
+#define SL_ERROR_HEAP_ZERO_OFFSET 0xc0008019
+#define SL_ERROR_WAKE_BLOCK_TOO_SMALL 0xc000801a
+#define SL_ERROR_MLE_BUFFER_OVERLAP 0xc000801b
+#define SL_ERROR_BUFFER_BEYOND_PMR 0xc000801c
+#define SL_ERROR_OS_SINIT_BAD_VERSION 0xc000801d
+#define SL_ERROR_EVENTLOG_MAP 0xc000801e
+#define SL_ERROR_TPM_NUMBER_ALGS 0xc000801f
+#define SL_ERROR_TPM_UNKNOWN_DIGEST 0xc0008020
+#define SL_ERROR_TPM_INVALID_EVENT 0xc0008021
+
+/*
+ * Secure Launch Defined Limits
+ */
+#define TXT_MAX_CPUS 512
+#define TXT_BOOT_STACK_SIZE 24
+
+/*
+ * Secure Launch event log entry type. The TXT specification defines the
+ * base event value as 0x400 for DRTM values.
+ */
+#define TXT_EVTYPE_BASE 0x400
+#define TXT_EVTYPE_SLAUNCH (TXT_EVTYPE_BASE + 0x102)
+#define TXT_EVTYPE_SLAUNCH_START (TXT_EVTYPE_BASE + 0x103)
+#define TXT_EVTYPE_SLAUNCH_END (TXT_EVTYPE_BASE + 0x104)
+
+/*
+ * Measured Launch PCRs
+ */
+#define SL_DEF_IMAGE_PCR17 17 /* TCG Details PCR */
+#define SL_DEF_CONFIG_PCR18 18 /* TCG Authorities PCR */
+#define SL_ALT_CONFIG_PCR19 19
+#define SL_ALT_IMAGE_PCR20 20
+
+/*
+ * MLE scratch area offsets
+ */
+#define SL_SCRATCH_AP_EBX 0
+#define SL_SCRATCH_AP_JMP_OFFSET 4
+#define SL_SCRATCH_AP_PAUSE 8
+
+#ifndef __ASSEMBLY__
+
+#include <linux/io.h>
+#include <linux/tpm.h>
+#include <linux/tpm_eventlog.h>
+
+/*
+ * Secure Launch AP wakeup information fetched in SMP boot code.
+ */
+struct sl_ap_wake_info {
+ u32 ap_wake_block;
+ u32 ap_wake_block_size;
+ u32 ap_jmp_offset;
+};
+
+/*
+ * TXT heap extended data elements.
+ */
+struct txt_heap_ext_data_element {
+ u32 type;
+ u32 size;
+ /* Data */
+} __packed;
+
+#define TXT_HEAP_EXTDATA_TYPE_END 0
+
+struct txt_heap_end_element {
+ u32 type;
+ u32 size;
+} __packed;
+
+#define TXT_HEAP_EXTDATA_TYPE_TPM_EVENT_LOG_PTR 5
+
+struct txt_heap_event_log_element {
+ u64 event_log_phys_addr;
+} __packed;
+
+#define TXT_HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2_1 8
+
+struct txt_heap_event_log_pointer2_1_element {
+ u64 phys_addr;
+ u32 allocated_event_container_size;
+ u32 first_record_offset;
+ u32 next_record_offset;
+} __packed;
+
+/*
+ * Secure Launch defined MTRR saving structures
+ */
+struct txt_mtrr_pair {
+ u64 mtrr_physbase;
+ u64 mtrr_physmask;
+} __packed;
+
+struct txt_mtrr_state {
+ u64 default_mem_type;
+ u64 mtrr_vcnt;
+ struct txt_mtrr_pair mtrr_pair[TXT_OS_MLE_MAX_VARIABLE_MTRRS];
+} __packed;
+
+/*
+ * Secure Launch defined OS/MLE TXT Heap table
+ */
+struct txt_os_mle_data {
+ u32 version;
+ u32 boot_params_addr;
+ u64 saved_misc_enable_msr;
+ struct txt_mtrr_state saved_bsp_mtrrs;
+ u32 ap_wake_block;
+ u32 ap_wake_block_size;
+ u64 evtlog_addr;
+ u32 evtlog_size;
+ u8 mle_scratch[64];
+} __packed;
+
+/*
+ * TXT specification defined BIOS data TXT Heap table
+ */
+struct txt_bios_data {
+ u32 version; /* Currently 5 for TPM 1.2 and 6 for TPM 2.0 */
+ u32 bios_sinit_size;
+ u64 reserved1;
+ u64 reserved2;
+ u32 num_logical_procs;
+ /* Versions >= 5 with updates in version 6 */
+ u32 sinit_flags;
+ u32 mle_flags;
+ /* Versions >= 4 */
+ /* Ext Data Elements */
+} __packed;
+
+/*
+ * TXT specification defined OS/SINIT TXT Heap table
+ */
+struct txt_os_sinit_data {
+ u32 version; /* Currently 6 for TPM 1.2 and 7 for TPM 2.0 */
+ u32 flags;
+ u64 mle_ptab;
+ u64 mle_size;
+ u64 mle_hdr_base;
+ u64 vtd_pmr_lo_base;
+ u64 vtd_pmr_lo_size;
+ u64 vtd_pmr_hi_base;
+ u64 vtd_pmr_hi_size;
+ u64 lcp_po_base;
+ u64 lcp_po_size;
+ u32 capabilities;
+ /* Version = 5 */
+ u64 efi_rsdt_ptr;
+ /* Versions >= 6 */
+ /* Ext Data Elements */
+} __packed;
+
+/*
+ * TXT specification defined SINIT/MLE TXT Heap table
+ */
+struct txt_sinit_mle_data {
+ u32 version; /* Current values are 6 through 9 */
+ /* Versions <= 8 */
+ u8 bios_acm_id[20];
+ u32 edx_senter_flags;
+ u64 mseg_valid;
+ u8 sinit_hash[20];
+ u8 mle_hash[20];
+ u8 stm_hash[20];
+ u8 lcp_policy_hash[20];
+ u32 lcp_policy_control;
+ /* Versions >= 7 */
+ u32 rlp_wakeup_addr;
+ u32 reserved;
+ u32 num_of_sinit_mdrs;
+ u32 sinit_mdrs_table_offset;
+ u32 sinit_vtd_dmar_table_size;
+ u32 sinit_vtd_dmar_table_offset;
+ /* Versions >= 8 */
+ u32 processor_scrtm_status;
+ /* Versions >= 9 */
+ /* Ext Data Elements */
+} __packed;
+
+/*
+ * TXT data reporting structure for memory types
+ */
+struct txt_sinit_memory_descriptor_record {
+ u64 address;
+ u64 length;
+ u8 type;
+ u8 reserved[7];
+} __packed;
+
+/*
+ * TXT data structure used by a responsive local processor (RLP) to start
+ * execution in response to a GETSEC[WAKEUP].
+ */
+struct smx_rlp_mle_join {
+ u32 rlp_gdt_limit;
+ u32 rlp_gdt_base;
+ u32 rlp_seg_sel; /* cs (ds, es, ss are seg_sel+8) */
+ u32 rlp_entry_point; /* phys addr */
+} __packed;
+
+/*
+ * TPM event log structures defined in both the TXT specification and
+ * the TCG documentation.
+ */
+#define TPM12_EVTLOG_SIGNATURE "TXT Event Container"
+
+struct tpm12_event_log_header {
+ char signature[20];
+ char reserved[12];
+ u8 container_ver_major;
+ u8 container_ver_minor;
+ u8 pcr_event_ver_major;
+ u8 pcr_event_ver_minor;
+ u32 container_size;
+ u32 pcr_events_offset;
+ u32 next_event_offset;
+ /* PCREvents[] */
+} __packed;
+
+/*
+ * Functions to extract data from the Intel TXT Heap Memory. The layout
+ * of the heap is as follows:
+ * +----------------------------+
+ * | Size Bios Data table (u64) |
+ * +----------------------------+
+ * | Bios Data table |
+ * +----------------------------+
+ * | Size OS MLE table (u64) |
+ * +----------------------------+
+ * | OS MLE table |
+ * +--------------------------- +
+ * | Size OS SINIT table (u64) |
+ * +----------------------------+
+ * | OS SINIT table |
+ * +----------------------------+
+ * | Size SINIT MLE table (u64) |
+ * +----------------------------+
+ * | SINIT MLE table |
+ * +----------------------------+
+ *
+ * NOTE: the table size fields include the 8 byte size field itself.
+ */
+static inline u64 txt_bios_data_size(void *heap)
+{
+ return *((u64 *)heap);
+}
+
+static inline void *txt_bios_data_start(void *heap)
+{
+ return heap + sizeof(u64);
+}
+
+static inline u64 txt_os_mle_data_size(void *heap)
+{
+ return *((u64 *)(heap + txt_bios_data_size(heap)));
+}
+
+static inline void *txt_os_mle_data_start(void *heap)
+{
+ return heap + txt_bios_data_size(heap) + sizeof(u64);
+}
+
+static inline u64 txt_os_sinit_data_size(void *heap)
+{
+ return *((u64 *)(heap + txt_bios_data_size(heap) +
+ txt_os_mle_data_size(heap)));
+}
+
+static inline void *txt_os_sinit_data_start(void *heap)
+{
+ return heap + txt_bios_data_size(heap) +
+ txt_os_mle_data_size(heap) + sizeof(u64);
+}
+
+static inline u64 txt_sinit_mle_data_size(void *heap)
+{
+ return *((u64 *)(heap + txt_bios_data_size(heap) +
+ txt_os_mle_data_size(heap) +
+ txt_os_sinit_data_size(heap)));
+}
+
+static inline void *txt_sinit_mle_data_start(void *heap)
+{
+ return heap + txt_bios_data_size(heap) +
+ txt_os_mle_data_size(heap) +
+ txt_sinit_mle_data_size(heap) + sizeof(u64);
+}
+
+/*
+ * TPM event logging functions.
+ */
+static inline struct txt_heap_event_log_pointer2_1_element*
+tpm20_find_log2_1_element(struct txt_os_sinit_data *os_sinit_data)
+{
+ struct txt_heap_ext_data_element *ext_elem;
+
+ /* The extended element array as at the end of this table */
+ ext_elem = (struct txt_heap_ext_data_element *)
+ ((u8 *)os_sinit_data + sizeof(struct txt_os_sinit_data));
+
+ while (ext_elem->type != TXT_HEAP_EXTDATA_TYPE_END) {
+ if (ext_elem->type ==
+ TXT_HEAP_EXTDATA_TYPE_EVENT_LOG_POINTER2_1) {
+ return (struct txt_heap_event_log_pointer2_1_element *)
+ ((u8 *)ext_elem +
+ sizeof(struct txt_heap_ext_data_element));
+ }
+ ext_elem =
+ (struct txt_heap_ext_data_element *)
+ ((u8 *)ext_elem + ext_elem->size);
+ }
+
+ return NULL;
+}
+
+static inline int tpm12_log_event(void *evtlog_base, u32 evtlog_size,
+ u32 event_size, void *event)
+{
+ struct tpm12_event_log_header *evtlog =
+ (struct tpm12_event_log_header *)evtlog_base;
+
+ if (memcmp(evtlog->signature, TPM12_EVTLOG_SIGNATURE,
+ sizeof(TPM12_EVTLOG_SIGNATURE)))
+ return -EINVAL;
+
+ if (evtlog->container_size > evtlog_size)
+ return -EINVAL;
+
+ if (evtlog->next_event_offset + event_size > evtlog->container_size)
+ return -E2BIG;
+
+ memcpy(evtlog_base + evtlog->next_event_offset, event, event_size);
+ evtlog->next_event_offset += event_size;
+
+ return 0;
+}
+
+static inline int tpm20_log_event(struct txt_heap_event_log_pointer2_1_element *elem,
+ void *evtlog_base, u32 evtlog_size,
+ u32 event_size, void *event)
+{
+ struct tcg_pcr_event *header =
+ (struct tcg_pcr_event *)evtlog_base;
+
+ /* Has to be at least big enough for the signature */
+ if (header->event_size < sizeof(TCG_SPECID_SIG))
+ return -EINVAL;
+
+ if (memcmp((u8 *)header + sizeof(struct tcg_pcr_event),
+ TCG_SPECID_SIG, sizeof(TCG_SPECID_SIG)))
+ return -EINVAL;
+
+ if (elem->allocated_event_container_size > evtlog_size)
+ return -EINVAL;
+
+ if (elem->next_record_offset + event_size >
+ elem->allocated_event_container_size)
+ return -E2BIG;
+
+ memcpy(evtlog_base + elem->next_record_offset, event, event_size);
+ elem->next_record_offset += event_size;
+
+ return 0;
+}
+
+/*
+ * External functions avalailable in compressed kernel.
+ */
+extern u32 slaunch_get_cpu_type(void);
+
+/*
+ * External functions avalailable in mainline kernel.
+ */
+extern void slaunch_setup_txt(void);
+extern u32 slaunch_get_flags(void);
+extern struct sl_ap_wake_info *slaunch_get_ap_wake_info(void);
+extern struct acpi_table_header *slaunch_get_dmar_table(struct acpi_table_header *dmar);
+extern void __noreturn slaunch_txt_reset(void __iomem *txt,
+ const char *msg, u64 error);
+extern void slaunch_finalize(int do_sexit);
+
+#endif /* !__ASSEMBLY */
+
+#else
+
+#define slaunch_get_cpu_type() 0
+#define slaunch_setup_txt() do { } while (0)
+#define slaunch_get_flags() 0
+#define slaunch_get_dmar_table(d) (d)
+#define slaunch_finalize(d) do { } while (0)
+
+#endif /* !IS_ENABLED(CONFIG_SECURE_LAUNCH) */
+
+#endif /* _LINUX_SLAUNCH_H */
--
1.8.3.1

Jarkko Sakkinen

unread,
Aug 10, 2021, 12:19:35 PM8/10/21
to Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Mon, Aug 09, 2021 at 12:38:44PM -0400, Ross Philipson wrote:
> One of the two functions in ioremap.c that handles setup_data was
> missing the correct handling of setup_indirect structures.

What is "correct handling", and how was it broken?

What is 'setup_indirect'?

> Functionality missing from original commit:

Remove this sentence.

> commit b3c72fc9a78e (x86/boot: Introduce setup_indirect)

Should be.

Fixes: b3c72fc9a78e ("x86/boot: Introduce setup_indirect")
/Jarkko

Jarkko Sakkinen

unread,
Aug 10, 2021, 12:21:23 PM8/10/21
to Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Mon, Aug 09, 2021 at 12:38:56PM -0400, Ross Philipson wrote:
> The Secure Launch MLE environment uses PCRs that are only accessible from
> the DRTM locality 2. By default the TPM drivers always initialize the
> locality to 0. When a Secure Launch is in progress, initialize the
> locality to 2.
>
> Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
> ---
> drivers/char/tpm/tpm-chip.c | 13 +++++++++++--
> 1 file changed, 11 insertions(+), 2 deletions(-)
>
> diff --git a/drivers/char/tpm/tpm-chip.c b/drivers/char/tpm/tpm-chip.c
> index ddaeceb..48b9351 100644
> --- a/drivers/char/tpm/tpm-chip.c
> +++ b/drivers/char/tpm/tpm-chip.c
> @@ -23,6 +23,7 @@
> #include <linux/major.h>
> #include <linux/tpm_eventlog.h>
> #include <linux/hw_random.h>
> +#include <linux/slaunch.h>
> #include "tpm.h"
>
> DEFINE_IDR(dev_nums_idr);
> @@ -34,12 +35,20 @@
>
> static int tpm_request_locality(struct tpm_chip *chip)
> {
> - int rc;
> + int rc, locality;

int locality;
int rc;

>
> if (!chip->ops->request_locality)
> return 0;
>
> - rc = chip->ops->request_locality(chip, 0);
> + if (slaunch_get_flags() & SL_FLAG_ACTIVE) {
> + dev_dbg(&chip->dev, "setting TPM locality to 2 for MLE\n");
> + locality = 2;
> + } else {
> + dev_dbg(&chip->dev, "setting TPM locality to 0\n");
> + locality = 0;
> + }

Please, remove dev_dbg()'s.

> +
> + rc = chip->ops->request_locality(chip, locality);
> if (rc < 0)
> return rc;
>
> --
> 1.8.3.1

/Jarkko

Jarkko Sakkinen

unread,
Aug 10, 2021, 12:23:24 PM8/10/21
to Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Mon, Aug 09, 2021 at 12:38:42PM -0400, Ross Philipson wrote:
> The focus of Trechboot project (https://github.com/TrenchBoot) is to
> enhance the boot security and integrity. This requires the linux kernel
~~~~~
Linux

How does it enhance it? The following sentence explains the requirements
for the Linux kernel, i.e. it's a question without answer. And if there
is no answer, there is no need to merge this.

/Jarkko

Ross Philipson

unread,
Aug 16, 2021, 10:16:18 AM8/16/21
to Jarkko Sakkinen, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On 8/10/21 12:19 PM, Jarkko Sakkinen wrote:
> On Mon, Aug 09, 2021 at 12:38:44PM -0400, Ross Philipson wrote:
>> One of the two functions in ioremap.c that handles setup_data was
>> missing the correct handling of setup_indirect structures.
>
> What is "correct handling", and how was it broken?
>
> What is 'setup_indirect'?
>
>> Functionality missing from original commit:
>
> Remove this sentence.
>
>> commit b3c72fc9a78e (x86/boot: Introduce setup_indirect)
>
> Should be.
>
> Fixes: b3c72fc9a78e ("x86/boot: Introduce setup_indirect")

I will fix these things and make the commit message clearer.

Thanks,
Ross

Ross Philipson

unread,
Aug 16, 2021, 10:18:25 AM8/16/21
to Jarkko Sakkinen, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Will do.

>
>>
>> if (!chip->ops->request_locality)
>> return 0;
>>
>> - rc = chip->ops->request_locality(chip, 0);
>> + if (slaunch_get_flags() & SL_FLAG_ACTIVE) {
>> + dev_dbg(&chip->dev, "setting TPM locality to 2 for MLE\n");
>> + locality = 2;
>> + } else {
>> + dev_dbg(&chip->dev, "setting TPM locality to 0\n");
>> + locality = 0;
>> + }
>
> Please, remove dev_dbg()'s.

Will do.

Thanks
Ross

Daniel P. Smith

unread,
Aug 24, 2021, 10:11:05 PM8/24/21
to Jarkko Sakkinen, Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
We have added a documentation patch that provides background
information, an overview of the capability, and details about the
implementation. We can reword the cover letter, adding reference to this
documentation. And ack on fixing the incorrect case on Linux.

V/r
dps

Ross Philipson

unread,
Aug 27, 2021, 9:20:59 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: "Daniel P. Smith" <dps...@apertussolutions.com>

The SHA algorithms are necessary to measure configuration information into
the TPM as early as possible before using the values. This implementation
uses the established approach of #including the SHA libraries directly in
the code since the compressed kernel is not uncompressed at this point.

The SHA code here has its origins in the code from the main kernel, commit
c4d5b9ffa31f (crypto: sha1 - implement base layer for SHA-1). That code could
not be pulled directly into the setup portion of the compressed kernel because
of other dependencies it pulls in. The result is this is a modified copy of
that code that still leverages the core SHA algorithms.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/boot/compressed/Makefile | 2 +
arch/x86/boot/compressed/early_sha1.c | 103 ++++++++++++++++++++++++++++++++
arch/x86/boot/compressed/early_sha1.h | 17 ++++++
arch/x86/boot/compressed/early_sha256.c | 7 +++
lib/crypto/sha256.c | 8 +++
lib/sha1.c | 4 ++
6 files changed, 141 insertions(+)
create mode 100644 arch/x86/boot/compressed/early_sha1.c
create mode 100644 arch/x86/boot/compressed/early_sha1.h
create mode 100644 arch/x86/boot/compressed/early_sha256.c

diff --git a/arch/x86/boot/compressed/Makefile b/arch/x86/boot/compressed/Makefile
index 431bf7f..059d49a 100644
--- a/arch/x86/boot/compressed/Makefile
+++ b/arch/x86/boot/compressed/Makefile
@@ -102,6 +102,8 @@ vmlinux-objs-$(CONFIG_ACPI) += $(obj)/acpi.o
vmlinux-objs-$(CONFIG_EFI_MIXED) += $(obj)/efi_thunk_$(BITS).o
efi-obj-$(CONFIG_EFI_STUB) = $(objtree)/drivers/firmware/efi/libstub/lib.a

+vmlinux-objs-$(CONFIG_SECURE_LAUNCH) += $(obj)/early_sha1.o $(obj)/early_sha256.o
+
$(obj)/vmlinux: $(vmlinux-objs-y) $(efi-obj-y) FORCE
$(call if_changed,ld)

diff --git a/arch/x86/boot/compressed/early_sha1.c b/arch/x86/boot/compressed/early_sha1.c
new file mode 100644
new file mode 100644
index 0000000..6584ea5
--- /dev/null
+++ b/arch/x86/boot/compressed/early_sha1.h
@@ -0,0 +1,17 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2021 Apertus Solutions, LLC
+ */
+
+#ifndef BOOT_COMPRESSED_EARLY_SHA1_H
+#define BOOT_COMPRESSED_EARLY_SHA1_H
+
+#include <crypto/sha1.h>
+
+void early_sha1_init(struct sha1_state *sctx);
+void early_sha1_update(struct sha1_state *sctx,
+ const u8 *data,
+ unsigned int len);
+void early_sha1_final(struct sha1_state *sctx, u8 *out);
+
+#endif /* BOOT_COMPRESSED_EARLY_SHA1_H */
diff --git a/arch/x86/boot/compressed/early_sha256.c b/arch/x86/boot/compressed/early_sha256.c
new file mode 100644

Ross Philipson

unread,
Aug 27, 2021, 9:20:59 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The larger focus of the Trechboot project (https://github.com/TrenchBoot) is to
enhance the boot security and integrity in a unified manner. The first area of
focus has been on the Trusted Computing Group's Dynamic Launch for establishing
a hardware Root of Trust for Measurement, also know as DRTM (Dynamic Root of
Trust for Measurement). The project has been and continues to work on providing
a unified means to Dynamic Launch that is a cross-platform (Intel and AMD) and
cross-architecture (x86 and Arm), with our recent involvment in the upcoming
Arm DRTM specification. The order of introducing DRTM to the Linux kernel
follows the maturity of DRTM in the architectures. Intel's Trusted eXecution
Technology (TXT) is present today and only requires a preamble loader, e.g. a
boot loader, and an OS kernel that is TXT-aware. AMD DRTM implementation has
been present since the introduction of AMD-V but requires an additional
component that is AMD specific and referred to in the specification as the
Secure Loader, which the TrenchBoot project has an active prototype in
development. Finally Arm's implementation is in specification development stage
and the project is looking to support it when it becomes available.

The approach that the TrenchBoot project is taking requires the Linux kernel
to be directly invoked by the Dynamic Launch. The Dynamic Launch will
be initiated by a boot loader with associated support added to it, for
example the first targeted boot loader will be GRUB2. An integral part of
establishing the DRTM involves measuring everything that is intended to
be run (kernel image, initrd, etc) and everything that will configure
that kernel to run (command line, boot params, etc) into specific PCRs,
the DRTM PCRs (17-22), in the TPM. Another key aspect is the Dynamic
Launch is rooted in hardware, that is to say the hardware (CPU) is what
takes the first measurement for the chain of integrity measurements. On
Intel this is done using the GETSEC instruction provided by Intel's TXT
and the SKINIT instruction provided by AMD's AMD-V. Information on these
technologies can be readily found online. This patchset introduces Intel
TXT support.

To enable the kernel to be launched by GETSEC, a stub must be built
into the setup section of the compressed kernel to handle the specific
state that the dynamic launch process leaves the BSP in. Also this stub
must measure everything that is going to be used as early as possible.
This stub code and subsequent code must also deal with the specific
state that the dynamic launch leaves the APs in.

A quick note on terminology. The larger open source project itself is
called Trenchboot, which is hosted on Github (links below). The kernel
feature enabling the use of the x86 technology is referred to as "Secure
Launch" within the kernel code. As such the prefixes sl_/SL_ or
slaunch/SLAUNCH will be seen in the code. The stub code discussed above
is referred to as the SL stub.

The new feature starts with patch #4. There are several preceeding patches
before that. Patches 1 and 2 are fixes to an earlier patch set that
itroduced the x86 setup_data type setup_indirect. Patch 3 was authored
by Arvind Sankar. There is no further status on this patch at this point but
Secure Launch depends on it so it is included with the set.

The basic flow is:

- Entry from the dynamic launch jumps to the SL stub
- SL stub fixes up the world on the BSP
- For TXT, SL stub wakes the APs, fixes up their worlds
- For TXT, APs are left halted waiting for an NMI to wake them
- SL stub jumps to startup_32
- SL main locates the TPM event log and writes the measurements of
configuration and module information into it.
- Kernel boot proceeds normally from this point.
- During early setup, slaunch_setup() runs to finish some validation
and setup tasks.
- The SMP bringup code is modified to wake the waiting APs. APs vector
to rmpiggy and start up normally from that point.
- SL platform module is registered as a late initcall module. It reads
the TPM event log and extends the measurements taken into the TPM PCRs.
- SL platform module initializes the securityfs interface to allow
asccess to the TPM event log and TXT public registers.
- Kernel boot finishes booting normally
- SEXIT support to leave SMX mode is present on the kexec path and
the various reboot paths (poweroff, reset, halt).

- Introduce x86 documentation patch to provide background, overview
and configuration/ABI information for the Secure Launch kernel
feature.
- Remove the IOMMU patch with special cases for disabling IOMMU
passthrough. Configuring the IOMMU is now a documentation matter
in the previously mentioned new patch.
- Remove special case KASLR disabling code. Configuring KASLR is now
a documentation matter in the previously mentioned new patch.
- Fix incorrect panic on TXT public register read.
- Properly handle and measure setup_indirect bootparams in the early
launch code.
- Use correct compressed kernel image base address when testing buffers
in the early launch stub code. This bug was introduced by the changes
to avoid relocation in the compressed kernel.
- Use CPUID feature bits instead of CPUID vendor strings to determine
if SMX mode is supported and the system is Intel.
- Remove early NMI re-enable on the BSP. This can be safely done later
on the BSP after an IDT is setup.

Changes in v4:
- Expand the cover letter to provide more context to the order that DRTM
support will be added.
- Removed debug tracing in TPM request locality funciton and fixed
local variable declarations.
- Fixed missing break in default case in slmodule.c.
- Reworded commit messages in patches 1 and 2 per suggestions.

Arvind Sankar (1):
x86/boot: Place kernel_info at a fixed offset

Daniel P. Smith (2):
x86: Add early SHA support for Secure Launch early measurements
x86: Secure Launch late initcall platform module

Ross Philipson (11):
x86/boot: Fix memremap of setup_indirect structures
x86/boot: Add setup_indirect support in early_memremap_is_setup_data
Documentation/x86: Secure Launch kernel documentation
x86: Secure Launch Kconfig
x86: Secure Launch main header file
x86: Secure Launch kernel early boot stub
x86: Secure Launch kernel late boot stub
x86: Secure Launch SMP bringup support
kexec: Secure Launch kexec SEXIT support
reboot: Secure Launch SEXIT support on reboot paths
tpm: Allow locality 2 to be set when initializing the TPM for Secure
Launch

Documentation/x86/boot.rst | 13 +
Documentation/x86/index.rst | 1 +
Documentation/x86/secure-launch.rst | 716 ++++++++++++++++++++++++++++++++
arch/x86/Kconfig | 32 ++
arch/x86/boot/compressed/Makefile | 3 +
arch/x86/boot/compressed/early_sha1.c | 103 +++++
arch/x86/boot/compressed/early_sha1.h | 17 +
arch/x86/boot/compressed/early_sha256.c | 7 +
arch/x86/boot/compressed/head_64.S | 37 ++
arch/x86/boot/compressed/kernel_info.S | 53 ++-
arch/x86/boot/compressed/kernel_info.h | 12 +
arch/x86/boot/compressed/sl_main.c | 549 ++++++++++++++++++++++++
arch/x86/boot/compressed/sl_stub.S | 685 ++++++++++++++++++++++++++++++
arch/x86/boot/compressed/vmlinux.lds.S | 6 +
arch/x86/include/asm/realmode.h | 3 +
arch/x86/kernel/Makefile | 2 +
arch/x86/kernel/asm-offsets.c | 19 +
arch/x86/kernel/e820.c | 31 +-
arch/x86/kernel/kdebugfs.c | 32 +-
arch/x86/kernel/ksysfs.c | 56 ++-
arch/x86/kernel/reboot.c | 10 +
arch/x86/kernel/setup.c | 26 +-
arch/x86/kernel/slaunch.c | 531 +++++++++++++++++++++++
arch/x86/kernel/slmodule.c | 494 ++++++++++++++++++++++
arch/x86/kernel/smpboot.c | 86 ++++
arch/x86/mm/ioremap.c | 34 +-
arch/x86/realmode/rm/header.S | 3 +
arch/x86/realmode/rm/trampoline_64.S | 37 ++
drivers/char/tpm/tpm-chip.c | 9 +-
drivers/iommu/intel/dmar.c | 4 +
include/linux/slaunch.h | 532 ++++++++++++++++++++++++
kernel/kexec_core.c | 4 +
lib/crypto/sha256.c | 8 +
lib/sha1.c | 4 +
34 files changed, 4110 insertions(+), 49 deletions(-)
create mode 100644 Documentation/x86/secure-launch.rst
create mode 100644 arch/x86/boot/compressed/early_sha1.c
create mode 100644 arch/x86/boot/compressed/early_sha1.h
create mode 100644 arch/x86/boot/compressed/early_sha256.c
create mode 100644 arch/x86/boot/compressed/kernel_info.h
create mode 100644 arch/x86/boot/compressed/sl_main.c
create mode 100644 arch/x86/boot/compressed/sl_stub.S

Ross Philipson

unread,
Aug 27, 2021, 9:21:01 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Introduce the main Secure Launch header file used in the early SL stub
and the early setup code.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
include/linux/slaunch.h | 532 ++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 532 insertions(+)
create mode 100644 include/linux/slaunch.h

diff --git a/include/linux/slaunch.h b/include/linux/slaunch.h
new file mode 100644
index 0000000..c125b67
--- /dev/null
+++ b/include/linux/slaunch.h
@@ -0,0 +1,532 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*

Ross Philipson

unread,
Aug 27, 2021, 9:21:05 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The routine slaunch_setup is called out of the x86 specific setup_arch
routine during early kernel boot. After determining what platform is
present, various operations specific to that platform occur. This
includes finalizing setting for the platform late launch and verifying
that memory protections are in place.

For TXT, this code also reserves the original compressed kernel setup
area where the APs were left looping so that this memory cannot be used.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
new file mode 100644
index 0000000..f91f0b5
--- /dev/null
+++ b/arch/x86/kernel/slaunch.c
@@ -0,0 +1,460 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch late validation/setup and finalization support.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+
+void __noreturn slaunch_txt_reset(void __iomem *txt,
+ const char *msg, u64 error)
+{
+ u64 one = 1, val;
+
+ pr_err("%s", msg);
+
+ /*
+ * This performs a TXT reset with a sticky error code. The reads of
+ * TXT_CR_E2STS act as barriers.
+ */
+ memcpy_toio(txt + TXT_CR_ERRORCODE, &error, sizeof(error));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_NO_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_UNLOCK_MEM_CONFIG, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_RESET, &one, sizeof(one));
+
+ for ( ; ; )
+ asm volatile ("hlt");
+
+ unreachable();
+}
+
+/*
+ * The TXT heap is too big to map all at once with early_ioremap
+ * so it is done a table at a time.
+ */
+static void __init *txt_early_get_heap_table(void __iomem *txt, u32 type,
+ u32 bytes)
+{
+ void *heap;
+ u64 base, size, offset = 0;
+ int i;
+
+
+ return heap;
+}
+
+static void __init txt_early_put_heap_table(void *addr, unsigned long size)
+{
+ early_memunmap(addr, size);
+}
+
+/*
+}
+
+/*
+
+ for (i = 0; i < mdrnum; i++, mdr++) {
+ /* Spec says some entries can have length 0, ignore them */
+ if (mdr->type > 0 && mdr->length > 0)
+ slaunch_txt_reserve_range(mdr->address, mdr->length);
+ }
+
+ txt_early_put_heap_table(mdrs, mdroffset + mdrslen - 8);
+
+nomdr:
+ slaunch_txt_reserve_range(ap_wake_info.ap_wake_block,
+ ap_wake_info.ap_wake_block_size);
+
+ /*
+ * Earlier checks ensured that the event log was properly situated
+ * either inside the TXT heap or outside. This is a check to see if the
+ * event log needs to be reserved. If it is in the TXT heap, it is
+ * already reserved.
+ */
+ if (evtlog_addr < heap_base || evtlog_addr > (heap_base + heap_size))
+ slaunch_txt_reserve_range(evtlog_addr, evtlog_size);
+
+ for (i = 0; i < e820_table->nr_entries; i++) {
+ base = e820_table->entries[i].addr;
+ size = e820_table->entries[i].size;
+ if ((base >= vtd_pmr_lo_size) && (base < 0x100000000ULL))
+ slaunch_txt_reserve_range(base, size);
+ else if ((base < vtd_pmr_lo_size) &&
+ (base + size > vtd_pmr_lo_size))
+ slaunch_txt_reserve_range(vtd_pmr_lo_size,
+ base + size - vtd_pmr_lo_size);
+ }
+}
+
+/*
+}
+
+/*
+ * The location of the safe AP wake code block is stored in the TXT heap.
+ * Fetch it here in the early init code for later use in SMP startup.
+ *
+ * Also get the TPM event log values that may have to be put on the
+ * memblock reserve list later.
+ */
+static void __init slaunch_fetch_os_mle_fields(void __iomem *txt)
+{
+ struct txt_os_mle_data *os_mle_data;
+ u8 *jmp_offset;
+
+ os_mle_data = txt_early_get_heap_table(txt, TXT_OS_MLE_DATA_TABLE,
+ sizeof(*os_mle_data));
+
+ ap_wake_info.ap_wake_block = os_mle_data->ap_wake_block;
+ ap_wake_info.ap_wake_block_size = os_mle_data->ap_wake_block_size;
+
+ jmp_offset = os_mle_data->mle_scratch + SL_SCRATCH_AP_JMP_OFFSET;
+ ap_wake_info.ap_jmp_offset = *((u32 *)jmp_offset);
+
+ evtlog_addr = os_mle_data->evtlog_addr;
+ evtlog_size = os_mle_data->evtlog_size;
+
+ txt_early_put_heap_table(os_mle_data, sizeof(*os_mle_data));
+}
+
+/*

Ross Philipson

unread,
Aug 27, 2021, 9:21:05 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Intel, the APs are left in a well documented state after TXT performs
the late launch. Specifically they cannot have #INIT asserted on them so
a standard startup via INIT/SIPI/SIPI cannot be performed. Instead the
early SL stub code parked the APs in a pause/jmp loop waiting for an NMI.
The modified SMP boot code is called for the Secure Launch case. The
jump address for the RM piggy entry point is fixed up in the jump where
the APs are waiting and an NMI IPI is sent to the AP. The AP vectors to
the Secure Launch entry point in the RM piggy which mimics what the real
mode code would do then jumps the the standard RM piggy protected mode
entry point.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
+static atomic_t first_ap_only = {1};
+
+/*
+ * Called to fix the long jump address for the waiting APs to vector to
+ * the correct startup location in the Secure Launch stub in the rmpiggy.
+ */
+static int
+slaunch_fixup_jump_vector(void)
+{
+ struct sl_ap_wake_info *ap_wake_info;
+ u32 *ap_jmp_ptr = NULL;
+
+ if (!atomic_dec_and_test(&first_ap_only))
+ return 0;
+
+ ap_wake_info = slaunch_get_ap_wake_info();
+
+ ap_jmp_ptr = (u32 *)__va(ap_wake_info->ap_wake_block +
+ ap_wake_info->ap_jmp_offset);
+
+ *ap_jmp_ptr = real_mode_header->sl_trampoline_start32;
+
+ pr_info("TXT AP long jump address updated\n");
+
+ return 0;
+}
+
+/*
+ /*
+ * The early secure launch stub AP wakeup code has taken care of all
+ * the vagaries of launching out of TXT. This bit just mimics what the
+ * 16b entry code does and jumps off to the real startup_32.
+ */
+ cli
+ wbinvd
+
+ /*
+ * The %ebx provided is not terribly useful since it is the physical
+ * address of tb_trampoline_start and not the base of the image.
+ * Use pa_real_mode_base, which is fixed up, to get a run time
+ * base register to use for offsets to location that do not have
+ * pa_ symbols.
+ */
+ movl $pa_real_mode_base, %ebx
+
+ /*

Ross Philipson

unread,
Aug 27, 2021, 9:21:06 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The Secure Launch (SL) stub provides the entry point for Intel TXT (and
later AMD SKINIT) to vector to during the late launch. The symbol
sl_stub_entry is that entry point and its offset into the kernel is
conveyed to the launching code using the MLE (Measured Launch
Environment) header in the structure named mle_header. The offset of the
MLE header is set in the kernel_info. The routine sl_stub contains the
very early late launch setup code responsible for setting up the basic
environment to allow the normal kernel startup_32 code to proceed. It is
also responsible for properly waking and handling the APs on Intel
platforms. The routine sl_main which runs after entering 64b mode is
responsible for measuring configuration and module information before
it is used like the boot params, the kernel command line, the TXT heap,
an external initramfs, etc.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
Documentation/x86/boot.rst | 13 +
arch/x86/boot/compressed/Makefile | 3 +-
arch/x86/boot/compressed/head_64.S | 37 ++
arch/x86/boot/compressed/kernel_info.S | 34 ++
arch/x86/boot/compressed/sl_main.c | 549 ++++++++++++++++++++++++++
arch/x86/boot/compressed/sl_stub.S | 685 +++++++++++++++++++++++++++++++++
arch/x86/kernel/asm-offsets.c | 19 +
7 files changed, 1339 insertions(+), 1 deletion(-)
create mode 100644 arch/x86/boot/compressed/sl_main.c
create mode 100644 arch/x86/boot/compressed/sl_stub.S

diff --git a/Documentation/x86/boot.rst b/Documentation/x86/boot.rst
index 894a198..2fbcb77 100644
--- a/Documentation/x86/boot.rst
+++ b/Documentation/x86/boot.rst
@@ -1026,6 +1026,19 @@ Offset/size: 0x000c/4

This field contains maximal allowed type for setup_data and setup_indirect structs.

+============ =================
+Field name: mle_header_offset
+Offset/size: 0x0010/4
+============ =================
+
+ This field contains the offset to the Secure Launch Measured Launch Environment
+ (MLE) header. This offset is used to locate information needed during a secure
+ late launch using Intel TXT. If the offset is zero, the kernel does not have
+ Secure Launch capabilities. The MLE entry point is called from TXT on the BSP
+ following a success measured launch. The specific state of the processors is
+ outlined in the TXT Software Development Guide, the latest can be found here:
+ https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
+

The Image Checksum
==================
diff --git a/arch/x86/boot/compressed/Makefile b/arch/x86/boot/compressed/Makefile
index 059d49a..1fe55a5 100644
--- a/arch/x86/boot/compressed/Makefile
+++ b/arch/x86/boot/compressed/Makefile
@@ -102,7 +102,8 @@ vmlinux-objs-$(CONFIG_ACPI) += $(obj)/acpi.o
vmlinux-objs-$(CONFIG_EFI_MIXED) += $(obj)/efi_thunk_$(BITS).o
efi-obj-$(CONFIG_EFI_STUB) = $(objtree)/drivers/firmware/efi/libstub/lib.a

-vmlinux-objs-$(CONFIG_SECURE_LAUNCH) += $(obj)/early_sha1.o $(obj)/early_sha256.o
+vmlinux-objs-$(CONFIG_SECURE_LAUNCH) += $(obj)/early_sha1.o $(obj)/early_sha256.o \
+ $(obj)/sl_main.o $(obj)/sl_stub.o

$(obj)/vmlinux: $(vmlinux-objs-y) $(efi-obj-y) FORCE
$(call if_changed,ld)
+ /*
new file mode 100644
index 0000000..6ba59e7
--- /dev/null
+++ b/arch/x86/boot/compressed/sl_main.c
@@ -0,0 +1,549 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch early measurement and validation routines.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+
+
+ for ( ; ; )
+ asm volatile ("hlt");
+
+ unreachable();
+}
+
+static u64 sl_rdmsr(u32 reg)
+{
+ u64 lo, hi;
+
+ asm volatile ("rdmsr" : "=a" (lo), "=d" (hi) : "c" (reg));
+
+ return (hi << 32) | lo;
+}
+
+static void sl_check_pmr_coverage(void *base, u32 size, bool allow_hi)
+{
+ void *end = base + size;
+ struct txt_os_sinit_data *os_sinit_data;
+ void *txt_heap;
+
+ if (!(sl_cpu_type & SL_CPU_INTEL))
+ return;
+
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ if ((end >= (void *)0x100000000ULL) &&
+ (base < (void *)0x100000000ULL))
+ sl_txt_reset(SL_ERROR_REGION_STRADDLE_4GB);
+
+ /*
+ * Note that the late stub code validates that the hi PMR covers
+ * all memory above 4G. At this point the code can only check that
+ * regions are within the hi PMR but that is sufficient.
+ */
+ if ((end > (void *)0x100000000ULL) &&
+ (base >= (void *)0x100000000ULL)) {
+ if (allow_hi) {
+ if (end >= (void *)(os_sinit_data->vtd_pmr_hi_base +
+ os_sinit_data->vtd_pmr_hi_size))
+ sl_txt_reset(SL_ERROR_BUFFER_BEYOND_PMR);
+ } else
+ sl_txt_reset(SL_ERROR_REGION_ABOVE_4GB);
+ }
+
+ if (end >= (void *)os_sinit_data->vtd_pmr_lo_size)
+ sl_txt_reset(SL_ERROR_BUFFER_BEYOND_PMR);
+}
+
+/*
+ * Some MSRs are modified by the pre-launch code including the MTRRs.
+ * The early MLE code has to restore these values. This code validates
+ * the values after they are measured.
+ */
+static void sl_txt_validate_msrs(struct txt_os_mle_data *os_mle_data)
+{
+ u64 mtrr_caps, mtrr_def_type, mtrr_var, misc_en_msr;
+ u32 vcnt, i;
+ struct txt_mtrr_state *saved_bsp_mtrrs =
+ &(os_mle_data->saved_bsp_mtrrs);
+
+ mtrr_caps = sl_rdmsr(MSR_MTRRcap);
+ vcnt = (u32)(mtrr_caps & CAPS_VARIABLE_MTRR_COUNT_MASK);
+
+ if (saved_bsp_mtrrs->mtrr_vcnt > vcnt)
+ sl_txt_reset(SL_ERROR_MTRR_INV_VCNT);
+ if (saved_bsp_mtrrs->mtrr_vcnt > TXT_OS_MLE_MAX_VARIABLE_MTRRS)
+ sl_txt_reset(SL_ERROR_MTRR_INV_VCNT);
+
+ mtrr_def_type = sl_rdmsr(MSR_MTRRdefType);
+ if (saved_bsp_mtrrs->default_mem_type != mtrr_def_type)
+ sl_txt_reset(SL_ERROR_MTRR_INV_DEF_TYPE);
+
+ for (i = 0; i < saved_bsp_mtrrs->mtrr_vcnt; i++) {
+ mtrr_var = sl_rdmsr(MTRRphysBase_MSR(i));
+ if (saved_bsp_mtrrs->mtrr_pair[i].mtrr_physbase != mtrr_var)
+ sl_txt_reset(SL_ERROR_MTRR_INV_BASE);
+ mtrr_var = sl_rdmsr(MTRRphysMask_MSR(i));
+ if (saved_bsp_mtrrs->mtrr_pair[i].mtrr_physmask != mtrr_var)
+ sl_txt_reset(SL_ERROR_MTRR_INV_MASK);
+ }
+
+ misc_en_msr = sl_rdmsr(MSR_IA32_MISC_ENABLE);
+ if (os_mle_data->saved_misc_enable_msr != misc_en_msr)
+ sl_txt_reset(SL_ERROR_MSR_INV_MISC_EN);
+}
+
+static void sl_find_event_log(void)
+{
+ struct txt_os_mle_data *os_mle_data;
+ struct txt_os_sinit_data *os_sinit_data;
+ void *txt_heap;
+
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+
+ os_mle_data = txt_os_mle_data_start(txt_heap);
+ evtlog_base = (void *)os_mle_data->evtlog_addr;
+ evtlog_size = os_mle_data->evtlog_size;
+
+ /*
+ * For TPM 2.0, the event log 2.1 extended data structure has to also
+ * be located and fixed up.
+ */
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ /*
+ * Only support version 6 and later that properly handle the
+ * list of ExtDataElements in the OS-SINIT structure.
+ */
+ if (os_sinit_data->version < 6)
+ sl_txt_reset(SL_ERROR_OS_SINIT_BAD_VERSION);
+
+ /* Find the TPM2.0 logging extended heap element */
+ log20_elem = tpm20_find_log2_1_element(os_sinit_data);
+
+ /* If found, this implies TPM20 log and family */
+ if (log20_elem)
+ tpm_log_ver = SL_TPM20_LOG;
+}
+
+static void sl_validate_event_log_buffer(void)
+{
+ void *mle_base = (void *)(u64)sl_mle_start;
+ void *mle_end;
+ struct txt_os_sinit_data *os_sinit_data;
+ void *txt_heap;
+ void *txt_heap_end;
+ void *evtlog_end;
+
+ if ((u64)evtlog_size > (LLONG_MAX - (u64)evtlog_base))
+ sl_txt_reset(SL_ERROR_INTEGER_OVERFLOW);
+ evtlog_end = evtlog_base + evtlog_size;
+
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+ txt_heap_end = txt_heap + sl_txt_read(TXT_CR_HEAP_SIZE);
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ mle_end = mle_base + os_sinit_data->mle_size;
+
+ /*
+ * This check is to ensure the event log buffer does not overlap with
+ * the MLE image.
+ */
+ if ((evtlog_base >= mle_end) &&
+ (evtlog_end > mle_end))
+ goto pmr_check; /* above */
+
+ if ((evtlog_end <= mle_base) &&
+ (evtlog_base < mle_base))
+ goto pmr_check; /* below */
+
+ sl_txt_reset(SL_ERROR_MLE_BUFFER_OVERLAP);
+
+pmr_check:
+ /*
+ return NULL;
+
+ struct txt_os_mle_data *os_mle_data;
+ struct txt_os_mle_data os_mle_tmp = {0};
+ const char *signature;
+ unsigned long mmap = 0;
+ void *txt_heap;
+ u32 data_count;
+
+ /*
+ * Currently only Intel TXT is supported for Secure Launch. Testing
+ * this value also indicates that the kernel was booted successfully
+ * through the Secure Launch entry point and is in SMX mode.
+ */
+ if (!(sl_cpu_type & SL_CPU_INTEL))
+ return;
+
+ /* Locate the TPM event log. */
+ sl_find_event_log();
+
+ /* Validate the location of the event log buffer before using it */
+ sl_validate_event_log_buffer();
+
+ /*
+
+ /*
+
+ /*
+ * Some extra work to do on Intel, have to measure the OS-MLE
+ * heap area.
+ */
+ txt_heap = (void *)sl_txt_read(TXT_CR_HEAP_BASE);
+ os_mle_data = txt_os_mle_data_start(txt_heap);
+
+ /* Measure only portions of OS-MLE data, not addresses/sizes etc. */
+ os_mle_tmp.version = os_mle_data->version;
+ os_mle_tmp.saved_misc_enable_msr = os_mle_data->saved_misc_enable_msr;
+ os_mle_tmp.saved_bsp_mtrrs = os_mle_data->saved_bsp_mtrrs;
+
+ /* No PMR check is needed, the TXT heap is covered by the DPR */
+
+ sl_tpm_extend_evtlog(pcr_config, TXT_EVTYPE_SLAUNCH,
+ (u8 *)&os_mle_tmp,
+ sizeof(struct txt_os_mle_data),
+ "Measured TXT OS-MLE data");
+
+ sl_tpm_extend_evtlog(17, TXT_EVTYPE_SLAUNCH_END, NULL, 0, "");
+
+ /*
+ * Now that the OS-MLE data is measured, ensure the MTRR and
+ * misc enable MSRs are what we expect.
+ */
+ sl_txt_validate_msrs(os_mle_data);
+}
diff --git a/arch/x86/boot/compressed/sl_stub.S b/arch/x86/boot/compressed/sl_stub.S
new file mode 100644
index 0000000..e36ef62
--- /dev/null
+++ b/arch/x86/boot/compressed/sl_stub.S
@@ -0,0 +1,685 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+/*
+ * Secure Launch protected mode entry point.
+ *
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ */
+
+/*
+
+ /*
+ * On entry, %ebx has the entry abs offset to sl_stub_entry. This
+ * will be correctly scaled using the rva macro and avoid causing
+ * relocations. Only %cs and %ds segments are known good.
+ */
+
+ /* Load GDT, set segment regs and lret to __SL32_CS */
+ leal rva(sl_gdt_desc)(%ebx), %eax
+ addl %eax, 2(%eax)
+ lgdt (%eax)
+
+ movl $(__SL32_DS), %eax
+ movw %ax, %ds
+ movw %ax, %es
+ movw %ax, %fs
+ movw %ax, %gs
+ movw %ax, %ss
+
+ /*
+
+ /*
+ * Enable SMI with GETSEC[SMCTRL] which were disabled by SENTER.
+ * NMIs were also disabled by SENTER. Since there is no IDT for the BSP,
+ * allow the mainline kernel re-enable them in the normal course of
+ * booting.
+ */
+ GETSEC $(SMX_X86_GETSEC_SMCTRL)
+
+ /* Clear the TXT error registers for a clean start of day */
+ movl $0, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_ERRORCODE)
+ movl $0xffffffff, (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_ESTS)
+
+ /* On Intel, the zero page address is passed in the TXT heap */
+ /* Read physical base of heap into EAX */
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_HEAP_BASE), %eax
+ /* Read the size of the BIOS data into ECX (first 8 bytes) */
+ movl (%eax), %ecx
+ /* Skip over BIOS data and size of OS to MLE data section */
+ leal 8(%eax, %ecx), %eax
+
+ /* Need to verify the values in the OS-MLE struct passed in */
+ call sl_txt_verify_os_mle_struct
+
+ /*
+ * Get the boot params address from the heap. Note %esi and %ebx MUST
+ * be preserved across calls and operations.
+ */
+ movl SL_boot_params_addr(%eax), %esi
+
+ /* Save %ebx so the APs can find their way home */
+ movl %ebx, (SL_mle_scratch + SL_SCRATCH_AP_EBX)(%eax)
+
+ /* Fetch the AP wake code block address from the heap */
+ movl SL_ap_wake_block(%eax), %edi
+ movl %edi, rva(sl_txt_ap_wake_block)(%ebx)
+
+ /* Store the offset in the AP wake block to the jmp address */
+ movl $(sl_ap_jmp_offset - sl_txt_ap_wake_begin), \
+ (SL_mle_scratch + SL_SCRATCH_AP_JMP_OFFSET)(%eax)
+
+ /* %eax still is the base of the OS-MLE block, save it */
+ pushl %eax
+
+ /* Relocate the AP wake code to the safe block */
+ call sl_txt_reloc_ap_wake
+
+ /*
+ * Wake up all APs that are blocked in the ACM and wait for them to
+ * halt. This should be done before restoring the MTRRs so the ACM is
+ * still properly in WB memory.
+ */
+ call sl_txt_wake_aps
+
+ /*
+ * Pop OS-MLE base address (was in %eax above) for call to load
+ * MTRRs/MISC MSR
+ */
+ popl %edi
+ call sl_txt_load_regs
+
+ jmp .Lcpu_setup_done
+
+.Ldo_unknown_cpu:
+ /* Non-Intel CPUs are not yet supported */
+ ud2
+
+.Lcpu_setup_done:
+ /*
+ * Don't enable MCE at this point. The kernel will enable
+ * it on the BSP later when it is ready.
+ */
+
+ /*
+ * The %cs and %ds segments are known good after waking the AP.
+ * First order of business is to find where we are and
+ * save it in %ebx.
+ */
+
+ /* Read physical base of heap into EAX */
+ movl (TXT_PRIV_CONFIG_REGS_BASE + TXT_CR_HEAP_BASE), %eax
+
+ /*
+ * Basically done, increment the CPU count and jump off to the AP
+ * wake block to wait.
+ */
+ lock incl rva(sl_txt_cpu_count)(%ebx)
+
+ movl rva(sl_txt_ap_wake_block)(%ebx), %eax
+ jmp *%eax
+SYM_FUNC_END(sl_txt_ap_entry)
+
+SYM_FUNC_START(sl_txt_reloc_ap_wake)
+ /* Save boot params register */
+ pushl %esi
+
+ movl rva(sl_txt_ap_wake_block)(%ebx), %edi
+
+ /* Fixup AP IDT and GDT descriptor before relocating */
+ leal rva(sl_ap_idt_desc)(%ebx), %eax
+ addl %edi, 2(%eax)
+ leal rva(sl_ap_gdt_desc)(%ebx), %eax
+ addl %edi, 2(%eax)
+
+ /*
+ pushl %ebx
+
+ /*
+
+ /*
+ * Wait for NMI IPI in the relocated AP wake block which was provided
+ * and protected in the memory map by the prelaunch code. Leave all
+ * other interrupts masked since we do not expect anything but an NMI.
+ */
+ xorl %edx, %edx
+
+1:
+ hlt
+ testl %edx, %edx
+ jz 1b
+
+ /*
@@ -12,6 +12,7 @@

Ross Philipson

unread,
Aug 27, 2021, 9:21:06 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Prior to running the next kernel via kexec, the Secure Launch code
closes down private SMX resources and does an SEXIT. This allows the
next kernel to start normally without any issues starting the APs etc.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/slaunch.c | 71 +++++++++++++++++++++++++++++++++++++++++++++++
kernel/kexec_core.c | 4 +++
2 files changed, 75 insertions(+)

diff --git a/arch/x86/kernel/slaunch.c b/arch/x86/kernel/slaunch.c
index f91f0b5..60a193a 100644
--- a/arch/x86/kernel/slaunch.c
+++ b/arch/x86/kernel/slaunch.c
@@ -458,3 +458,74 @@ void __init slaunch_setup_txt(void)

pr_info("Intel TXT setup complete\n");
}
+
+static inline void smx_getsec_sexit(void)
+{
+ asm volatile (".byte 0x0f,0x37\n"
+ : : "a" (SMX_X86_GETSEC_SEXIT));
+}
+
+void slaunch_finalize(int do_sexit)
+{
+ void __iomem *config;
+ u64 one = TXT_REGVALUE_ONE, val;
+
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) !=
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT))
+ return;
+
+ config = ioremap(TXT_PRIV_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!config) {
+ pr_emerg("Error SEXIT failed to ioremap TXT private reqs\n");
+ return;
+ }
+
+ /* Clear secrets bit for SEXIT */
+ memcpy_toio(config + TXT_CR_CMD_NO_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ /* Unlock memory configurations */
+ memcpy_toio(config + TXT_CR_CMD_UNLOCK_MEM_CONFIG, &one, sizeof(one));
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ /* Close the TXT private register space */
+ memcpy_toio(config + TXT_CR_CMD_CLOSE_PRIVATE, &one, sizeof(one));
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ /*
+ * Calls to iounmap are not being done because of the state of the
+ * system this late in the kexec process. Local IRQs are disabled and
+ * iounmap causes a TLB flush which in turn causes a warning. Leaving
+ * thse mappings is not an issue since the next kernel is going to
+ * completely re-setup memory management.
+ */
+
+ /* Map public registers and do a final read fence */
+ config = ioremap(TXT_PUB_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!config) {
+ pr_emerg("Error SEXIT failed to ioremap TXT public reqs\n");
+ return;
+ }
+
+ memcpy_fromio(&val, config + TXT_CR_E2STS, sizeof(val));
+
+ pr_emerg("TXT clear secrets bit and unlock memory complete.");
+
+ if (!do_sexit)
+ return;
+
+ if (smp_processor_id() != 0) {
+ pr_emerg("Error TXT SEXIT must be called on CPU 0\n");
+ return;
+ }
+
+ /* Disable SMX mode */
+ cr4_set_bits(X86_CR4_SMXE);
+
+ /* Do the SEXIT SMX operation */
+ smx_getsec_sexit();
+
+ pr_emerg("TXT SEXIT complete.");
+}
diff --git a/kernel/kexec_core.c b/kernel/kexec_core.c
index 4b34a9a..fdf0a27 100644
--- a/kernel/kexec_core.c
+++ b/kernel/kexec_core.c
@@ -39,6 +39,7 @@
#include <linux/hugetlb.h>
#include <linux/objtool.h>
#include <linux/kmsg_dump.h>
+#include <linux/slaunch.h>

#include <asm/page.h>
#include <asm/sections.h>
@@ -1179,6 +1180,9 @@ int kernel_kexec(void)
cpu_hotplug_enable();
pr_notice("Starting new kernel\n");
machine_shutdown();
+
+ /* Finalize TXT registers and do SEXIT */
+ slaunch_finalize(1);
}

kmsg_dump(KMSG_DUMP_SHUTDOWN);
--
1.8.3.1

Ross Philipson

unread,
Aug 27, 2021, 9:21:08 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
If the MLE kernel is being powered off, rebooted or halted,
then SEXIT must be called. Note that the SEXIT GETSEC leaf
can only be called after a machine_shutdown() has been done on
these paths. The machine_shutdown() is not called on a few paths
like when poweroff action does not have a poweroff callback (into
ACPI code) or when an emergency reset is done. In these cases,
just the TXT registers are finalized but SEXIT is skipped.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/reboot.c | 10 ++++++++++
1 file changed, 10 insertions(+)

diff --git a/arch/x86/kernel/reboot.c b/arch/x86/kernel/reboot.c
index ebfb911..fe9d8cc 100644
--- a/arch/x86/kernel/reboot.c
+++ b/arch/x86/kernel/reboot.c
@@ -12,6 +12,7 @@

Ross Philipson

unread,
Aug 27, 2021, 9:21:12 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The Secure Launch MLE environment uses PCRs that are only accessible from
the DRTM locality 2. By default the TPM drivers always initialize the
locality to 0. When a Secure Launch is in progress, initialize the
locality to 2.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
drivers/char/tpm/tpm-chip.c | 9 ++++++++-
1 file changed, 8 insertions(+), 1 deletion(-)

diff --git a/drivers/char/tpm/tpm-chip.c b/drivers/char/tpm/tpm-chip.c
index ddaeceb..ce0a3b7 100644
--- a/drivers/char/tpm/tpm-chip.c
+++ b/drivers/char/tpm/tpm-chip.c
@@ -23,6 +23,7 @@
#include <linux/major.h>
#include <linux/tpm_eventlog.h>
#include <linux/hw_random.h>
+#include <linux/slaunch.h>
#include "tpm.h"

DEFINE_IDR(dev_nums_idr);
@@ -34,12 +35,18 @@

static int tpm_request_locality(struct tpm_chip *chip)
{
+ int locality;
int rc;

if (!chip->ops->request_locality)
return 0;

- rc = chip->ops->request_locality(chip, 0);
+ if (slaunch_get_flags() & SL_FLAG_ACTIVE)
+ locality = 2;
+ else
+ locality = 0;

Ross Philipson

unread,
Aug 27, 2021, 9:21:13 AM8/27/21
to linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: "Daniel P. Smith" <dps...@apertussolutions.com>

The Secure Launch platform module is a late init module. During the
init call, the TPM event log is read and measurements taken in the
early boot stub code are located. These measurements are extended
into the TPM PCRs using the mainline TPM kernel driver.

The platform module also registers the securityfs nodes to allow
access to TXT register fields on Intel along with the fetching of
and writing events to the late launch TPM log.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: garnetgrimm <gri...@ainfosec.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/Makefile | 1 +
arch/x86/kernel/slmodule.c | 494 +++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 495 insertions(+)
create mode 100644 arch/x86/kernel/slmodule.c

diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index d6ee904..09b730a 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -81,6 +81,7 @@ obj-$(CONFIG_IA32_EMULATION) += tls.o
obj-y += step.o
obj-$(CONFIG_INTEL_TXT) += tboot.o
obj-$(CONFIG_SECURE_LAUNCH) += slaunch.o
+obj-$(CONFIG_SECURE_LAUNCH) += slmodule.o
obj-$(CONFIG_ISA_DMA_API) += i8237.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += cpu/
diff --git a/arch/x86/kernel/slmodule.c b/arch/x86/kernel/slmodule.c
new file mode 100644
index 0000000..bad50f0a
--- /dev/null
+++ b/arch/x86/kernel/slmodule.c
@@ -0,0 +1,494 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch late validation/setup, securityfs exposure and
+ * finalization support.
+ *
+ * Copyright (c) 2021 Apertus Solutions, LLC
+ * Copyright (c) 2021 Assured Information Security, Inc.
+ * Copyright (c) 2021, Oracle and/or its affiliates.
+ *
+ * Author(s):
+ * Daniel P. Smith <dps...@apertussolutions.com>
+ * Garnet T. Grimm <gri...@ainfosec.com>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/linkage.h>
+#include <linux/mm.h>
+#include <linux/io.h>
+#include <linux/uaccess.h>
+#include <linux/security.h>
+#include <linux/memblock.h>
+#include <asm/segment.h>
+#include <asm/sections.h>
+#include <crypto/sha2.h>
+#include <linux/slaunch.h>
+
+#define SL_FS_ENTRIES 10
+/* root directory node must be last */
+#define SL_ROOT_DIR_ENTRY (SL_FS_ENTRIES - 1)
+#define SL_TXT_DIR_ENTRY (SL_FS_ENTRIES - 2)
+#define SL_TXT_FILE_FIRST (SL_TXT_DIR_ENTRY - 1)
+#define SL_TXT_ENTRY_COUNT 7
+
+#define DECLARE_TXT_PUB_READ_U(size, fmt, msg_size) \
+static ssize_t txt_pub_read_u##size(unsigned int offset, \
+ loff_t *read_offset, \
+ size_t read_len, \
+ char __user *buf) \
+{ \
+ void __iomem *txt; \
+ char msg_buffer[msg_size]; \
+ u##size reg_value = 0; \
+ txt = ioremap(TXT_PUB_CONFIG_REGS_BASE, \
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE); \
+ return 0;
+
+ mutex_lock(&sl_evt_log_mutex);
+ size = simple_read_from_buffer(buf, count, pos, sl_evtlog.addr,
+ sl_evtlog.size);
+ mutex_unlock(&sl_evt_log_mutex);
+
+ return size;
+}
+
+static ssize_t sl_evtlog_write(struct file *file, const char __user *buf,
+ size_t datalen, loff_t *ppos)
+{
+ char *data;
+ ssize_t result;
+
+ if (!sl_evtlog.addr)
+ return 0;
+
+ /* No partial writes. */
+ result = -EINVAL;
+ if (*ppos != 0)
+ goto out;
+
+ data = memdup_user(buf, datalen);
+ if (IS_ERR(data)) {
+ result = PTR_ERR(data);
+ goto out;
+ }
+
+ return PTR_ERR(fs_entries[entry]);
+ }
+ return 0;
+}
+
+static long slaunch_expose_securityfs(void)
+{
+ long ret = 0;
+ int i = 0;
+
+ fs_entries[SL_ROOT_DIR_ENTRY] = securityfs_create_dir("slaunch", NULL);
+ if (IS_ERR(fs_entries[SL_ROOT_DIR_ENTRY])) {
+ pr_err("Error creating securityfs slaunch root directory\n");
+ ret = PTR_ERR(fs_entries[SL_ROOT_DIR_ENTRY]);
+ goto err;
+ }
+
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ fs_entries[SL_TXT_DIR_ENTRY] =
+ securityfs_create_dir("txt",
+ fs_entries[SL_ROOT_DIR_ENTRY]);
+ if (IS_ERR(fs_entries[SL_TXT_DIR_ENTRY])) {
+ pr_err("Error creating securityfs txt directory\n");
+ ret = PTR_ERR(fs_entries[SL_TXT_DIR_ENTRY]);
+ goto err_dir;
+ }
+
+ for (i = 0; i < SL_TXT_ENTRY_COUNT; i++) {
+ ret = sl_create_file(SL_TXT_FILE_FIRST - i,
+ sl_files[i].parent, sl_files[i].name,
+ sl_files[i].fops);
+ if (ret)
+ goto err_dir;
+ }
+ }
+
+ if (sl_evtlog.addr > 0) {
+ ret = sl_create_file(0, SL_ROOT_DIR_ENTRY, sl_evtlog.name,
+ &sl_evtlog_ops);
+ if (ret)
+ goto err_dir;
+ }
+
+ return 0;
+
+err_dir:
+ for (i = 0; i <= SL_ROOT_DIR_ENTRY; i++)
+ securityfs_remove(fs_entries[i]);
+err:
+ return ret;
+}
+
+static void slaunch_teardown_securityfs(void)
+{
+ int i;
+
+ for (i = 0; i < SL_FS_ENTRIES; i++)
+ securityfs_remove(fs_entries[i]);
+
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ if (sl_evtlog.addr) {
+ memunmap(sl_evtlog.addr);
+ sl_evtlog.addr = NULL;
+ }
+ sl_evtlog.size = 0;
+ if (txt_heap) {
+ memunmap(txt_heap);
+ txt_heap = NULL;
+ }
+ }
+}
+
+static void slaunch_intel_evtlog(void __iomem *txt)
+{
+ struct txt_os_mle_data *params;
+ void *os_sinit_data;
+ u64 base, size;
+
+ memcpy_fromio(&base, txt + TXT_CR_HEAP_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_HEAP_SIZE, sizeof(size));
+
+ /* now map TXT heap */
+ txt_heap = memremap(base, size, MEMREMAP_WB);
+ if (!txt_heap)
+ slaunch_txt_reset(txt,
+ "Error failed to memremap TXT heap\n",
+ SL_ERROR_HEAP_MAP);
+
+ params = (struct txt_os_mle_data *)txt_os_mle_data_start(txt_heap);
+
+ sl_evtlog.size = params->evtlog_size;
+ sl_evtlog.addr = memremap(params->evtlog_addr, params->evtlog_size,
+ MEMREMAP_WB);
+ if (!sl_evtlog.addr)
+ slaunch_txt_reset(txt,
+ "Error failed to memremap TPM event log\n",
+ SL_ERROR_EVENTLOG_MAP);
+
+ /* Determine if this is TPM 1.2 or 2.0 event log */
+ if (memcmp(sl_evtlog.addr + sizeof(struct tcg_pcr_event),
+ TCG_SPECID_SIG, sizeof(TCG_SPECID_SIG)))
+ return; /* looks like it is not 2.0 */
+
+ /* For TPM 2.0 logs, the extended heap element must be located */
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ evtlog20 = tpm20_find_log2_1_element(os_sinit_data);
+
+ /*
+
+ for (i = 0; i < tpm->nr_allocated_banks; i++)
+ digests[i].alg_id = tpm->allocated_banks[i].alg_id;
+
+
+ /* Early SL code ensured there was a max count of 2 digests */
+ for (i = 0; i < event->count; i++) {
+ dptr = (u8 *)alg_id_field + sizeof(u16);
+
+ for (j = 0; j < tpm->nr_allocated_banks; j++) {
+ if (digests[j].alg_id != *alg_id_field)
+ continue;
+
+ switch (digests[j].alg_id) {
+ case TPM_ALG_SHA256:
+ memcpy(&digests[j].digest[0], dptr,
+ SHA256_DIGEST_SIZE);
+ alg_id_field = (u16 *)((u8 *)alg_id_field +
+ SHA256_DIGEST_SIZE + sizeof(u16));
+ break;
+ case TPM_ALG_SHA1:
+ memcpy(&digests[j].digest[0], dptr,
+ SHA1_DIGEST_SIZE);
+ alg_id_field = (u16 *)((u8 *)alg_id_field +
+ SHA1_DIGEST_SIZE + sizeof(u16));
+ default:
+ break;
+ }
+ }
+ }
+
+ ret = tpm_pcr_extend(tpm, event->pcr_idx, digests);
+ if (ret) {
+ pr_err("Error extending TPM20 PCR, result: %d\n", ret);
+ slaunch_txt_reset(txt,
+ "Failed to extend TPM20 PCR\n",
+ SL_ERROR_TPM_EXTEND);
+ }
+
+ kfree(digests);
+}
+
+static void slaunch_tpm20_extend(struct tpm_chip *tpm, void __iomem *txt)
+{
+ struct tcg_pcr_event *event_header =
+ (struct tcg_pcr_event *)(sl_evtlog.addr +
+ evtlog20->first_record_offset);
+ /* Skip first TPM 1.2 event to get to first TPM 2.0 event */
+ struct tcg_pcr_event2_head *event =
+ (struct tcg_pcr_event2_head *)((u8 *)event_header +
+ sizeof(struct tcg_pcr_event) +
+ event_header->event_size);
+ int start = 0, end = 0, size;
+
+ while ((void *)event < sl_evtlog.addr + evtlog20->next_record_offset) {
+ size = __calc_tpm2_event_size(event, event_header, false);
+ if (!size)
+ slaunch_txt_reset(txt,
+ "TPM20 invalid event in event log\n",
+ SL_ERROR_TPM_INVALID_EVENT);
+
+ /*
+ * Marker events indicate where the Secure Launch early stub
+ * started and ended adding post launch events.
+ */
+ if (event->event_type == TXT_EVTYPE_SLAUNCH_END) {
+ end = 1;
+ break;
+ } else if (event->event_type == TXT_EVTYPE_SLAUNCH_START) {
+ start = 1;
+ goto next;
+ }
+
+ if (start)
+ slaunch_tpm20_extend_event(tpm, txt, event);
+
+next:
+ event = (struct tcg_pcr_event2_head *)((u8 *)event + size);
+ }
+
+ if (!start || !end)
+ slaunch_txt_reset(txt,
+ "Missing start or end events for extending TPM20 PCRs\n",
+ SL_ERROR_TPM_EXTEND);
+}
+
+static void slaunch_tpm12_extend(struct tpm_chip *tpm, void __iomem *txt)
+{
+ struct tpm12_event_log_header *event_header =
+ (struct tpm12_event_log_header *)sl_evtlog.addr;
+ struct tcg_pcr_event *event =
+ (struct tcg_pcr_event *)((u8 *)event_header +
+ sizeof(struct tpm12_event_log_header));
+ struct tpm_digest digest;
+ int start = 0, end = 0, size, ret;
+
+ while ((void *)event < sl_evtlog.addr + event_header->next_event_offset) {
+ size = sizeof(struct tcg_pcr_event) + event->event_size;
+
+ /*
+static void slaunch_pcr_extend(void __iomem *txt)
+{
+ struct tpm_chip *tpm;
+
+ tpm = tpm_default_chip();
+ if (!tpm)
+ slaunch_txt_reset(txt,
+ "Could not get default TPM chip\n",
+ SL_ERROR_TPM_INIT);
+ if (evtlog20)
+ slaunch_tpm20_extend(tpm, txt);
+ else
+ slaunch_tpm12_extend(tpm, txt);
+}
+
+static int __init slaunch_module_init(void)
+{
+ void __iomem *txt;
+
+ /* Check to see if Secure Launch happened */
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) !=
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT))
+ return 0;
+
+ txt = ioremap(TXT_PRIV_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!txt)
+ panic("Error ioremap of TXT priv registers\n");
+

Jason Gunthorpe

unread,
Aug 27, 2021, 9:30:13 AM8/27/21
to Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Fri, Aug 27, 2021 at 09:28:37AM -0400, Ross Philipson wrote:
> The Secure Launch MLE environment uses PCRs that are only accessible from
> the DRTM locality 2. By default the TPM drivers always initialize the
> locality to 0. When a Secure Launch is in progress, initialize the
> locality to 2.
>
> Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
> ---
> drivers/char/tpm/tpm-chip.c | 9 ++++++++-
> 1 file changed, 8 insertions(+), 1 deletion(-)

Global state like this seems quite dangerous, shouldn't the locality
be selected based on the PCR being accessed, or passed down from
higher up in the call chain?

Jason

Daniel P. Smith

unread,
Aug 30, 2021, 3:46:06 PM8/30/21
to Jason Gunthorpe, Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Hey Jason,

While locality does control which PCRs are accessible, it is meant to
reflect what component that a TPM command is originating. To quote the
TCG Spec, "“Locality” is an assertion to the TPM that a command’s source
is associated with a particular component. Locality can be thought of as
a hardware-based authorization."

Thus when the SRTM chain, to include the Static OS, is in control, the
hardware is required to restrict access to only Locality 0. Once a
Dynamic Launch has occurred, the hardware grants access to Locality 1
and 2. Again to refer to the TCG spec, the definition of Locality 2 is,
the "Dynamically Launched OS (Dynamic OS) “runtime” environment".

When Linux is started from the SRTM, it is correct for the TPM driver to
set the locality to Locality 0 to denote that the source is the Static
OS. Now when Linux is started from the DRTM, the TPM driver should set
the locality to Locality 2 to denote that it is the "runtime" Dynamic
OS. As for the differences in access, with Locality 0 Linux (being the
Static OS) is restricted to the Static PCRs (0-15), the Debug PCR (16),
and the Application PCR (23). Whereas with Locality 2 Linux now being
the Dynamic OS will have access to all PCRs.

To summarize, TPM locality really is a global state that reflects the
component in control of the platform. Considering the definition of
locality, setting the locality to Locality 0 is saying that the Static
Environment is now in control. Doing so after the Dynamic Environment
has started would be an inaccurate setting of the platform state. The
correct time at which the locality should change back to Locality 0 is
after the Dynamic Environment has been exited. On Intel this can be done
by invoking the instruction GETSEC[SEXIT]. It should be noted that
Secure Launch adds the call to the GETSEC[SEXIT] instruction in the
kexec, reboot, and shutdown paths.

v/r,
dps

Paul Moore

unread,
Nov 30, 2021, 8:07:01 PM11/30/21
to Ross Philipson, trenchbo...@googlegroups.com, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com
On Fri, Aug 27, 2021 at 9:20 AM Ross Philipson
<ross.ph...@oracle.com> wrote:
>
> The larger focus of the Trechboot project (https://github.com/TrenchBoot) is to
> enhance the boot security and integrity in a unified manner. The first area of
> focus has been on the Trusted Computing Group's Dynamic Launch for establishing
> a hardware Root of Trust for Measurement, also know as DRTM (Dynamic Root of
> Trust for Measurement).

My apologies for such a late reply, but I'm just getting around to
looking at this and I have a few questions on the basic design/flow
(below) ...

> The basic flow is:
>
> - Entry from the dynamic launch jumps to the SL stub

So I'm clear, at this point the combined stub+kernel+initramfs+cmdline
image has already been loaded into memory and the SL stub is
executing, yes?

As TrenchBoot seems to be focused on boot measurement and not
enforcing policy, I'm guessing this is considered out-of-scope (not to
mention that the combined stub+kernel image makes this less
interesting), but has any thought been given to leveraging the TXT
launch control policy, or is it simply an empty run-everything policy?

> - SL stub fixes up the world on the BSP
> - For TXT, SL stub wakes the APs, fixes up their worlds
> - For TXT, APs are left halted waiting for an NMI to wake them
> - SL stub jumps to startup_32
> - SL main locates the TPM event log and writes the measurements of
> configuration and module information into it.

Since the stub+kernel image are combined it looks like the kernel
measurement comes from the ACM via the MLE measurement into PCR 18,
while the stub generated measurements are extended into PCR 19 or 20
depending on the configuration, yes?

I realize that moving the TXT code into the kernel makes this
difficult (not possible?), but one of the things that was nice about
the tboot based approach (dynamic, early launch) was that it could be
extended to do different types of measurements, e.g. a signing
authority measurement similar to UEFI Secure Boot and PCR 7. If that
is possible, I think it is something worth including in the design,
even if it isn't initially implemented. The only thing that
immediately comes to mind would be a section/region based approach
similar to systemd-boot/gummiboot where the (signed) kernel is kept in
a well known region and verified/measured by the stub prior to jumping
into its start point.

> - Kernel boot proceeds normally from this point.
> - During early setup, slaunch_setup() runs to finish some validation
> and setup tasks.
> - The SMP bringup code is modified to wake the waiting APs. APs vector
> to rmpiggy and start up normally from that point.
> - SL platform module is registered as a late initcall module. It reads
> the TPM event log and extends the measurements taken into the TPM PCRs.

I'm sure there is some issue with passing data across boundaries, but
is there any reason why the TPM event log needs to be updated
out-of-sync with the TPM PCRs? Is is possible to pass the
measurements to the SL platform module which would both extend the
PCRs and update the TPM event log at the same time?

> - SL platform module initializes the securityfs interface to allow
> asccess to the TPM event log and TXT public registers.
> - Kernel boot finishes booting normally
> - SEXIT support to leave SMX mode is present on the kexec path and
> the various reboot paths (poweroff, reset, halt).

It doesn't look like it's currently implemented, but it looks like
eventually you plan to support doing a new DRTM measurement on kexec,
is that correct? I'm sure that is something a *lot* of people
(including myself) would like to see happen.

--
paul moore
www.paul-moore.com

Daniel P. Smith

unread,
Dec 2, 2021, 11:11:23 AM12/2/21
to Paul Moore, Ross Philipson, trenchbo...@googlegroups.com, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com
Hi Paul!

On 11/30/21 8:06 PM, Paul Moore wrote:
> On Fri, Aug 27, 2021 at 9:20 AM Ross Philipson
> <ross.ph...@oracle.com> wrote:
>>
>> The larger focus of the Trechboot project (https://github.com/TrenchBoot) is to
>> enhance the boot security and integrity in a unified manner. The first area of
>> focus has been on the Trusted Computing Group's Dynamic Launch for establishing
>> a hardware Root of Trust for Measurement, also know as DRTM (Dynamic Root of
>> Trust for Measurement).
>
> My apologies for such a late reply, but I'm just getting around to
> looking at this and I have a few questions on the basic design/flow
> (below) ...

No worries, thank you so much for taking the time to review.

>> The basic flow is:
>>
>> - Entry from the dynamic launch jumps to the SL stub
>
> So I'm clear, at this point the combined stub+kernel+initramfs+cmdline
> image has already been loaded into memory and the SL stub is
> executing, yes?

That is correct.

> As TrenchBoot seems to be focused on boot measurement and not
> enforcing policy, I'm guessing this is considered out-of-scope (not to
> mention that the combined stub+kernel image makes this less
> interesting), but has any thought been given to leveraging the TXT
> launch control policy, or is it simply an empty run-everything policy?

The TrenchBoot model is a bit different and takes a more flexible
approach to allow users to build tailored solutions. For instance Secure
Launch is able to be used in a configuration that is similar to tboot.
Consider the functions of tboot, it has a portion that is the
post-launch kernel that handles the handover from the ACM and a portion
that provides the Verified Launch policy engine, which is only capable
of enforcing policy on what is contained in the Multiboot chain. The
TrenchBoot approach is to introduce the Secure Launch capability into a
kernel, in this case Linux, to handle the handover from the ACM, and
then transition to a running user space that can contain a distribution
specific policy enforcement. As an example, the TrenchBoot project
contributed to the uroot project a Secure Launch policy engine which
enables the creation of an initramfs image which can then be embedded
into a minimal configuration Secure Launch Linux kernel. This results in
a single binary that functions like tboot but with a far richer and more
extensible policy engine.

With regard to TXT's Launch Control Policy, it is a function of SINIT
ACM and so it is still very much possible to be used with Secure Launch.
In fact such a configuration has been tested and used. Now it is out of
scope in the sense that the tboot project already maintains and provides
the lcptools suite for managing LCPs. If there is a requirement to use
an LCP, then the lcptools can be used to create a policy to only allow
the specific instance(s) of a Secure Launch kernel.

>> - SL stub fixes up the world on the BSP
>> - For TXT, SL stub wakes the APs, fixes up their worlds
>> - For TXT, APs are left halted waiting for an NMI to wake them
>> - SL stub jumps to startup_32
>> - SL main locates the TPM event log and writes the measurements of
>> configuration and module information into it.
>
> Since the stub+kernel image are combined it looks like the kernel
> measurement comes from the ACM via the MLE measurement into PCR 18,
> while the stub generated measurements are extended into PCR 19 or 20
> depending on the configuration, yes?

If TXT is launched in Legacy PCR usage mode, then the bzImage, as loaded
into memory by the bootloader (GRUB), will be hashed into PCR 18. If it
is launched in the default Details and Authorities (DA) PCR usage mode,
then the bzImage will be hashed into PCR 17. This is because the kernel
has been promoted to being the MLE.

> I realize that moving the TXT code into the kernel makes this
> difficult (not possible?), but one of the things that was nice about
> the tboot based approach (dynamic, early launch) was that it could be
> extended to do different types of measurements, e.g. a signing
> authority measurement similar to UEFI Secure Boot and PCR 7. If that
> is possible, I think it is something worth including in the design,
> even if it isn't initially implemented. The only thing that
> immediately comes to mind would be a section/region based approach
> similar to systemd-boot/gummiboot where the (signed) kernel is kept in
> a well known region and verified/measured by the stub prior to jumping
> into its start point.

Revisiting the tboot-like configuration: the Secure Launch kernel, its
configuration (cmdline), and uroot initramfs (which may be embedded or
separate) are all part of the MLE started by the ACM. For tboot there is
the tboot binary and the VL policy, though uncertain if it was
configurable where the policy hash would be extended. Like the tboot VL
policy engine, the u-root policy engine is configurable where the
measurements are stored.

As highlighted, more components are measured as part of Secure Launch
than for tboot. The approach taken was to model after DA and put
binaries into 17 and configuration into 18. Later there were
requirements to isolate certain measurements. For the time this is
provided through kconfig to move config to 19 and initrd to 20. In the
future if/when additional measurements are incorporated, such as signing
keys that are embedded into the kernel, then it may be necessary to
provide a means to configure PCR usage at runtime.

>> - Kernel boot proceeds normally from this point.
>> - During early setup, slaunch_setup() runs to finish some validation
>> and setup tasks.
>> - The SMP bringup code is modified to wake the waiting APs. APs vector
>> to rmpiggy and start up normally from that point.
>> - SL platform module is registered as a late initcall module. It reads
>> the TPM event log and extends the measurements taken into the TPM PCRs.
>
> I'm sure there is some issue with passing data across boundaries, but
> is there any reason why the TPM event log needs to be updated
> out-of-sync with the TPM PCRs? Is is possible to pass the
> measurements to the SL platform module which would both extend the
> PCRs and update the TPM event log at the same time?

Without rehashing the issues around TPM usage from the stub, the core
issue is that measurements need to be collected before usage which is at
a time when access to the TPM is not possible at this time. Thus the
measurements need to be collected and persisted in a location where they
can be retrieved when the main kernel is in control. It was felt using
the DRTM TPM log was a natural place as it persists all the info
necessary to record the measurements by the SL platform module. Though
it does result in there being two non-event entries to exist in the log
but those are standardized such that any TCG compliant log parser should
ignore them.

With the explanation of why it was done aside, if there is another
location that is preferred which can provide the necessary guarantees,
then there is no reason why they could not be switched to that location.

>> - SL platform module initializes the securityfs interface to allow
>> asccess to the TPM event log and TXT public registers.
>> - Kernel boot finishes booting normally
>> - SEXIT support to leave SMX mode is present on the kexec path and
>> the various reboot paths (poweroff, reset, halt).
>
> It doesn't look like it's currently implemented, but it looks like
> eventually you plan to support doing a new DRTM measurement on kexec,
> is that correct? I'm sure that is something a *lot* of people
> (including myself) would like to see happen.

Correct, relaunch is not currently implemented but has always been
planned as relaunch enables DRTM late-launch use cases. For a few
reasons this is being elevated in priority and as a result there is a
short-term solution to quickly enable relaunch with longer term direct
integration into kexec.

Finally if your schedule allows it and it is not too much to ask, it
would be greatly appreciated if some code review could be provided.
Otherwise thank you for taking the time that you have to review the
approach.

V/r,
Daniel P. Smith
Apertus Solutions, LLC


Paul Moore

unread,
Dec 6, 2021, 3:56:45 PM12/6/21
to Daniel P. Smith, Ross Philipson, trenchbo...@googlegroups.com, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com
On Thu, Dec 2, 2021 at 11:11 AM Daniel P. Smith
<dps...@apertussolutions.com> wrote:
> Hi Paul!

/me waves
> into a minimal configuration Secure Launch Linux kernel ...

Thank you for the answers, that was helpful.

I think I initially misunderstood TrenchBoot, thinking that a Secure
Launch'd kernel/userspace would be the "normal" OS that would
transition to multi-user mode and be available for users and
applications. However, on reading your response it appears that the
Secure Launch'd kernel/initramfs exists only to verify a secondary
kernel/initramfs/userspace and then kexec() into that once verified.

> Finally if your schedule allows it and it is not too much to ask, it
> would be greatly appreciated if some code review could be provided.
> Otherwise thank you for taking the time that you have to review the
> approach.

I have to admit that I'm not sure I'm the most appropriate person to
review all of the Intel TXT related assembly, but I could give it a
shot as time allows. I would think Intel would be willing to help out
here if one were to ask nicely :)

Beyond that, and with my new understanding of how TrenchBoot is
supposed to work, I guess my only other concern is how one might
verify the integrity of the Secure Launch environment on the local
system during boot. My apologies if I missed some details about that
in your docs, responses, etc. but is this something that TrenchBoot is
planning on addressing (or has already addressed)?

--
paul moore
www.paul-moore.com

Paul Moore

unread,
Jan 21, 2022, 4:40:03 PM1/21/22
to Daniel P. Smith, Ross Philipson, trenchbo...@googlegroups.com, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com
I wanted to follow-up on this thread just in case this last question
was lost ...

--
paul moore
paul-moore.com

Daniel P. Smith

unread,
Feb 15, 2022, 10:53:45 AM2/15/22
to Paul Moore, Ross Philipson, trenchbo...@googlegroups.com, linux-...@vger.kernel.org, x...@kernel.org, io...@lists.linux-foundation.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, kanth.g...@oracle.com
Paul,

Apologies for missing your follow-up questions. Hopefully, the below
answers will help.
Yes it can be used in this manner but this is not the only way it was
intended to be used. The goal is to enable an integrator, e.g, a distro,
to incorporate Linux Secure Launch appropriately for their security
needs, though ideally it would be preferred that a standardized approach
is adopted by Linux init tooling to provide common experience across
distros. Up until the introduction of Secure Launch, the only widely
deployed model for DRTM has been to use tboot. Tboot is an MLE/DLME that
functions as an exokernel and an intermediate loader for the Runtime
OS/MLE. This motivated the first exemplar solution to be a Linux Secure
Launch + uroot solution that would provide a similar intermediate loader
experience, but with an expanded ability of the uroot to measure
additional properties about a system. As a result a distro could use the
exemplar to replace tboot, tboot VL policy tools, and VL policy file
with a Secure Launch kernel, a u-root initrd (built-in or standalone),
and a JSON policy file.

By no means was Secure Launch meant to be limited to only being used as
an intermediate loader for a Runtime OS. There is nothing that prohibits
a Runtime Linux system to be directly started using Secure Launch.
Though it should be noted that such a solution would need to be
cognizant of the security gap across power-save modes, whereby the OS
looses the positive control that it had over the system. It should also
be mentioned that one of the motivations behind DRTM late-launch via
kexec is to provide a path for dealing with this gap by enabling a
late-launch to re-establish a known good state of the system. These all
can be considered the advanced use cases for Secure Launch.

>>> Finally if your schedule allows it and it is not too much to ask, it
>>> would be greatly appreciated if some code review could be provided.
>>> Otherwise thank you for taking the time that you have to review the
>>> approach.
>>
>> I have to admit that I'm not sure I'm the most appropriate person to
>> review all of the Intel TXT related assembly, but I could give it a
>> shot as time allows. I would think Intel would be willing to help out
>> here if one were to ask nicely :)
>>
>> Beyond that, and with my new understanding of how TrenchBoot is
>> supposed to work, I guess my only other concern is how one might
>> verify the integrity of the Secure Launch environment on the local
>> system during boot. My apologies if I missed some details about that
>> in your docs, responses, etc. but is this something that TrenchBoot is
>> planning on addressing (or has already addressed)?
>
> I wanted to follow-up on this thread just in case this last question
> was lost ...

To continue from the answer above and lead into answering your question
I would first point to a presentation I gave at LPC 2020, Advanced
Applications of DRTM with TrenchBoot[1]. There I walked through how
Secure Launch could be used for different early-launch and late-launch
DRTM solutions. Under the late-launch solutions there is the "Secure
Upgrade" solutions. What I laid out there is that DRTM could be used to
launch an "Upgrade Environment" which could be locally or remotely
verified and provide a known-good and clean environment to upgrade a
system. What an implementation of that actually looks like can be seen
in the presentation by Brain Payne and myself at FOSDEM 2021, Secure
Upgrades with DRTM[2]. In this presentation the concept of a Management
MLE is introduced to provide a secure means to upgrade the Runtime MLE
along with its related policy and sealing measurements.

Now the above, like most local verification, relies on the unseal
operation as the means of local attestation. Using unseal is strong but
the reality is that remote attestation is stronger. The problem is that
remote attestation is often built as an enterprise solutions requiring a
central server/service under the control of an authority that decides
what is good or bad. Often the average user either does not have access
to such a service or does not desire to out-source control over their
system. To address this I am collaborating with 3mdeb on their Fobnail
product[3][4][5] to deliver an "attestation server in your pocket"
capability that is accessible and usable by the average user.

The answer so far is around solutions that were built from/around the
TrenchBoot project but Linux Secure Launch does not require new, special
user solutions. These solutions have been developed because DRTM enables
them to exist, not that they are the only ways Linux Secure Launch can
be utilized. For instance it is possible to setup a Clevis[6] based LUKS
full disk encryption setup using clevis' TPM2 PIN, where the TPM2 PIN
configuration uses the DRTM PCRs (17-22) as part of sealing PCRs for the
encryption key.

[1] https://lpc.events/event/7/contributions/739/
[2] https://archive.fosdem.org/2021/schedule/event/firmware_suwd/
[3] https://blog.3mdeb.com/2021/2021-10-28-fobnail-promotion/
[4] https://blog.3mdeb.com/2021/2021-12-15-fobnail_2nd_phase/
[5] https://fobnail.3mdeb.com/
[6] https://github.com/latchset/clevis

V/r,
Daniel P. Smith

Ross Philipson

unread,
Feb 18, 2022, 10:58:34 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The routine slaunch_setup is called out of the x86 specific setup_arch
routine during early kernel boot. After determining what platform is
present, various operations specific to that platform occur. This
includes finalizing setting for the platform late launch and verifying
that memory protections are in place.

For TXT, this code also reserves the original compressed kernel setup
area where the APs were left looping so that this memory cannot be used.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/Makefile | 1 +
arch/x86/kernel/setup.c | 3 +
arch/x86/kernel/slaunch.c | 467 +++++++++++++++++++++++++++++++++++++++++++++
drivers/iommu/intel/dmar.c | 4 +
4 files changed, 475 insertions(+)
create mode 100644 arch/x86/kernel/slaunch.c

diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index 6aef9ee..5a189ad 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -83,6 +83,7 @@ obj-$(CONFIG_X86_32) += tls.o
obj-$(CONFIG_IA32_EMULATION) += tls.o
obj-y += step.o
obj-$(CONFIG_INTEL_TXT) += tboot.o
+obj-$(CONFIG_SECURE_LAUNCH) += slaunch.o
obj-$(CONFIG_ISA_DMA_API) += i8237.o
obj-y += stacktrace.o
obj-y += cpu/
diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c
index 6e29c20..eb9e2a2 100644
--- a/arch/x86/kernel/setup.c
+++ b/arch/x86/kernel/setup.c
@@ -20,6 +20,7 @@
#include <linux/root_dev.h>
#include <linux/hugetlb.h>
#include <linux/tboot.h>
+#include <linux/slaunch.h>
#include <linux/usb/xhci-dbgp.h>
#include <linux/static_call.h>
#include <linux/swiotlb.h>
@@ -970,6 +971,8 @@ void __init setup_arch(char **cmdline_p)
early_gart_iommu_check();
#endif

+ slaunch_setup_txt();
+
/*
* partially used pages are not usable - thus
* we are rounding upwards:
diff --git a/arch/x86/kernel/slaunch.c b/arch/x86/kernel/slaunch.c
new file mode 100644
index 00000000..ef6ef08
--- /dev/null
+++ b/arch/x86/kernel/slaunch.c
@@ -0,0 +1,467 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch late validation/setup and finalization support.
+ *
+ * Copyright (c) 2022, Oracle and/or its affiliates.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/linkage.h>
+#include <linux/mm.h>
+#include <linux/io.h>
+#include <linux/uaccess.h>
+#include <linux/security.h>
+#include <linux/memblock.h>
+#include <asm/segment.h>
+#include <asm/sections.h>
+
+ /*
+ * This performs a TXT reset with a sticky error code. The reads of
+ * TXT_CR_E2STS act as barriers.
+ */
+ memcpy_toio(txt + TXT_CR_ERRORCODE, &error, sizeof(error));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_NO_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_UNLOCK_MEM_CONFIG, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_RESET, &one, sizeof(one));
+
+ for ( ; ; )
+ asm volatile ("hlt");
+
+ unreachable();
+}
+
+/*
+ * The TXT heap is too big to map all at once with early_ioremap
+ * so it is done a table at a time.
+ */
+static void __init *txt_early_get_heap_table(void __iomem *txt, u32 type,
+ u32 bytes)
+{
+ u64 base, size, offset = 0;
+ void *heap;
+ int i;
+
+ if (type > TXT_SINIT_TABLE_MAX)
+ slaunch_txt_reset(txt,
+ "Error invalid table type for early heap walk\n",
+ SL_ERROR_HEAP_WALK);
+
+ memcpy_fromio(&base, txt + TXT_CR_HEAP_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_HEAP_SIZE, sizeof(size));
+
+ /* Iterate over heap tables looking for table of "type" */
+ for (i = 0; i < type; i++) {
+ base += offset;
+ heap = early_memremap(base, sizeof(u64));
+ if (!heap)
+ slaunch_txt_reset(txt,
+ "Error early_memremap of heap for heap walk\n",
+ SL_ERROR_HEAP_MAP);
+
+ offset = *((u64 *)heap);
+
+ /*
+ * After the first iteration, any offset of zero is invalid and
+ * implies the TXT heap is corrupted.
+ */
+ if (!offset)
+ slaunch_txt_reset(txt,
+ "Error invalid 0 offset in heap walk\n",
+ SL_ERROR_HEAP_ZERO_OFFSET);
+
+ early_memunmap(heap, sizeof(u64));
+ }
+
+ /* Skip the size field at the head of each table */
+ base += sizeof(u64);
+ heap = early_memremap(base, bytes);
+ if (!heap)
+ slaunch_txt_reset(txt,
+ "Error early_memremap of heap section\n",
+ SL_ERROR_HEAP_MAP);
+
+ return heap;
+}
+
+static void __init txt_early_put_heap_table(void *addr, unsigned long size)
+{
+ early_memunmap(addr, size);
+}
+
+/*
+ * TXT uses a special set of VTd registers to protect all of memory from DMA
+ * until the IOMMU can be programmed to protect memory. There is the low
+ * memory PMR that can protect all memory up to 4G. The high memory PRM can
+ * be setup to protect all memory beyond 4Gb. Validate that these values cover
+ * what is expected.
+ */
+static void __init slaunch_verify_pmrs(void __iomem *txt)
+{
+ struct txt_os_sinit_data *os_sinit_data;
+ u32 field_offset, err = 0;
+ const char *errmsg = "";
+ unsigned long last_pfn;
+
+ field_offset = offsetof(struct txt_os_sinit_data, lcp_po_base);
+ os_sinit_data = txt_early_get_heap_table(txt, TXT_OS_SINIT_DATA_TABLE,
+ field_offset);
+
+ /* Save a copy */
+ vtd_pmr_lo_size = os_sinit_data->vtd_pmr_lo_size;
+
+ last_pfn = e820__end_of_ram_pfn();
+
+ /*
+ * First make sure the hi PMR covers all memory above 4G. In the
+ * unlikely case where there is < 4G on the system, the hi PMR will
+ * not be set.
+ */
+ if (os_sinit_data->vtd_pmr_hi_base != 0x0ULL) {
+ if (os_sinit_data->vtd_pmr_hi_base != 0x100000000ULL) {
+ err = SL_ERROR_HI_PMR_BASE;
+ errmsg = "Error hi PMR base\n";
+ goto out;
+ }
+
+ if (PFN_PHYS(last_pfn) > os_sinit_data->vtd_pmr_hi_base +
+ os_sinit_data->vtd_pmr_hi_size) {
+ err = SL_ERROR_HI_PMR_SIZE;
+ errmsg = "Error hi PMR size\n";
+ goto out;
+ }
+ }
+
+ /*
+ * Lo PMR base should always be 0. This was already checked in
+ * early stub.
+ */
+
+ /*
+ * Check that if the kernel was loaded below 4G, that it is protected
+ * by the lo PMR. Note this is the decompressed kernel. The ACM would
+ * have ensured the compressed kernel (the MLE image) was protected.
+ */
+ if ((__pa_symbol(_end) < 0x100000000ULL) &&
+ (__pa_symbol(_end) > os_sinit_data->vtd_pmr_lo_size)) {
+ err = SL_ERROR_LO_PMR_MLE;
+ errmsg = "Error lo PMR does not cover MLE kernel\n";
+ }
+
+ /*
+ * Other regions of interest like boot param, AP wake block, cmdline
+ * already checked for PMR coverage in the early stub code.
+ */
+
+out:
+ txt_early_put_heap_table(os_sinit_data, field_offset);
+
+ if (err)
+ slaunch_txt_reset(txt, errmsg, err);
+}
+
+static void __init slaunch_txt_reserve_range(u64 base, u64 size)
+{
+ int type;
+
+ type = e820__get_entry_type(base, base + size - 1);
+ if (type == E820_TYPE_RAM) {
+ pr_info("memblock reserve base: %llx size: %llx\n", base, size);
+ memblock_reserve(base, size);
+ }
+}
+
+/*
+ * For Intel, certain regions of memory must be marked as reserved by putting
+ * them on the memblock reserved list if they are not already e820 reserved.
+ * This includes:
+ * - The TXT HEAP
+ * - The ACM area
+ * - The TXT private register bank
+ * - The MDR list sent to the MLE by the ACM (see TXT specification)
+ * (Normally the above are properly reserved by firmware but if it was not
+ * done, reserve them now)
+ * - The AP wake block
+ * - TPM log external to the TXT heap
+ *
+ * Also if the low PMR doesn't cover all memory < 4G, any RAM regions above
+ * the low PMR must be reservered too.
+ */
+static void __init slaunch_txt_reserve(void __iomem *txt)
+{
+ struct txt_sinit_memory_descriptor_record *mdr;
+ struct txt_sinit_mle_data *sinit_mle_data;
+ u64 base, size, heap_base, heap_size;
+ u32 mdrnum, mdroffset, mdrslen;
+ u32 field_offset, i;
+ void *mdrs;
+
+ base = TXT_PRIV_CONFIG_REGS_BASE;
+ size = TXT_PUB_CONFIG_REGS_BASE - TXT_PRIV_CONFIG_REGS_BASE;
+ slaunch_txt_reserve_range(base, size);
+
+ memcpy_fromio(&heap_base, txt + TXT_CR_HEAP_BASE, sizeof(heap_base));
+ memcpy_fromio(&heap_size, txt + TXT_CR_HEAP_SIZE, sizeof(heap_size));
+ slaunch_txt_reserve_range(heap_base, heap_size);
+
+ memcpy_fromio(&base, txt + TXT_CR_SINIT_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_SINIT_SIZE, sizeof(size));
+ slaunch_txt_reserve_range(base, size);
+
+ field_offset = offsetof(struct txt_sinit_mle_data,
+ sinit_vtd_dmar_table_size);
+ sinit_mle_data = txt_early_get_heap_table(txt, TXT_SINIT_MLE_DATA_TABLE,
+ field_offset);
+
+ mdrnum = sinit_mle_data->num_of_sinit_mdrs;
+ mdroffset = sinit_mle_data->sinit_mdrs_table_offset;
+
+ txt_early_put_heap_table(sinit_mle_data, field_offset);
+
+ if (!mdrnum)
+ goto nomdr;
+
+ mdrslen = mdrnum * sizeof(struct txt_sinit_memory_descriptor_record);
+
+ mdrs = txt_early_get_heap_table(txt, TXT_SINIT_MLE_DATA_TABLE,
+ mdroffset + mdrslen - 8);
+
+ mdr = mdrs + mdroffset - 8;
+
+ for (i = 0; i < mdrnum; i++, mdr++) {
+ /* Spec says some entries can have length 0, ignore them */
+ if (mdr->type > 0 && mdr->length > 0)
+ slaunch_txt_reserve_range(mdr->address, mdr->length);
+ }
+
+ txt_early_put_heap_table(mdrs, mdroffset + mdrslen - 8);
+
+nomdr:
+ slaunch_txt_reserve_range(ap_wake_info.ap_wake_block,
+ ap_wake_info.ap_wake_block_size);
+
+ /*
+ * Earlier checks ensured that the event log was properly situated
+ * either inside the TXT heap or outside. This is a check to see if the
+ * event log needs to be reserved. If it is in the TXT heap, it is
+ * already reserved.
+ */
+ if (evtlog_addr < heap_base || evtlog_addr > (heap_base + heap_size))
+ slaunch_txt_reserve_range(evtlog_addr, evtlog_size);
+
+ for (i = 0; i < e820_table->nr_entries; i++) {
+ base = e820_table->entries[i].addr;
+ size = e820_table->entries[i].size;
+ if ((base >= vtd_pmr_lo_size) && (base < 0x100000000ULL))
+ slaunch_txt_reserve_range(base, size);
+ else if ((base < vtd_pmr_lo_size) &&
+ (base + size > vtd_pmr_lo_size))
+ slaunch_txt_reserve_range(vtd_pmr_lo_size,
+ base + size - vtd_pmr_lo_size);
+ }
+}
+
+/*
+ * TXT stashes a safe copy of the DMAR ACPI table to prevent tampering.
+ * It is stored in the TXT heap. Fetch it from there and make it available
+ * to the IOMMU driver.
+ */
+static void __init slaunch_copy_dmar_table(void __iomem *txt)
+{
+ struct txt_sinit_mle_data *sinit_mle_data;
+ u32 field_offset, dmar_size, dmar_offset;
+ void *dmar;
+}
+
+/*
+ * The location of the safe AP wake code block is stored in the TXT heap.
+ * Fetch it here in the early init code for later use in SMP startup.
+ *
+ * Also get the TPM event log values that may have to be put on the
+ * memblock reserve list later.
+ */
+static void __init slaunch_fetch_os_mle_fields(void __iomem *txt)
+{
+ struct txt_os_mle_data *os_mle_data;
+ u8 *jmp_offset;
+
+ os_mle_data = txt_early_get_heap_table(txt, TXT_OS_MLE_DATA_TABLE,
+ sizeof(*os_mle_data));
+
+ ap_wake_info.ap_wake_block = os_mle_data->ap_wake_block;
+ ap_wake_info.ap_wake_block_size = os_mle_data->ap_wake_block_size;
+
+ jmp_offset = os_mle_data->mle_scratch + SL_SCRATCH_AP_JMP_OFFSET;
+ ap_wake_info.ap_jmp_offset = *((u32 *)jmp_offset);
+
+ evtlog_addr = os_mle_data->evtlog_addr;
+ evtlog_size = os_mle_data->evtlog_size;
+
+ txt_early_put_heap_table(os_mle_data, sizeof(*os_mle_data));
+}
+
+/*
+ * Intel TXT specific late stub setup and validation.
+ */
+void __init slaunch_setup_txt(void)
+{
+ u64 one = TXT_REGVALUE_ONE, val;
+ void __iomem *txt;
+
+ if (!boot_cpu_has(X86_FEATURE_SMX))
+ return;
+
+ /*
+ * If booted through secure launch entry point, the loadflags
+ * option will be set.
+ */
+ if (!(boot_params.hdr.loadflags & SLAUNCH_FLAG))
+ return;
+
+ /*
+ * See if SENTER was done by reading the status register in the
+ * public space. If the public register space cannot be read, TXT may
+ * be disabled.
+ */
+ txt = early_ioremap(TXT_PUB_CONFIG_REGS_BASE,
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+ if (!txt)
+ return;
+
+ memcpy_fromio(&val, txt + TXT_CR_STS, sizeof(val));
+ early_iounmap(txt, TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+
+ /* SENTER should have been done */
+ if (!(val & TXT_SENTER_DONE_STS))
+ panic("Error TXT.STS SENTER_DONE not set\n");
+
+ /* SEXIT should have been cleared */
+ if (val & TXT_SEXIT_DONE_STS)
+ panic("Error TXT.STS SEXIT_DONE set\n");
+
+ /* Now we want to use the private register space */
+ txt = early_ioremap(TXT_PRIV_CONFIG_REGS_BASE,
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+ if (!txt) {
+ /* This is really bad, no where to go from here */
+ panic("Error early_ioremap of TXT priv registers\n");
+ }
+
+ /*
+ * Try to read the Intel VID from the TXT private registers to see if
+ * TXT measured launch happened properly and the private space is
+ * available.
+ */
+ memcpy_fromio(&val, txt + TXT_CR_DIDVID, sizeof(val));
+ if ((val & 0xffff) != 0x8086) {
+ /*
+ * Can't do a proper TXT reset since it appears something is
+ * wrong even though SENTER happened and it should be in SMX
+ * mode.
+ */
+ panic("Invalid TXT vendor ID, not in SMX mode\n");
+ }
+
+ /* Set flags so subsequent code knows the status of the launch */
+ sl_flags |= (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT);
+
+ /*
+ * Reading the proper DIDVID from the private register space means we
+ * are in SMX mode and private registers are open for read/write.
+ */
+
+ /* On Intel, have to handle TPM localities via TXT */
+ memcpy_toio(txt + TXT_CR_CMD_SECRETS, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+ memcpy_toio(txt + TXT_CR_CMD_OPEN_LOCALITY1, &one, sizeof(one));
+ memcpy_fromio(&val, txt + TXT_CR_E2STS, sizeof(val));
+
+ slaunch_fetch_os_mle_fields(txt);
+
+ slaunch_verify_pmrs(txt);
+
+ slaunch_txt_reserve(txt);
+
+ slaunch_copy_dmar_table(txt);
+
+ early_iounmap(txt, TXT_NR_CONFIG_PAGES * PAGE_SIZE);
+
+ pr_info("Intel TXT setup complete\n");
+}
diff --git a/drivers/iommu/intel/dmar.c b/drivers/iommu/intel/dmar.c
index 915bff7..6daea97 100644
--- a/drivers/iommu/intel/dmar.c
+++ b/drivers/iommu/intel/dmar.c
@@ -29,6 +29,7 @@
#include <linux/iommu.h>
#include <linux/numa.h>
#include <linux/limits.h>
+#include <linux/slaunch.h>
#include <asm/irq_remapping.h>
#include <asm/iommu_table.h>
#include <trace/events/intel_iommu.h>
@@ -661,6 +662,9 @@ static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,

Ross Philipson

unread,
Feb 18, 2022, 10:58:34 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The larger focus of the TrenchBoot project (https://github.com/TrenchBoot) is to
enhance the boot security and integrity in a unified manner. The first area of
focus has been on the Trusted Computing Group's Dynamic Launch for establishing
a hardware Root of Trust for Measurement, also know as DRTM (Dynamic Root of
Trust for Measurement). The project has been and continues to work on providing
a unified means to Dynamic Launch that is a cross-platform (Intel and AMD) and
cross-architecture (x86 and Arm), with our recent involvment in the upcoming
Arm DRTM specification. The order of introducing DRTM to the Linux kernel
follows the maturity of DRTM in the architectures. Intel's Trusted eXecution
Technology (TXT) is present today and only requires a preamble loader, e.g. a
boot loader, and an OS kernel that is TXT-aware. AMD DRTM implementation has
been present since the introduction of AMD-V but requires an additional
component that is AMD specific and referred to in the specification as the
Secure Loader, which the TrenchBoot project has an active prototype in
development. Finally Arm's implementation is in specification development stage
and the project is looking to support it when it becomes available.

This patchset provides detailed documentation of DRTM, the approach used for
adding the capbility, and relevant API/ABI documentation. In addition to the
documentation the patch set introduces Intel TXT support as the first platform
for Linux Secure Launch.

A quick note on terminology. The larger open source project itself is called
TrenchBoot, which is hosted on Github (links below). The kernel feature enabling
the use of Dynamic Launch technology is referred to as "Secure Launch" within
the kernel code. As such the prefixes sl_/SL_ or slaunch/SLAUNCH will be seen
in the code. The stub code discussed above is referred to as the SL stub.

The Secure Launch feature starts with patch #2. Patch #1 was authored by Arvind
Sankar. There is no further status on this patch at this point but
Secure Launch depends on it so it is included with the set.

Links:

The TrenchBoot project including documentation:
Changes in v5:
- Comprehensive documentation rewrite.
- Use boot param loadflags to communicate Secure Launch status to
kernel proper.
- Fix incorrect check of X86_FEATURE_BIT_SMX bit.
- Rename the alternate details and authorities PCR support.
- Refactor the securityfs directory and file setup in slmodule.c.
- Misc. cleanup from internal code reviews.
- Use reverse fir tree format for variables.

Arvind Sankar (1):
x86/boot: Place kernel_info at a fixed offset

Daniel P. Smith (2):
x86: Add early SHA support for Secure Launch early measurements
x86: Secure Launch late initcall platform module

Ross Philipson (9):
Documentation/x86: Secure Launch kernel documentation
x86: Secure Launch Kconfig
x86: Secure Launch main header file
x86: Secure Launch kernel early boot stub
x86: Secure Launch kernel late boot stub
x86: Secure Launch SMP bringup support
kexec: Secure Launch kexec SEXIT support
reboot: Secure Launch SEXIT support on reboot paths
tpm: Allow locality 2 to be set when initializing the TPM for Secure
Launch

Documentation/security/index.rst | 1 +
Documentation/security/launch-integrity/index.rst | 10 +
.../security/launch-integrity/principles.rst | 313 ++++++++++
.../launch-integrity/secure_launch_details.rst | 552 +++++++++++++++++
.../launch-integrity/secure_launch_overview.rst | 214 +++++++
Documentation/x86/boot.rst | 21 +
arch/x86/Kconfig | 34 +
arch/x86/boot/compressed/Makefile | 3 +
arch/x86/boot/compressed/early_sha1.c | 97 +++
arch/x86/boot/compressed/early_sha1.h | 17 +
arch/x86/boot/compressed/early_sha256.c | 7 +
arch/x86/boot/compressed/head_64.S | 37 ++
arch/x86/boot/compressed/kernel_info.S | 53 +-
arch/x86/boot/compressed/kernel_info.h | 12 +
arch/x86/boot/compressed/sl_main.c | 556 +++++++++++++++++
arch/x86/boot/compressed/sl_stub.S | 685 +++++++++++++++++++++
arch/x86/boot/compressed/vmlinux.lds.S | 6 +
arch/x86/include/asm/realmode.h | 3 +
arch/x86/include/uapi/asm/bootparam.h | 1 +
arch/x86/kernel/Makefile | 2 +
arch/x86/kernel/asm-offsets.c | 19 +
arch/x86/kernel/reboot.c | 10 +
arch/x86/kernel/setup.c | 3 +
arch/x86/kernel/slaunch.c | 536 ++++++++++++++++
arch/x86/kernel/slmodule.c | 493 +++++++++++++++
arch/x86/kernel/smpboot.c | 86 +++
arch/x86/realmode/rm/header.S | 3 +
arch/x86/realmode/rm/trampoline_64.S | 37 ++
drivers/char/tpm/tpm-chip.c | 9 +-
drivers/iommu/intel/dmar.c | 4 +
include/linux/slaunch.h | 532 ++++++++++++++++
kernel/kexec_core.c | 4 +
lib/crypto/sha256.c | 8 +
lib/sha1.c | 4 +
34 files changed, 4367 insertions(+), 5 deletions(-)
create mode 100644 Documentation/security/launch-integrity/index.rst
create mode 100644 Documentation/security/launch-integrity/principles.rst
create mode 100644 Documentation/security/launch-integrity/secure_launch_details.rst
create mode 100644 Documentation/security/launch-integrity/secure_launch_overview.rst
create mode 100644 arch/x86/boot/compressed/early_sha1.c
create mode 100644 arch/x86/boot/compressed/early_sha1.h
create mode 100644 arch/x86/boot/compressed/early_sha256.c
create mode 100644 arch/x86/boot/compressed/kernel_info.h
create mode 100644 arch/x86/boot/compressed/sl_main.c
create mode 100644 arch/x86/boot/compressed/sl_stub.S

Ross Philipson

unread,
Feb 18, 2022, 10:58:35 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On Intel, the APs are left in a well documented state after TXT performs
the late launch. Specifically they cannot have #INIT asserted on them so
a standard startup via INIT/SIPI/SIPI cannot be performed. Instead the
early SL stub code parked the APs in a pause/jmp loop waiting for an NMI.
The modified SMP boot code is called for the Secure Launch case. The
jump address for the RM piggy entry point is fixed up in the jump where
the APs are waiting and an NMI IPI is sent to the AP. The AP vectors to
the Secure Launch entry point in the RM piggy which mimics what the real
mode code would do then jumps to the standard RM piggy protected mode
entry point.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/include/asm/realmode.h | 3 ++
arch/x86/kernel/smpboot.c | 86 ++++++++++++++++++++++++++++++++++++
arch/x86/realmode/rm/header.S | 3 ++
arch/x86/realmode/rm/trampoline_64.S | 37 ++++++++++++++++
4 files changed, 129 insertions(+)

diff --git a/arch/x86/include/asm/realmode.h b/arch/x86/include/asm/realmode.h
index 331474b..151d09a 100644
--- a/arch/x86/include/asm/realmode.h
+++ b/arch/x86/include/asm/realmode.h
@@ -37,6 +37,9 @@ struct real_mode_header {
#ifdef CONFIG_X86_64
u32 machine_real_restart_seg;
#endif
+#ifdef CONFIG_SECURE_LAUNCH
+ u32 sl_trampoline_start32;
+#endif
};

/* This must match data at realmode/rm/trampoline_{32,64}.S */
diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c
index 617012f..94b37ab 100644
--- a/arch/x86/kernel/smpboot.c
+++ b/arch/x86/kernel/smpboot.c
@@ -57,6 +57,7 @@
#include <linux/pgtable.h>
#include <linux/overflow.h>
#include <linux/syscore_ops.h>
+#include <linux/slaunch.h>

#include <asm/acpi.h>
#include <asm/desc.h>
@@ -1073,6 +1074,83 @@ int common_cpu_up(unsigned int cpu, struct task_struct *idle)
return 0;
}

+#ifdef CONFIG_SECURE_LAUNCH
+
+static atomic_t first_ap_only = {1};
+
+/*
+ * Called to fix the long jump address for the waiting APs to vector to
+ * the correct startup location in the Secure Launch stub in the rmpiggy.
+ */
+static int
+slaunch_fixup_jump_vector(void)
+{
+ struct sl_ap_wake_info *ap_wake_info;
+ u32 *ap_jmp_ptr = NULL;
+
+ if (!atomic_dec_and_test(&first_ap_only))
+ return 0;
+
+ ap_wake_info = slaunch_get_ap_wake_info();
+
+ ap_jmp_ptr = (u32 *)__va(ap_wake_info->ap_wake_block +
+ ap_wake_info->ap_jmp_offset);
+
+ *ap_jmp_ptr = real_mode_header->sl_trampoline_start32;
+
+ pr_debug("TXT AP long jump address updated\n");
+
+ return 0;
+}
+
+/*
@@ -1127,6 +1205,13 @@ static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
cpumask_clear_cpu(cpu, cpu_initialized_mask);
smp_mb();

+ /* With Intel TXT, the AP startup is totally different */
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) ==
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) {
+ boot_error = slaunch_wakeup_cpu_from_txt(cpu, apicid);
+ goto txt_wake;
+ }
+
/*
* Wake up a CPU in difference cases:
* - Use the method in the APIC driver if it's defined
@@ -1139,6 +1224,7 @@ static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
+ /*
+ * The early secure launch stub AP wakeup code has taken care of all
+ * the vagaries of launching out of TXT. This bit just mimics what the
+ * 16b entry code does and jumps off to the real startup_32.
+ */
+ cli
+ wbinvd
+
+ /*
+ * The %ebx provided is not terribly useful since it is the physical
+ * address of tb_trampoline_start and not the base of the image.
+ * Use pa_real_mode_base, which is fixed up, to get a run time
+ * base register to use for offsets to location that do not have
+ * pa_ symbols.
+ */
+ movl $pa_real_mode_base, %ebx
+
+ /*

Ross Philipson

unread,
Feb 18, 2022, 10:58:40 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
The Secure Launch MLE environment uses PCRs that are only accessible from
the DRTM locality 2. By default the TPM drivers always initialize the
locality to 0. When a Secure Launch is in progress, initialize the
locality to 2.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
drivers/char/tpm/tpm-chip.c | 9 ++++++++-
1 file changed, 8 insertions(+), 1 deletion(-)

diff --git a/drivers/char/tpm/tpm-chip.c b/drivers/char/tpm/tpm-chip.c
index b009e74..7b8d4bb 100644

Ross Philipson

unread,
Feb 18, 2022, 10:58:40 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
If the MLE kernel is being powered off, rebooted or halted,
then SEXIT must be called. Note that the SEXIT GETSEC leaf
can only be called after a machine_shutdown() has been done on
these paths. The machine_shutdown() is not called on a few paths
like when poweroff action does not have a poweroff callback (into
ACPI code) or when an emergency reset is done. In these cases,
just the TXT registers are finalized but SEXIT is skipped.

Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/reboot.c | 10 ++++++++++
1 file changed, 10 insertions(+)

diff --git a/arch/x86/kernel/reboot.c b/arch/x86/kernel/reboot.c
index fa700b4..96d9c78 100644
--- a/arch/x86/kernel/reboot.c
+++ b/arch/x86/kernel/reboot.c
@@ -12,6 +12,7 @@
#include <linux/delay.h>
#include <linux/objtool.h>
#include <linux/pgtable.h>
+#include <linux/slaunch.h>
#include <acpi/reboot.h>
#include <asm/io.h>
#include <asm/apic.h>
@@ -724,6 +725,7 @@ static void native_machine_restart(char *__unused)

if (!reboot_force)
machine_shutdown();
+ slaunch_finalize(!reboot_force);
__machine_emergency_restart(0);
}

@@ -734,6 +736,9 @@ static void native_machine_halt(void)

tboot_shutdown(TB_SHUTDOWN_HALT);

+ /* SEXIT done after machine_shutdown() to meet TXT requirements */
+ slaunch_finalize(1);
+
stop_this_cpu(NULL);
}

@@ -742,8 +747,12 @@ static void native_machine_power_off(void)
if (pm_power_off) {
if (!reboot_force)
machine_shutdown();
+ slaunch_finalize(!reboot_force);
pm_power_off();
+ } else {
+ slaunch_finalize(0);
}
+
/* A fallback in case there is no PM info available */
tboot_shutdown(TB_SHUTDOWN_HALT);
}
@@ -771,6 +780,7 @@ void machine_shutdown(void)

Ross Philipson

unread,
Feb 18, 2022, 10:58:41 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Introduce background, overview and configuration/ABI information
for the Secure Launch kernel feature.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
Documentation/security/index.rst | 1 +
Documentation/security/launch-integrity/index.rst | 10 +
.../security/launch-integrity/principles.rst | 313 ++++++++++++
.../launch-integrity/secure_launch_details.rst | 552 +++++++++++++++++++++
.../launch-integrity/secure_launch_overview.rst | 214 ++++++++
5 files changed, 1090 insertions(+)
create mode 100644 Documentation/security/launch-integrity/index.rst
create mode 100644 Documentation/security/launch-integrity/principles.rst
create mode 100644 Documentation/security/launch-integrity/secure_launch_details.rst
create mode 100644 Documentation/security/launch-integrity/secure_launch_overview.rst

diff --git a/Documentation/security/index.rst b/Documentation/security/index.rst
index 16335de..e8dadec 100644
--- a/Documentation/security/index.rst
+++ b/Documentation/security/index.rst
@@ -17,3 +17,4 @@ Security Documentation
tpm/index
digsig
landlock
+ launch-integrity/index
diff --git a/Documentation/security/launch-integrity/index.rst b/Documentation/security/launch-integrity/index.rst
new file mode 100644
index 00000000..28eed91d
--- /dev/null
+++ b/Documentation/security/launch-integrity/index.rst
@@ -0,0 +1,10 @@
+=====================================
+System Launch Integrity documentation
+=====================================
+
+.. toctree::
+
+ principles
+ secure_launch_overview
+ secure_launch_details
+
diff --git a/Documentation/security/launch-integrity/principles.rst b/Documentation/security/launch-integrity/principles.rst
new file mode 100644
index 00000000..73cf063
--- /dev/null
+++ b/Documentation/security/launch-integrity/principles.rst
@@ -0,0 +1,313 @@
+=======================
+System Launch Integrity
+=======================
+
+This document serves to establish a common understanding of what is system
+launch, the integrity concern for system launch, and why using a Root of Trust
+(RoT) from a Dynamic Launch may be desired. Through out this document
+terminology from the Trusted Computing Group (TCG) and National Institue for
+Science and Technology (NIST) is used to ensure a vendor nutrual language is
+used to describe and reference security-related concepts.
+
+System Launch
+=============
+
+There is a tendency to only consider the classical power-on boot as the only
+means to launch an Operating System (OS) on a computer system, but in fact most
+modern processors support two methods to launch the system. To provide clarity a
+common definition of a system launch should be established. This definition is
+that a during a single power life cycle of a system, a System Launch consists
+of an initialization event, typically in hardware, that is followed by an
+executing software payload that takes the system from the initialized state to
+a running state. Driven by the Trusted Computing Group (TCG) architecture,
+modern processors are able to support two methods to launch a system, these two
+types of system launch are known as Static Launch and Dynamic Launch.
+
+Static Launch
+-------------
+
+Static launch is the system launch associated with the power cycle of the CPU.
+Thus static launch refers to the classical power-on boot where the
+initialization event is the release of the CPU from reset and the system
+firmware is the software payload that brings the system up to a running state.
+Since static launch is the system launch associated with the beginning of the
+power lifecycle of a system, it is therefore a fixed, one-time system launch.
+It is because of this that static launch is referred to and thought of as being
+"static".
+
+Dynamic Launch
+--------------
+
+Modern CPUs architectures provides a mechanism to re-initialize the system to a
+"known good" state without requiring a power event. This re-initialization
+event is the event for a dynamic launch and is referred to as the Dynamic
+Launch Event (DLE). The DLE functions by accepting a software payload, referred
+to as the Dynamic Configuration Environment (DCE), that execution is handed to
+after the DLE is invoked. The DCE is responsible for bringing the system back
+to a running state. Since the dynamic launch is not tied to a power event like
+the static launch, this enables a dynamic launch to be initiated at any time
+and multiple times during a single power life cycle. This dynamism is the
+reasoning behind referring to this system launch as being dynamic.
+
+Because a dynamic launch can be conducted at any time during a single power
+life cycle, they are classified into one of two types, an early launch or a
+late launch.
+
+:Early Launch: When a dynamic launch is used as a transition from a static
+ launch chain to the final Operating System.
+
+:Late Launch: The usage of a dynamic launch by an executing Operating System to
+ transition to a “known good” state to perform one or more operations, e.g. to
+ launch into a new Operating System.
+
+System Integrity
+================
+
+A computer system can be considered a collection of mechanisms that work
+together to produce a result. The assurance that the mechanisms are functioning
+correctly and producing the expected result is the integrity of the system. To
+ensure a system's integrity there are a subset of these mechanisms, commonly
+referred to as security mechanisms, that are present to help ensure the system
+produces the expected result or at least detect the potential of an unexpected
+result may have happened. Since the security mechanisms are relied upon to
+ensue the integrity of the system, these mechanisms are trusted. Upon
+inspection these security mechanisms each have a set of properties and these
+properties can be evaluated to determine how susceptible a mechanism might be
+to failure. This assessment is referred to as the Strength of Mechanism and for
+trusted mechanism enables for the trustworthiness of that mechanism to be
+quantified.
+
+For software systems there are two system states for which the integrity is
+critical, when the software is loaded into memory and when the software is
+executing on the hardware. Ensuring that the expected software is load into
+memory is referred to as load-time integrity while ensuring that the software
+executing is the expected software is the runtime integrity of that software.
+
+Load-time Integrity
+-------------------
+
+It is critical to understand what load-time integrity establishes about a
+system and what is assumed, i.e. what is being trusted. Load-time integrity is
+when a trusted entity, i.e. an entity with an assumed integrity, takes an
+action to assess an entity being loaded into memory before it is used. A
+variety of mechanisms may be used to conduct the assessment, each with
+different properties. A particular property is whether the mechanism creates an
+evidence of the assessment. Often either cryptographic signature checking or
+hashing are the common assessment operations used.
+
+A signature checking assessment functions by requiring a representation of the
+accepted authorities and uses those representations to assess if the entity has
+been signed by an accepted authority. The benefit to this process is that
+assessment process includes an adjudication of the assessment. The drawbacks
+are that 1) the adjudication is susceptible to tampering by the Trusted
+Computing Base (TCB), 2) there is no evidence to assert that an untampered
+adjudication was completed, and 3) the system must be an active participant in
+the key management infrastructure.
+
+A cryptographic hashing assessment does not adjudicate the assessment but
+instead generates evidence of the assessment to be adjudicated independently.
+The benefits to this approach is that the assessment may be simple such that it
+is able to be implemented as an immutable mechanism, e.g. in hardware.
+Additionally it is possible for the adjudication to be conducted where it
+cannot be tampered with by the TCB. The drawback is that a compromised
+environment will be allowed to execute until an adjudication can be completed.
+
+Ultimately load-time integrity provides confidence that the correct entity was
+loaded and in the absence of a run-time integrity mechanism assumes, i.e
+trusts, that the entity will never become corrupted.
+
+Runtime Integrity
+-----------------
+
+Runtime integrity in the general sense is when a trusted entity makes an
+assessment of an entity at any point in time during the assessed entity's
+execution. A more concrete explanation is the taking of an integrity assessment
+of an active process executing on the system at any point during the process'
+execution. Often the load-time integrity of an operating system's user-space,
+i.e. the operating environment, is confused to be the runtime integrity of the
+system since it is an integrity assessment of the "runtime" software. The
+reality is that actual runtime integrity is a very difficult problem and thus
+not very many solutions are public and/or available. One example of a runtime
+integrity solution would be John Hopkins Advanced Physics Labratory's (APL)
+Linux Kernel Integrity Module (LKIM).
+
+Trust Chains
+============
+
+Bulding upon the understanding of security mechanisms to establish load-time
+integrity of an entity, it is possible to chain together load-time integrity
+assessments to establish the integrity of the whole system. This process is
+known as transitive trust and provides the concept of building a chain of
+load-time integrity assessments, commonly referred to as a trust chain. These
+assessments may be used to adjudicate the load-time integrity of the whole
+system. This trust chain is started by a trusted entity that does the first
+assessment. This first entity is referred to as the Root of Trust(RoT) with the
+entities name being derived from the mechanism used for the assessment, i.e.
+RoT for Verification (RTV) and RoT for Measurement (RTM).
+
+A trust chain is itself a mechanism, specifically a mechanism of mechanisms,
+and therefore it too has a Strength of Mechanism. The factors that contribute
+to a trust chain's strength are,
+
+ - The strength of the chain's RoT
+ - The strength of each member of the trust chain
+ - The length, i.e. the number of members, of the chain
+
+Therefore to provide the strongest trust chains, they should start with a
+strong RoT and should consist of members being of low complexity and minimizing
+the number of members participating as is possible. In a more colloquial sense,
+a trust chain is only as strong as it weakests link and more links increase
+the probability of a weak link.
+
+Dynamic Launch Components
+=========================
+
+The TCG architecture for dynamic launch is composed of a component series that
+are used to setup and then carry out the launch. These components work together
+to construct a RTM trust chain that is rooted in the dynamic launch and thus
+commonly referred to as the Dynamic Root of Trust for Measurement (DRTM) chain.
+
+What follows is a brief explanation of each component in execution order. A
+subset of these components are what establishes the dynamic launch's trust
+chain.
+
+Dynamic Configuration Environment Preamble
+------------------------------------------
+
+The Dynamic Configuration Environment (DCE) Preamble is responsible for setting
+up the system environment in preparation for a dynamic launch. The DCE Preamble
+is not a part of the DRTM trust chain.
+
+Dynamic Launch Event
+--------------------
+
+The dynamic launch event is the event, typically a CPU instruction, that triggers
+the system's dynamic launch mechanism to begin the launch. The dynamic launch
+mechanism is also the RoT for the DRTM trust chain.
+
+Dynamic Configuration Environment
+---------------------------------
+
+The dynamic launch mechanism may have resulted in a reset of a portion of the
+system. To bring the system back to an adequate state for system software the
+dynamic launch will hand over control to the DCE. Prior to handing over this
+control, the dynamic launch will measure the DCE. Once the DCE is complete it
+will proceed to measure and then execute the Dynamic Launch Measured
+Environment (DLME).
+
+Dynamic Launch Measured Environment
+-----------------------------------
+
+The DLME is the first system kernel to have control of the system but may not
+be the last. Depending on the usage and configuration, the DLME may be the
+final/target operating system or it may be a boot loader that will load the
+final/target operating system.
+
+Why DRTM
+========
+
+It is a fact that DRTM increases the load-time integrity of the system by
+providing a trust chain that has an immutable hardware RoT, uses a limited
+number of small, special purpose code to establish the trust chain that starts
+the target operating system. As mentioned in the Trust Chain section, these are
+the main three factors in driving up the strength of a trust chain. As can been
+seen by the BootHole exploit, which in fact did not effect the integrity of
+DRTM solutions, the sophistication of attacks targeting system launch is at an
+all time high. There is no reason a system should not employ every integrity
+measure hardware makes available. This is the crux of a defense-in-depth
+approach to system security. In the past the now closed SMI gap was often
+pointed to as invalidating DRTM, which in fact was nothing but a strawman
+argument. As has continued to be demonstrated, if/when SMM is corrupted it can
+always circumvent all load-time integrity, SRTM and DRTM, because it is a
+run-time integrity problem. Regardless, Intel and AMD have both deployed
+runtime integrity for SMI and SMM which is tied directly to DRTM such that this
+perceived deficiency is now non-existent and the world is moving forward with
+an expectation that DRTM must be present.
+
+Glossary
+========
+
+.. glossary::
+ integrity
+ Guarding against improper information modification or destruction, and
+ includes ensuring information non-repudiation and authenticity.
+
+ - NIST CNSSI No. 4009 - https://www.cnss.gov/CNSS/issuances/Instructions.cfm
+
+ mechanism
+ A process or system that is used to produce a particular result.
+
+ - NIST Special Publication 800-160 (VOLUME 1 ) - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1.pdf
+
+ risk
+ A measure of the extent to which an entity is threatened by a potential
+ circumstance or event, and typically a function of: (i) the adverse impacts
+ that would arise if the circumstance or event occurs; and (ii) the
+ likelihood of occurrence.
+
+ - NIST SP 800-30 Rev. 1 - https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
+
+ security mechanism
+ A device or function designed to provide one or more security services
+ usually rated in terms of strength of service and assurance of the design.
+
+ - NIST CNSSI No. 4009 - https://www.cnss.gov/CNSS/issuances/Instructions.cfm
+
+ Strength of Mechanism
+ A scale for measuring the relative strength of a security mechanism
+
+ - NIST CNSSI No. 4009 - https://www.cnss.gov/CNSS/issuances/Instructions.cfm
+
+ transitive trust
+ Also known as "Inductive Trust", in this process a Root of Trust gives a
+ trustworthy description of a second group of functions. Based on this
+ description, an interested entity can determine the trust it is to place in
+ this second group of functions. If the interested entity determines that
+ the trust level of the second group of functions is acceptable, the trust
+ boundary is extended from the Root of Trust to include the second group of
+ functions. In this case, the process can be iterated. The second group of
+ functions can give a trustworthy description of the third group of
+ functions, etc. Transitive trust is used to provide a trustworthy
+ description of platform characteristics, and also to prove that
+ non-migratable keys are non-migratable
+
+ - TCG Glossary - https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf
+
+ trust
+ The confidence one element has in another that the second element will
+ behave as expected`
+
+ - NISTIR 8320A - https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8320A.pdf
+
+ trust anchor
+ An authoritative entity for which trust is assumed.
+
+ - NIST SP 800-57 Part 1 Rev. 5 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
+
+ trusted
+ An element that another element relies upon to fulfill critical
+ requirements on its behalf.
+
+ - NISTIR 8320A - https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8320A.pdf
+
+ trusted computing base (TCB)
+ Totality of protection mechanisms within a computer system, including
+ hardware, firmware, and software, the combination responsible for enforcing
+ a security policy.
+
+ - NIST CNSSI No. 4009 - https://www.cnss.gov/CNSS/issuances/Instructions.cfm
+
+ trusted computer system
+ A system that has the necessary security functions and assurance that the
+ security policy will be enforced and that can process a range of
+ information sensitivities (i.e. classified, controlled unclassified
+ information (CUI), or unclassified public information) simultaneously.
+
+ - NIST CNSSI No. 4009 - https://www.cnss.gov/CNSS/issuances/Instructions.cfm
+
+ trustworthiness
+ The attribute of a person or enterprise that provides confidence to others
+ of the qualifications, capabilities, and reliability of that entity to
+ perform specific tasks and fulfill assigned responsibilities.
+
+ - NIST CNSSI No. 4009 - https://www.cnss.gov/CNSS/issuances/Instructions.cfm
diff --git a/Documentation/security/launch-integrity/secure_launch_details.rst b/Documentation/security/launch-integrity/secure_launch_details.rst
new file mode 100644
index 00000000..2f6acd6
--- /dev/null
+++ b/Documentation/security/launch-integrity/secure_launch_details.rst
@@ -0,0 +1,552 @@
+===================================
+Secure Launch Config and Interfaces
+===================================
+
+Configuration
+=============
+
+The settings to enable Secure Launch using Kconfig are under::
+
+ "Processor type and features" --> "Secure Launch support"
+
+A kernel with this option enabled can still be booted using other supported
+methods. There are two Kconfig options for Secure Launch::
+
+ "Secure Launch Alternate Authority usage"
+ "Secure Launch Alternate Detail usage"
+
+The help indicates their usage as alternate post launch PCRs to separate
+measurements for more flexibility (both disabled by default).
+
+To reduce the Trusted Computing Base (TCB) of the MLE [1]_, the build
+configuration should be pared down as narrowly as one's use case allows.
+The fewer drivers (less active hardware) and features reduces the attack
+surface. E.g. in the extreme, the MLE could only have local disk access
+and no other hardware support. Or only network access for remote attestation.
+
+It is also desirable if possible to embed the initrd used with the MLE kernel
+image to reduce complexity.
+
+The following are a few important configuration necessities to always consider:
+
+KASLR Configuration
+-------------------
+
+Secure Launch does not interoperate with KASLR. If possible, the MLE should be
+built with KASLR disabled::
+
+ "Processor type and features" -->
+ "Build a relocatable kernel" -->
+ "Randomize the address of the kernel image (KASLR) [ ]"
+
+This unsets the Kconfig value CONFIG_RANDOMIZE_BASE.
+
+If not possible, KASLR must be disabled on the kernel command line when doing
+a Secure Launch as follows::
+
+ nokaslr
+
+IOMMU Configuration
+-------------------
+
+When doing a Secure Launch, the IOMMU should always be enabled and the drivers
+loaded. However, IOMMU passthrough mode should never be used. This leaves the
+MLE completely exposed to DMA after the PMR's [2]_ are disabled. The current default
+mode is to use IOMMU in lazy translated mode but strict translated mode is the preferred
+IOMMU mode and this should be selected in the build configuration::
+
+ "Device Drivers" -->
+ "IOMMU Hardware Support" -->
+ "IOMMU default domain type" -->
+ "(X) Translated - Strict"
+
+In addition, the Intel IOMMU should be on by default. The following sets this as the
+default in the build configuration::
+
+ "Device Drivers" -->
+ "IOMMU Hardware Support" -->
+ "Support for Intel IOMMU using DMA Remapping Devices [*]"
+
+and::
+
+ "Device Drivers" -->
+ "IOMMU Hardware Support" -->
+ "Support for Intel IOMMU using DMA Remapping Devices [*]" -->
+ "Enable Intel DMA Remapping Devices by default [*]"
+
+It is recommended that no other command line options should be set to override
+the defaults above.
+
+Intel TXT Interface
+===================
+
+The primary interfaces between the various components in TXT are the TXT MMIO
+registers and the TXT heap. The MMIO register banks are described in Appendix B
+of the TXT MLE [1]_ Development Guide.
+
+The TXT heap is described in Appendix C of the TXT MLE [1]_ Development
+Guide. Most of the TXT heap is predefined in the specification. The heap is
+initialized by firmware and the pre-launch environment and is subsequently used
+by the SINIT ACM. One section, called the OS to MLE Data Table, is reserved for
+software to define. This table is the Secure Launch binary interface between
+the pre- and post-launch environments and is defined as follows::
+
+ /*
+ * Secure Launch defined MTRR saving structures
+ */
+ struct txt_mtrr_pair {
+ u64 mtrr_physbase;
+ u64 mtrr_physmask;
+ } __packed;
+
+ struct txt_mtrr_state {
+ u64 default_mem_type;
+ u64 mtrr_vcnt;
+ struct txt_mtrr_pair mtrr_pair[TXT_OS_MLE_MAX_VARIABLE_MTRRS];
+ } __packed;
+
+ /*
+ * Secure Launch defined OS/MLE TXT Heap table
+ */
+ struct txt_os_mle_data {
+ u32 version;
+ u32 boot_params_addr;
+ u64 saved_misc_enable_msr;
+ struct txt_mtrr_state saved_bsp_mtrrs;
+ u32 ap_wake_block;
+ u32 ap_wake_block_size;
+ u64 evtlog_addr;
+ u32 evtlog_size;
+ u8 mle_scratch[64];
+ } __packed;
+
+Description of structure:
+
+===================== ========================================================================
+Field Use
+===================== ========================================================================
+version Structure version, current value 1
+boot_params_addr Physical address of the zero page/kernel boot params
+saved_misc_enable_msr Original Misc Enable MSR (0x1a0) value stored by the pre-launch
+ environment. This value needs to be restored post launch - this is a
+ requirement.
+saved_bsp_mtrrs Original Fixed and Variable MTRR values stored by the pre-launch
+ environment. These values need to be restored post launch - this is a
+ requirement.
+ap_wake_block Pre-launch allocated memory block to wake up and park the APs post
+ launch until SMP support is ready. This block is validated by the MLE
+ before use.
+ap_wake_block_size Size of the ap_wake_block. A minimum of 16384b (4x4K pages) is required.
+evtlog_addr Pre-launch allocated memory block for the TPM event log. The event
+ log is formatted both by the pre-launch environment and the SINIT
+ ACM. This block is validated by the MLE before use.
+evtlog_size Size of the evtlog_addr block.
+mle_scratch Scratch area used post-launch by the MLE kernel. Fields:
+
+ - SL_SCRATCH_AP_EBX area to share %ebx base pointer among CPUs
+ - SL_SCRATCH_AP_JMP_OFFSET offset to abs. ljmp fixup location for APs
+===================== ========================================================================
+
+Error Codes
+-----------
+
+The TXT specification defines the layout for TXT 32 bit error code values.
+The bit encodings indicate where the error originated (e.g. with the CPU,
+in the SINIT ACM, in software). The error is written to a sticky TXT
+register that persists across resets called TXT.ERRORCODE (see the TXT
+MLE Development Guide). The errors defined by the Secure Launch feature are
+those generated in the MLE software. They have the format::
+
+ 0xc0008XXX
+
+The low 12 bits are free for defining the following Secure Launch specific
+error codes.
+
+====== ================
+Name: SL_ERROR_GENERIC
+Value: 0xc0008001
+====== ================
+
+Description:
+
+Generic catch all error. Currently unused.
+
+====== =================
+Name: SL_ERROR_TPM_INIT
+Value: 0xc0008002
+====== =================
+
+Description:
+
+The Secure Launch code failed to get an access to the TPM hardware interface.
+This is most likely to due to misconfigured hardware or kernel. Ensure the
+TPM chip is enabled and the kernel TPM support is built in (it should not be
+built as a module).
+
+====== ==========================
+Name: SL_ERROR_TPM_INVALID_LOG20
+Value: 0xc0008003
+====== ==========================
+
+Description:
+
+The Secure Launch code failed to find a valid event log descriptor for TPM
+version 2.0 or the event log descriptor is malformed. Usually this indicates
+that incompatible versions of the pre-launch environment and the MLE kernel.
+The pre-launch environment and the kernel share a structure in the TXT heap and
+if this structure (the OS-MLE table) is mismatched, this error is often seen.
+This TXT heap area is setup by the pre-launch environment so the issue may
+originate there. It could be the sign of an attempted attack.
+
+====== ===========================
+Name: SL_ERROR_TPM_LOGGING_FAILED
+Value: 0xc0008004
+====== ===========================
+
+Description:
+
+There was a failed attempt to write a TPM event to the event log early in the
+Secure Launch process. This is likely the result of a malformed TPM event log
+buffer. Formatting of the event log buffer information is done by the
+pre-launch environment so the issue most likely originates there.
+
+====== ============================
+Name: SL_ERROR_REGION_STRADDLE_4GB
+Value: 0xc0008005
+====== ============================
+
+Description:
+
+During early validation a buffer or region was found to straddle the 4GB
+boundary. Because of the way TXT does DMA memory protection, this is an
+unsafe configuration and is flagged as an error. This is most likely a
+configuration issue in the pre-launch environment. It could also be the sign of
+an attempted attack.
+
+====== ===================
+Name: SL_ERROR_TPM_EXTEND
+Value: 0xc0008006
+====== ===================
+
+Description:
+
+There was a failed attempt to extend a TPM PCR in the Secure Launch platform
+module. This is most likely to due to misconfigured hardware or kernel. Ensure
+the TPM chip is enabled and the kernel TPM support is built in (it should not
+be built as a module).
+
+====== ======================
+Name: SL_ERROR_MTRR_INV_VCNT
+Value: 0xc0008007
+====== ======================
+
+Description:
+
+During early Secure Launch validation an invalid variable MTRR count was found.
+The pre-launch environment passes a number of MSR values to the MLE to restore
+including the MTRRs. The values are restored by the Secure Launch early entry
+point code. After measuring the values supplied by the pre-launch environment,
+a discrepancy was found validating the values. It could be the sign of an
+attempted attack.
+
+====== ==========================
+Name: SL_ERROR_MTRR_INV_DEF_TYPE
+Value: 0xc0008008
+====== ==========================
+
+Description:
+
+During early Secure Launch validation an invalid default MTRR type was found.
+See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== ======================
+Name: SL_ERROR_MTRR_INV_BASE
+Value: 0xc0008009
+====== ======================
+
+Description:
+
+During early Secure Launch validation an invalid variable MTRR base value was
+found. See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== ======================
+Name: SL_ERROR_MTRR_INV_MASK
+Value: 0xc000800a
+====== ======================
+
+Description:
+
+During early Secure Launch validation an invalid variable MTRR mask value was
+found. See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== ========================
+Name: SL_ERROR_MSR_INV_MISC_EN
+Value: 0xc000800b
+====== ========================
+
+Description:
+
+During early Secure Launch validation an invalid miscellaneous enable MSR value
+was found. See SL_ERROR_MTRR_INV_VCNT for more details.
+
+====== =========================
+Name: SL_ERROR_INV_AP_INTERRUPT
+Value: 0xc000800c
+====== =========================
+
+Description:
+
+The application processors (APs) wait to be woken up by the SMP initialization
+code. The only interrupt that they expect is an NMI; all other interrupts
+should be masked. If an AP gets some other interrupt other than an NMI it will
+cause this error. This error is very unlikely to occur.
+
+====== =========================
+Name: SL_ERROR_INTEGER_OVERFLOW
+Value: 0xc000800d
+====== =========================
+
+Description:
+
+A buffer base and size passed to the MLE caused an integer overflow when
+added together. This is most likely a configuration issue in the pre-launch
+environment. It could also be the sign of an attempted attack.
+
+====== ==================
+Name: SL_ERROR_HEAP_WALK
+Value: 0xc000800e
+====== ==================
+
+Description:
+
+An error occurred in TXT heap walking code. The underlying issue is a failure to
+early_memremap() portions of the heap, most likely due to a resource shortage.
+
+====== =================
+Name: SL_ERROR_HEAP_MAP
+Value: 0xc000800f
+====== =================
+
+Description:
+
+This error is essentially the same as SL_ERROR_HEAP_WALK but occurred during the
+actual early_memremap() operation.
+
+====== =========================
+Name: SL_ERROR_REGION_ABOVE_4GB
+Value: 0xc0008010
+====== =========================
+
+Description:
+
+A memory region used by the MLE is above 4GB. In general this is not a problem
+because memory > 4Gb can be protected from DMA. There are certain buffers that
+should never be above 4Gb though and one of these caused the violation. This is
+most likely a configuration issue in the pre-launch environment. It could also
+be the sign of an attempted attack.
+
+====== ==========================
+Name: SL_ERROR_HEAP_INVALID_DMAR
+Value: 0xc0008011
+====== ==========================
+
+Description:
+
+The backup copy of the ACPI DMAR table which is supposed to be located in the
+TXT heap could not be found. This is due to a bug in the platform's ACM module
+or in firmware.
+
+====== =======================
+Name: SL_ERROR_HEAP_DMAR_SIZE
+Value: 0xc0008012
+====== =======================
+
+Description:
+
+The backup copy of the ACPI DMAR table in the TXT heap is to large to be stored
+for later usage. This error is very unlikely to occur since the area reserved
+for the copy is far larger than the DMAR should be.
+
+====== ======================
+Name: SL_ERROR_HEAP_DMAR_MAP
+Value: 0xc0008013
+====== ======================
+
+Description:
+
+The backup copy of the ACPI DMAR table in the TXT heap could not be mapped. The
+underlying issue is a failure to early_memremap() the DMAR table, most likely
+due to a resource shortage.
+
+====== ====================
+Name: SL_ERROR_HI_PMR_BASE
+Value: 0xc0008014
+====== ====================
+
+Description:
+
+On a system with more than 4G of RAM, the high PMR [2]_ base address should be set
+to 4G. This error is due to that not being the case. This PMR value is set by
+the pre-launch environment so the issue most likely originates there. It could also
+be the sign of an attempted attack.
+
+====== ====================
+Name: SL_ERROR_HI_PMR_SIZE
+Value: 0xc0008015
+====== ====================
+
+Description:
+
+On a system with more than 4G of RAM, the high PMR [2]_ size should be set to cover
+all RAM > 4G. This error is due to that not being the case. This PMR value is
+set by the pre-launch environment so the issue most likely originates there. It
+could also be the sign of an attempted attack.
+
+====== ====================
+Name: SL_ERROR_LO_PMR_BASE
+Value: 0xc0008016
+====== ====================
+
+Description:
+
+The low PMR [2]_ base should always be set to address zero. This error is due to
+that not being the case. This PMR value is set by the pre-launch environment
+so the issue most likely originates there. It could also be the sign of an attempted
+attack.
+
+====== ====================
+Name: SL_ERROR_LO_PMR_MLE
+Value: 0xc0008017
+====== ====================
+
+Description:
+
+This error indicates the MLE image is not covered by the low PMR [2]_ range. The
+PMR values are set by the pre-launch environment so the issue most likely originates
+there. It could also be the sign of an attempted attack.
+
+====== =======================
+Name: SL_ERROR_INITRD_TOO_BIG
+Value: 0xc0008018
+====== =======================
+
+Description:
+
+The external initrd provided is larger than 4Gb. This is not a valid
+configuration for a Secure Launch due to managing DMA protection.
+
+====== =========================
+Name: SL_ERROR_HEAP_ZERO_OFFSET
+Value: 0xc0008019
+====== =========================
+
+Description:
+
+During a TXT heap walk an invalid/zero next table offset value was found. This
+indicates the TXT heap is malformed. The TXT heap is initialized by the
+pre-launch environment so the issue most likely originates there. It could also
+be a sign of an attempted attack. In addition, ACM is also responsible for
+manipulating parts of the TXT heap so the issue could be due to a bug in the
+platform's ACM module.
+
+====== =============================
+Name: SL_ERROR_WAKE_BLOCK_TOO_SMALL
+Value: 0xc000801a
+====== =============================
+
+Description:
+
+The AP wake block buffer passed to the MLE via the OS-MLE TXT heap table is not
+large enough. This value is set by the pre-launch environment so the issue most
+likely originates there. It also could be the sign of an attempted attack.
+
+====== ===========================
+Name: SL_ERROR_MLE_BUFFER_OVERLAP
+Value: 0xc000801b
+====== ===========================
+
+Description:
+
+One of the buffers passed to the MLE via the OS-MLE TXT heap table overlaps
+with the MLE image in memory. This value is set by the pre-launch environment
+so the issue most likely originates there. It could also be the sign of an attempted
+attack.
+
+====== ==========================
+Name: SL_ERROR_BUFFER_BEYOND_PMR
+Value: 0xc000801c
+====== ==========================
+
+Description:
+
+One of the buffers passed to the MLE via the OS-MLE TXT heap table is not
+protected by a PMR. This value is set by the pre-launch environment so the
+issue most likey originates there. It could also be the sign of an attempted
+attack.
+
+====== =============================
+Name: SL_ERROR_OS_SINIT_BAD_VERSION
+Value: 0xc000801d
+====== =============================
+
+Description:
+
+The version of the OS-SINIT TXT heap table is bad. It must be 6 or greater.
+This value is set by the pre-launch environment so the issue most likely
+originates there. It could also be the sign of an attempted attack. It is also
+possible though very unlikely that the platform is so old that the ACM being
+used requires an unsupported version.
+
+====== =====================
+Name: SL_ERROR_EVENTLOG_MAP
+Value: 0xc000801e
+====== =====================
+
+Description:
+
+An error occurred in the Secure Launch module while mapping the TPM event log.
+The underlying issue is memremap() failure, most likely due to a resource
+shortage.
+
+====== ========================
+Name: SL_ERROR_TPM_NUMBER_ALGS
+Value: 0xc000801f
+====== ========================
+
+Description:
+
+The TPM 2.0 event log reports an unsupported number of hashing algorithms.
+Secure launch currently only supports a maximum of two: SHA1 and SHA256.
+
+====== ===========================
+Name: SL_ERROR_TPM_UNKNOWN_DIGEST
+Value: 0xc0008020
+====== ===========================
+
+Description:
+
+The TPM 2.0 event log reports an unsupported hashing algorithm. Secure launch
+currently only supports two algorithms: SHA1 and SHA256.
+
+====== ==========================
+Name: SL_ERROR_TPM_INVALID_EVENT
+Value: 0xc0008021
+====== ==========================
+
+Description:
+
+An invalid/malformed event was found in the TPM event log while reading it.
+Since only trusted entities are supposed to be writing the event log, this
+would indicate either a bug or a possible attack.
+
+.. [1]
+ MLE: Measured Launch Environment is the binary runtime that is measured and
+ then run by the TXT SINIT ACM. The TXT MLE Development Guide describes the
+ requirements for the MLE in detail.
+
+.. [2]
+ PMR: Intel VTd has a feature in the IOMMU called Protected Memory Registers.
+ There are two of these registers and they allow all DMA to be blocked
+ to large areas of memory. The low PMR can cover all memory below 4Gb on 2Mb
+ boundaries. The high PMR can cover all RAM on the system, again on 2Mb
+ boundaries. This feature is used during a Secure Launch by TXT.
diff --git a/Documentation/security/launch-integrity/secure_launch_overview.rst b/Documentation/security/launch-integrity/secure_launch_overview.rst
new file mode 100644
index 00000000..229c2b4
--- /dev/null
+++ b/Documentation/security/launch-integrity/secure_launch_overview.rst
@@ -0,0 +1,214 @@
+======================
+Secure Launch Overview
+======================
+
+Overview
+========
+
+Prior to the start of the TrenchBoot project, the only active Open Source
+project supporting dynamic launch was Intel's tboot project to support their
+implementation of dynamic launch known as Intel Trusted eXecution Technology
+(TXT). The approach taken by tboot was to provide an exokernel that could
+handle the launch protocol implemented by Intel's special loader, the SINIT
+Authenticated Code Module (ACM [2]_) and remained in memory to manage the SMX
+CPU mode that a dynamic launch would put a system. While it is not precluded
+from being used for doing a late launch, tboot's primary use case was to be
+used as an early launch solution. As a result the TrenchBoot project started
+the development of Secure Launch kernel feature to provide a more generalized
+approach. The focus of the effort is twofold, the first is to make the Linux
+kernel directly aware of the launch protocol used by Intel, AMD/Hygon, Arm, and
+potentially OpenPOWER. The second is to make the Linux kernel be able to
+initiate a dynamic launch. It is through this approach that the Secure Launch
+kernel feature creates a basis for the Linux kernel to be used in a variety of
+dynamic launch use cases.
+
+.. note::
+ A quick note on terminology. The larger open source project itself is
+ called TrenchBoot, which is hosted on GitHub (links below). The kernel
+ feature enabling the use of the x86 technology is referred to as "Secure
+ Launch" within the kernel code.
+
+Goals
+=====
+
+The first use case that the TrenchBoot project focused on was the ability for
+the Linux kernel to be started by a dynamic launch, in particular as part of an
+early launch sequence. In this case the dynamic launch will be initiated by a
+boot loader with associated support added to it, for example the first targeted
+boot loader in this case was GRUB2. An integral part of establishing a
+measurement-based launch integrity involves measuring everything that is
+intended to be executed (kernel image, initrd, etc) and everything that will
+configure that kernel to execute (command line, boot params, etc). Then storing
+those measurements in a protected manner. Both the Intel and AMD dynamic launch
+implementations leverage the Trusted Platform Module (TPM) to store those
+measurements. The TPM itself has been designed such that a dynamic launch
+unlocks a specific set of Platform Configuration Registers (PCR) for holding
+measurement taken during the dynamic launch. These are referred to as the DRTM
+PCRs, PCRs 17-22. Further details on this process can be found in the
+documentation for the GETSEC instruction provided by Intel's TXT and the SKINIT
+instruction provided by AMD's AMD-V. The documentation on these technologies
+can be readily found online; see the `Resources`_ section below for references.
+
+.. note::
+ Currently only Intel TXT is supported in this first release of the Secure
+ Launch feature. AMD/Hygon SKINIT and Arm support will be added in a
+ subsequent release.
+
+To enable the kernel to be launched by GETSEC a stub, the Secure Launch stub,
+must be built into the setup section of the compressed kernel to handle the
+specific state that the dynamic launch process leaves the BSP. Also the Secure
+Launch stub must measure everything that is going to be used as early as
+possible. This stub code and subsequent code must also deal with the specific
+state that the dynamic launch leaves the APs as well.
+
+Design Decisions
+================
+
+A number of design decisions were made during the development of the Secure
+Launch feature. The two primary guiding decisions were:
+
+ - Keeping the Secure Launch code as separate from the rest of the kernel
+ as possible.
+ - Modifying the existing boot path of the kernel as little as possible.
+
+The following illustrate how the implementation followed these design
+decisions:
+
+ - All the entry point code necessary to properly configure the system post
+ launch is found in st_stub.S in the compressed kernel image. This code
+ validates the state of the system, restores necessary system operating
+ configurations and properly handles post launch CPU states.
+ - After the sl_stub.S is complete, it jumps directly to the unmodified
+ startup_32 kernel entry point.
+ - A single call is made to a function sl_main() prior to the main kernel
+ decompression step. This code performs further validation and takes the
+ needed DRTM measurements.
+ - After the call to sl_main(), the main kernel is decompressed and boots as
+ it normally would.
+ - Final setup for the Secure Launch kernel is done in a separate Secure
+ Launch module that is loaded via a late initcall. This code is responsible
+ for extending the measurements taken earlier into the TPM DRTM PCRs and
+ setting up the securityfs interface to allow access the TPM event log and
+ public TXT registers.
+ - On the reboot and kexec paths, calls are made to a function to finalize the
+ state of the Secure Launch kernel.
+
+The one place where Secure Launch code is mixed directly in with kernel code is
+in the SMP boot code. This is due to the unique state that the dynamic launch
+leaves the APs in. On Intel this involves using a method other than the
+standard INIT-SIPI sequence.
+
+A final note is that originally the extending of the PCRs was completed in the
+Secure Launch stub when the measurements were taken. An alternative solution
+had to be implemented due to the TPM maintainers objecting to the PCR
+extensions being done with a minimal interface to the TPM that was an
+independent implementation of the mainline kernel driver. Since the mainline
+driver relies heavily on kernel interfaces not available in the compressed
+kernel, it was not possible to reuse the mainline TPM driver. This resulted in
+the decision to move the extension operations to the Secure Launch module in
+the mainline kernel where the TPM driver would be available.
+
+Basic Boot Flow
+===============
+
+Pre-launch: *Phase where the environment is prepared and configured to initiate the
+secure launch in the GRUB bootloader.*
+
+ - Prepare the CPU and the TPM for the launch.
+ - Load the kernel, initrd and ACM [2]_ into memory.
+ - Setup the TXT heap and page tables describing the MLE [1]_ per the
+ specification.
+ - Initiate the secure launch with the GETSET[SENTER] instruction.
+
+Post-launch: *Phase where control is passed from the ACM to the MLE and the secure
+kernel begins execution.*
+
+ - Entry from the dynamic launch jumps to the SL stub.
+ - SL stub fixes up the world on the BSP.
+ - For TXT, SL stub wakes the APs, fixes up their worlds.
+ - For TXT, APs are left halted waiting for an NMI to wake them.
+ - SL stub jumps to startup_32.
+ - SL main does validation of buffers and memory locations. It sets
+ the boot parameter loadflag value SLAUNCH_FLAG to inform the main
+ kernel that a Secure Launch was done.
+ - SL main locates the TPM event log and writes the measurements of
+ configuration and module information into it.
+ - Kernel boot proceeds normally from this point.
+ - During early setup, slaunch_setup() runs to finish some validation
+ and setup tasks.
+ - The SMP bring up code is modified to wake the waiting APs. APs vector
+ to rmpiggy and start up normally from that point.
+ - SL platform module is registered as a late initcall module. It reads
+ the TPM event log and extends the measurements taken into the TPM PCRs.
+ - SL platform module initializes the securityfs interface to allow
+ access to the TPM event log and TXT public registers.
+ - Kernel boot finishes booting normally
+ - SEXIT support to leave SMX mode is present on the kexec path and
+ the various reboot paths (poweroff, reset, halt).
+
+PCR Usage
+=========
+
+The TCG DRTM architecture there are three PCRs defined for usage, PCR.Details
+(PCR17), PCR.Authorities (PCR18), and PCR.DLME_Authority (PCR19). For a deeper
+understanding of Detail and Authorities it is recommended to review the TCG
+DRTM architecture.
+
+Primarily the Authorities is expected to be in the form of a cryptographic
+signature of a component in the DRTM chain. A challenge for Linux kernel is
+that it may or may not have an authoritative signature associated with it and
+Secure Launch intends to support a maximum number of configurations. To support
+the Details/Authority scheme Secure Launch is built with the concept that
+the runtime configuration of a kernel is the "authority" under which the user
+executed the kernel. By default the authority for the kernel is extended into
+PCR.Authorities with a Kconfig option to have it extended into PCR.DLME_Authority.
+
+An extension Secure Launch introduces is the PCR.DLME_Detail (PCR20) PCR.
+Enabling the usage of this PCR is set through Kconfig and results in any DRTM
+components measured by the kernel, e.g. external initrd image, to be extended
+into the PCR. When combined with Secure Launch's user authority being stored in
+PCR.DLME_Authority allows the ability to seal/attest to different variations of
+platform details/authorities with user details/authorities. An example of this
+was presented in the FOSDEM - 2021 talk "Secure Upgrades with DRTM".
+
+Resources
+=========
+
+The TrenchBoot project including documentation:
+
+https://github.com/trenchboot
+
+Trusted Computing Group's D-RTM Architecture:
+
+https://trustedcomputinggroup.org/wp-content/uploads/TCG_D-RTM_Architecture_v1-0_Published_06172013.pdf
+
+TXT documentation in the Intel TXT MLE Development Guide:
+
+https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
+
+TXT instructions documentation in the Intel SDM Instruction Set volume:
+
+https://software.intel.com/en-us/articles/intel-sdm
+
+AMD SKINIT documentation in the System Programming manual:
+
+https://www.amd.com/system/files/TechDocs/24593.pdf
+
+GRUB pre-launch support patchset (WIP):
+
+https://lists.gnu.org/archive/html/grub-devel/2020-05/msg00011.html
+
+FOSDEM 2021: Secure Upgrades with DRTM
+
+https://archive.fosdem.org/2021/schedule/event/firmware_suwd/
+
+.. [1]
+ MLE: Measured Launch Environment is the binary runtime that is measured and
+ then run by the TXT SINIT ACM. The TXT MLE Development Guide describes the
+ requirements for the MLE in detail.
+
+.. [2]
+ ACM: Intel's Authenticated Code Module. This is the 32b bit binary blob that
+ is run securely by the GETSEC[SENTER] during a measured launch. It is described
+ in the Intel documentation on TXT and versions for various chipsets are
+ signed and distributed by Intel.
--
1.8.3.1

Ross Philipson

unread,
Feb 18, 2022, 10:58:43 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: "Daniel P. Smith" <dps...@apertussolutions.com>

The Secure Launch platform module is a late init module. During the
init call, the TPM event log is read and measurements taken in the
early boot stub code are located. These measurements are extended
into the TPM PCRs using the mainline TPM kernel driver.

The platform module also registers the securityfs nodes to allow
access to TXT register fields on Intel along with the fetching of
and writing events to the late launch TPM log.

Signed-off-by: Daniel P. Smith <dps...@apertussolutions.com>
Signed-off-by: garnetgrimm <gri...@ainfosec.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/kernel/Makefile | 1 +
arch/x86/kernel/slmodule.c | 493 +++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 494 insertions(+)
create mode 100644 arch/x86/kernel/slmodule.c

diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index 5a189ad..8c4d602 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -84,6 +84,7 @@ obj-$(CONFIG_IA32_EMULATION) += tls.o
obj-y += step.o
obj-$(CONFIG_INTEL_TXT) += tboot.o
obj-$(CONFIG_SECURE_LAUNCH) += slaunch.o
+obj-$(CONFIG_SECURE_LAUNCH) += slmodule.o
obj-$(CONFIG_ISA_DMA_API) += i8237.o
obj-y += stacktrace.o
obj-y += cpu/
diff --git a/arch/x86/kernel/slmodule.c b/arch/x86/kernel/slmodule.c
new file mode 100644
index 00000000..5bb4c0c
--- /dev/null
+++ b/arch/x86/kernel/slmodule.c
@@ -0,0 +1,493 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure Launch late validation/setup, securityfs exposure and
+ * finalization support.
+ *
+ * Copyright (c) 2022 Apertus Solutions, LLC
+ * Copyright (c) 2021 Assured Information Security, Inc.
+ * Copyright (c) 2022, Oracle and/or its affiliates.
+ *
+ * Author(s):
+ * Daniel P. Smith <dps...@apertussolutions.com>
+ * Garnet T. Grimm <gri...@ainfosec.com>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/linkage.h>
+#include <linux/mm.h>
+#include <linux/io.h>
+#include <linux/uaccess.h>
+#include <linux/security.h>
+#include <linux/memblock.h>
+#include <asm/segment.h>
+#include <asm/sections.h>
+#include <crypto/sha2.h>
+#include <linux/slaunch.h>
+
+#define DECLARE_TXT_PUB_READ_U(size, fmt, msg_size) \
+static ssize_t txt_pub_read_u##size(unsigned int offset, \
+ loff_t *read_offset, \
+ size_t read_len, \
+ char __user *buf) \
+{ \
+ void __iomem *txt; \
+ char msg_buffer[msg_size]; \
+ u##size reg_value = 0; \
+ txt = ioremap(TXT_PUB_CONFIG_REGS_BASE, \
+ TXT_NR_CONFIG_PAGES * PAGE_SIZE); \
+ if (!txt) \
+ return -EFAULT; \
+ return 0;
+
+ mutex_lock(&sl_evt_log_mutex);
+ size = simple_read_from_buffer(buf, count, pos, sl_evtlog.addr,
+ sl_evtlog.size);
+ mutex_unlock(&sl_evt_log_mutex);
+
+ return size;
+}
+
+static ssize_t sl_evtlog_write(struct file *file, const char __user *buf,
+ size_t datalen, loff_t *ppos)
+{
+ ssize_t result;
+ char *data;
+
+ if (!sl_evtlog.addr)
+ return 0;
+
+ /* No partial writes. */
+ result = -EINVAL;
+ if (*ppos != 0)
+ goto out;
+
+ data = memdup_user(buf, datalen);
+ if (IS_ERR(data)) {
+ result = PTR_ERR(data);
+ goto out;
+ }
+
+ mutex_lock(&sl_evt_log_mutex);
+ if (evtlog20)
+ result = tpm20_log_event(evtlog20, sl_evtlog.addr,
+ sl_evtlog.size, datalen, data);
+ else
+ result = tpm12_log_event(sl_evtlog.addr, sl_evtlog.size,
+ datalen, data);
+ mutex_unlock(&sl_evt_log_mutex);
+
+ kfree(data);
+out:
+ return result;
+}
+
+static const struct file_operations sl_evtlog_ops = {
+ .read = sl_evtlog_read,
+ .write = sl_evtlog_write,
+ .llseek = default_llseek,
+};
+
+struct sfs_file {
+ const char *name;
+ const struct file_operations *fops;
+};
+
+#define SL_TXT_ENTRY_COUNT 7
+static const struct sfs_file sl_txt_files[] = {
+ { "sts", &sts_ops },
+ { "ests", &ests_ops },
+ { "errorcode", &errorcode_ops },
+ { "didvid", &didvid_ops },
+ { "ver_emif", &ver_emif_ops },
+ { "scratchpad", &scratchpad_ops },
+ { "e2sts", &e2sts_ops }
+};
+
+/* sysfs file handles */
+static struct dentry *slaunch_dir;
+static struct dentry *event_file;
+static struct dentry *txt_dir;
+static struct dentry *txt_entries[SL_TXT_ENTRY_COUNT];
+
+static long slaunch_expose_securityfs(void)
+{
+ long ret = 0;
+ int i;
+
+ slaunch_dir = securityfs_create_dir("slaunch", NULL);
+ if (IS_ERR(slaunch_dir))
+ return PTR_ERR(slaunch_dir);
+
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ txt_dir = securityfs_create_dir("txt", slaunch_dir);
+ if (IS_ERR(txt_dir)) {
+ ret = PTR_ERR(txt_dir);
+ goto remove_slaunch;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(sl_txt_files); i++) {
+ txt_entries[i] = securityfs_create_file(
+ sl_txt_files[i].name, 0440,
+ txt_dir, NULL,
+ sl_txt_files[i].fops);
+ if (IS_ERR(txt_entries[i])) {
+ ret = PTR_ERR(txt_entries[i]);
+ goto remove_files;
+ }
+ }
+
+ }
+
+ if (sl_evtlog.addr > 0) {
+ event_file = securityfs_create_file(
+ sl_evtlog.name, 0440,
+ slaunch_dir, NULL,
+ &sl_evtlog_ops);
+ if (IS_ERR(event_file)) {
+ ret = PTR_ERR(event_file);
+ goto remove_files;
+ }
+ }
+
+ return 0;
+
+remove_files:
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ while (--i >= 0)
+ securityfs_remove(txt_entries[i]);
+ securityfs_remove(txt_dir);
+ }
+remove_slaunch:
+ securityfs_remove(slaunch_dir);
+
+ return ret;
+}
+
+static void slaunch_teardown_securityfs(void)
+{
+ int i;
+
+ securityfs_remove(event_file);
+ if (sl_evtlog.addr) {
+ memunmap(sl_evtlog.addr);
+ sl_evtlog.addr = NULL;
+ }
+ sl_evtlog.size = 0;
+
+ if (slaunch_get_flags() & SL_FLAG_ARCH_TXT) {
+ for (i = 0; i < ARRAY_SIZE(sl_txt_files); i++)
+ securityfs_remove(txt_entries[i]);
+
+ securityfs_remove(txt_dir);
+
+ if (txt_heap) {
+ memunmap(txt_heap);
+ txt_heap = NULL;
+ }
+ }
+
+ securityfs_remove(slaunch_dir);
+}
+
+static void slaunch_intel_evtlog(void __iomem *txt)
+{
+ struct txt_os_mle_data *params;
+ void *os_sinit_data;
+ u64 base, size;
+
+ memcpy_fromio(&base, txt + TXT_CR_HEAP_BASE, sizeof(base));
+ memcpy_fromio(&size, txt + TXT_CR_HEAP_SIZE, sizeof(size));
+
+ /* now map TXT heap */
+ txt_heap = memremap(base, size, MEMREMAP_WB);
+ if (!txt_heap)
+ slaunch_txt_reset(txt,
+ "Error failed to memremap TXT heap\n",
+ SL_ERROR_HEAP_MAP);
+
+ params = (struct txt_os_mle_data *)txt_os_mle_data_start(txt_heap);
+
+ sl_evtlog.size = params->evtlog_size;
+ sl_evtlog.addr = memremap(params->evtlog_addr, params->evtlog_size,
+ MEMREMAP_WB);
+ if (!sl_evtlog.addr)
+ slaunch_txt_reset(txt,
+ "Error failed to memremap TPM event log\n",
+ SL_ERROR_EVENTLOG_MAP);
+
+ /* Determine if this is TPM 1.2 or 2.0 event log */
+ if (memcmp(sl_evtlog.addr + sizeof(struct tcg_pcr_event),
+ TCG_SPECID_SIG, sizeof(TCG_SPECID_SIG)))
+ return; /* looks like it is not 2.0 */
+
+ /* For TPM 2.0 logs, the extended heap element must be located */
+ os_sinit_data = txt_os_sinit_data_start(txt_heap);
+
+ evtlog20 = tpm20_find_log2_1_element(os_sinit_data);
+
+ /*
+ * If this fails, things are in really bad shape. Any attempt to write
+ * events to the log will fail.
+ */
+ if (!evtlog20)
+ slaunch_txt_reset(txt,
+ "Error failed to find TPM20 event log element\n",
+ SL_ERROR_TPM_INVALID_LOG20);
+}
+
+static void slaunch_tpm20_extend_event(struct tpm_chip *tpm, void __iomem *txt,
+ struct tcg_pcr_event2_head *event)
+{
+ u16 *alg_id_field = (u16 *)((u8 *)event +
+ sizeof(struct tcg_pcr_event2_head));
+ struct tpm_digest *digests;
+ u8 *dptr;
+ int ret;
+ u32 i, j;
+
+ digests = kcalloc(tpm->nr_allocated_banks, sizeof(*digests),
+ GFP_KERNEL);
+ if (!digests)
+ slaunch_txt_reset(txt,
+ "Failed to allocate array of digests\n",
+ SL_ERROR_GENERIC);
+
+static void slaunch_tpm20_extend(struct tpm_chip *tpm, void __iomem *txt)
+{
+ struct tcg_pcr_event *event_header;
+ struct tcg_pcr_event2_head *event;
+ int start = 0, end = 0, size;
+
+ event_header = (struct tcg_pcr_event *)(sl_evtlog.addr +
+ evtlog20->first_record_offset);
+
+ /* Skip first TPM 1.2 event to get to first TPM 2.0 event */
+ event = (struct tcg_pcr_event2_head *)((u8 *)event_header +
+ sizeof(struct tcg_pcr_event) +
+ event_header->event_size);
+
+ while ((void *)event < sl_evtlog.addr + evtlog20->next_record_offset) {
+ size = __calc_tpm2_event_size(event, event_header, false);
+ if (!size)
+ slaunch_txt_reset(txt,
+ "TPM20 invalid event in event log\n",
+ SL_ERROR_TPM_INVALID_EVENT);
+
+ /*
+ * Marker events indicate where the Secure Launch early stub
+ * started and ended adding post launch events.
+ */
+ if (event->event_type == TXT_EVTYPE_SLAUNCH_END) {
+ end = 1;
+ break;
+ } else if (event->event_type == TXT_EVTYPE_SLAUNCH_START) {
+ start = 1;
+ goto next;
+ }
+
+ if (start)
+ slaunch_tpm20_extend_event(tpm, txt, event);
+
+next:
+ event = (struct tcg_pcr_event2_head *)((u8 *)event + size);
+ }
+
+ if (!start || !end)
+ slaunch_txt_reset(txt,
+ "Missing start or end events for extending TPM20 PCRs\n",
+ SL_ERROR_TPM_EXTEND);
+}
+
+static void slaunch_tpm12_extend(struct tpm_chip *tpm, void __iomem *txt)
+{
+ struct tpm12_event_log_header *event_header;
+ struct tcg_pcr_event *event;
+ struct tpm_digest digest;
+ int start = 0, end = 0;
+ int size, ret;
+
+ event_header = (struct tpm12_event_log_header *)sl_evtlog.addr;
+ event = (struct tcg_pcr_event *)((u8 *)event_header +
+ sizeof(struct tpm12_event_log_header));
+
+ while ((void *)event < sl_evtlog.addr + event_header->next_event_offset) {
+ size = sizeof(struct tcg_pcr_event) + event->event_size;
+
+ /*
+static void slaunch_pcr_extend(void __iomem *txt)
+{
+ struct tpm_chip *tpm;
+
+ tpm = tpm_default_chip();
+ if (!tpm)
+ slaunch_txt_reset(txt,
+ "Could not get default TPM chip\n",
+ SL_ERROR_TPM_INIT);
+ if (evtlog20)
+ slaunch_tpm20_extend(tpm, txt);
+ else
+ slaunch_tpm12_extend(tpm, txt);
+}
+
+static int __init slaunch_module_init(void)
+{
+ void __iomem *txt;
+
+ /* Check to see if Secure Launch happened */
+ if ((slaunch_get_flags() & (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT)) !=
+ (SL_FLAG_ACTIVE|SL_FLAG_ARCH_TXT))
+ return 0;
+
+ txt = ioremap(TXT_PRIV_CONFIG_REGS_BASE, TXT_NR_CONFIG_PAGES *
+ PAGE_SIZE);
+ if (!txt)
+ panic("Error ioremap of TXT priv registers\n");
+

Ross Philipson

unread,
Feb 18, 2022, 10:58:57 AM2/18/22
to linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, ross.ph...@oracle.com, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
From: Arvind Sankar <nive...@alum.mit.edu>

There are use cases for storing the offset of a symbol in kernel_info.
For example, the trenchboot series [0] needs to store the offset of the
Measured Launch Environment header in kernel_info.

Since commit (note: commit ID from tip/master)

commit 527afc212231 ("x86/boot: Check that there are no run-time relocations")

run-time relocations are not allowed in the compressed kernel, so simply
using the symbol in kernel_info, as

.long symbol

will cause a linker error because this is not position-independent.

With kernel_info being a separate object file and in a different section
from startup_32, there is no way to calculate the offset of a symbol
from the start of the image in a position-independent way.

To enable such use cases, put kernel_info into its own section which is
placed at a predetermined offset (KERNEL_INFO_OFFSET) via the linker
script. This will allow calculating the symbol offset in a
position-independent way, by adding the offset from the start of
kernel_info to KERNEL_INFO_OFFSET.

Ensure that kernel_info is aligned, and use the SYM_DATA.* macros
instead of bare labels. This stores the size of the kernel_info
structure in the ELF symbol table.

Signed-off-by: Arvind Sankar <nive...@alum.mit.edu>
Cc: Ross Philipson <ross.ph...@oracle.com>
Signed-off-by: Ross Philipson <ross.ph...@oracle.com>
---
arch/x86/boot/compressed/kernel_info.S | 19 +++++++++++++++----
arch/x86/boot/compressed/kernel_info.h | 12 ++++++++++++
arch/x86/boot/compressed/vmlinux.lds.S | 6 ++++++
3 files changed, 33 insertions(+), 4 deletions(-)
create mode 100644 arch/x86/boot/compressed/kernel_info.h

diff --git a/arch/x86/boot/compressed/kernel_info.S b/arch/x86/boot/compressed/kernel_info.S
index f818ee8..c18f071 100644
--- a/arch/x86/boot/compressed/kernel_info.S
+++ b/arch/x86/boot/compressed/kernel_info.S
@@ -1,12 +1,23 @@
/* SPDX-License-Identifier: GPL-2.0 */

+#include <linux/linkage.h>
#include <asm/bootparam.h>
+#include "kernel_info.h"

- .section ".rodata.kernel_info", "a"
+/*
+ * If a field needs to hold the offset of a symbol from the start
+ * of the image, use the macro below, eg
+ * .long rva(symbol)
+ * This will avoid creating run-time relocations, which are not
+ * allowed in the compressed kernel.
+ */
+
+#define rva(X) (((X) - kernel_info) + KERNEL_INFO_OFFSET)

- .global kernel_info
+ .section ".rodata.kernel_info", "a"

-kernel_info:
+ .balign 16
+SYM_DATA_START(kernel_info)
/* Header, Linux top (structure). */
.ascii "LToP"
/* Size. */
@@ -19,4 +30,4 @@ kernel_info:

kernel_info_var_len_data:
/* Empty for time being... */
-kernel_info_end:
+SYM_DATA_END_LABEL(kernel_info, SYM_L_LOCAL, kernel_info_end)
diff --git a/arch/x86/boot/compressed/kernel_info.h b/arch/x86/boot/compressed/kernel_info.h
new file mode 100644
index 00000000..c127f84
--- /dev/null
+++ b/arch/x86/boot/compressed/kernel_info.h
@@ -0,0 +1,12 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef BOOT_COMPRESSED_KERNEL_INFO_H
+#define BOOT_COMPRESSED_KERNEL_INFO_H
+
+#ifdef CONFIG_X86_64
+#define KERNEL_INFO_OFFSET 0x500
+#else /* 32-bit */
+#define KERNEL_INFO_OFFSET 0x100
+#endif
+
+#endif /* BOOT_COMPRESSED_KERNEL_INFO_H */
diff --git a/arch/x86/boot/compressed/vmlinux.lds.S b/arch/x86/boot/compressed/vmlinux.lds.S
index 112b237..84c7b4d 100644
--- a/arch/x86/boot/compressed/vmlinux.lds.S
+++ b/arch/x86/boot/compressed/vmlinux.lds.S
@@ -7,6 +7,7 @@ OUTPUT_FORMAT(CONFIG_OUTPUT_FORMAT)

#include <asm/cache.h>
#include <asm/page_types.h>
+#include "kernel_info.h"

#ifdef CONFIG_X86_64
OUTPUT_ARCH(i386:x86-64)
@@ -27,6 +28,11 @@ SECTIONS
HEAD_TEXT
_ehead = . ;
}
+ .rodata.kernel_info KERNEL_INFO_OFFSET : {
+ *(.rodata.kernel_info)
+ }
+ ASSERT(ABSOLUTE(kernel_info) == KERNEL_INFO_OFFSET, "kernel_info at bad address!")
+
.rodata..compressed : {
*(.rodata..compressed)
}
--
1.8.3.1

Dave Hansen

unread,
Feb 23, 2022, 12:45:43 PM2/23/22
to Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, dps...@apertussolutions.com, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
On 2/16/22 19:54, Ross Philipson wrote:
> The larger focus of the TrenchBoot project (https://github.com/TrenchBoot) is to
> enhance the boot security and integrity in a unified manner. The first area of
> focus has been on the Trusted Computing Group's Dynamic Launch for establishing
> a hardware Root of Trust for Measurement, also know as DRTM (Dynamic Root of
> Trust for Measurement). The project has been and continues to work on providing
> a unified means to Dynamic Launch that is a cross-platform (Intel and AMD) and
> cross-architecture (x86 and Arm), with our recent involvment in the upcoming
> Arm DRTM specification. The order of introducing DRTM to the Linux kernel
> follows the maturity of DRTM in the architectures. Intel's Trusted eXecution
> Technology (TXT) is present today and only requires a preamble loader, e.g. a
> boot loader, and an OS kernel that is TXT-aware. AMD DRTM implementation has
> been present since the introduction of AMD-V but requires an additional
> component that is AMD specific and referred to in the specification as the
> Secure Loader, which the TrenchBoot project has an active prototype in
> development. Finally Arm's implementation is in specification development stage
> and the project is looking to support it when it becomes available.

What problem is this patch series solving? Is the same problem solved
in a different way in the kernel today? What is wrong with that
solution? What effects will end users see if they apply this series?

Daniel P. Smith

unread,
Feb 25, 2022, 2:00:02 PM2/25/22
to Dave Hansen, Ross Philipson, linux-...@vger.kernel.org, x...@kernel.org, linux-i...@vger.kernel.org, linu...@vger.kernel.org, linux-...@vger.kernel.org, ke...@lists.infradead.org, io...@lists.linux-foundation.org, tg...@linutronix.de, mi...@redhat.com, b...@alien8.de, h...@zytor.com, lu...@amacapital.net, nive...@alum.mit.edu, kanth.g...@oracle.com, trenchbo...@googlegroups.com
Hi Dave!

Please find a response that will hopefully address the questions raised.
The answers were meant to be thorough but succinct, though if there is
any areas that are not clear for anyone, please feel free to
ask. This response and any further questions for clarity will be
incorporated into the documentation patch and the cover letter for the
next version of the series.
What problem is the Secure Launch patch series solving?
-------------------------------------------------------

* This patch series begins solving the problem of maintaining a robust
multi-architecture path of entry from DRTM into the Linux kernel.
* DRTM (Dynamic Root of Trust for Measurement) is a strong security
capability that has been used in niche OS environments, including
OpenXT and Qubes. For more than a decade, some have successfully
deployed Linux with DRTM, but popular Linux distros have not yet used
DRTM.
* The TrenchBoot project was started to improve the usability of DRTM
with Open-Source systems software (e.g. Linux, Xen) on hardware
architectures that provide a DRTM capability, e.g Intel x86, AMD x86,
Arm, and OpenPOWER.
* Microsoft Secured Core enterprise PCs use DRTM as a cornerstone of
establishing device integrity, optionally validated by Azure
Attestation. Devices with DRTM and Linux Secure Launch will have
necessary building blocks for attestation to local and remote
services, including Azure.
* TrenchBoot contributors have collaborated with Arm on the development
of their recently released DRTM specification [1], which can enable
Windows VBS (virtualization-based security) and Linux Secure Launch
capabilities, on DRTM-capable Arm devices such as Microsoft Secured
Core PCs.
* From 2018-2020, possibly motivated by DRTM requirements in MS Secured
Core, Intel Hardware Shield[2] introduced vPro hardware and firmware
features for SMM (System Management Mode) trustworthiness via
attestable isolation between operating systems and SMM. DRTM prevents
any DMA interference during the Intel Hardware Shield PPAM integrity
report exchange with Linux.

[1] https://developer.arm.com/documentation/den0113/latest
[2]
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/drtm-
based-computing-whitepaper.pdf

Is the same problem solved in a different way in the kernel today?
------------------------------------------------------------------

* Today the only way to start Linux via DRTM is with Intel's tboot
exokernel.
* The Secure Launch patch series was designed to co-exist with the
existing tboot extensions in the Linux kernel as to not to disrupt
existing users of tboot.
* The first beta release of the Arm DRTM specification was just made
public on February 17th, 2022. Obviously there are currently no
implementations available yet.

What is wrong with that solution?
---------------------------------

* A short discussion over tboot can be found in the Overview section of
secure_launch_overview.rst in the documentation patch, which is v5
patch 02/12.
* Functionally tboot's primary deficiency is that it is an Intel-only
solution.
* There is no support for the AMD/Hygon, whose SKINIT capability has
been around nearly as long as Intel TXT.
* The security merits of tboot's approach could be debated endlessly by
security researchers depending on their view of trust and security.

What effects will end users see if they apply this series?
----------------------------------------------------------

* To provide a full answer, the capability can be completely disabled
via the Kconfig system resulting in no new code paths.
* The other case is when a kernel is built with Secure Launch enabled
and in this case there are two relevant aspects, impacts to user
experience and the benefits the user will gain.
* As to the impacts to user experience, the end users should see no
effects in the launch of the kernel from this series.
* One of the primary goals for this series was to minimize change to the
kernel boot flow and to ensure the capability was benign if compiled
in but not enabled/used.
* When the bootloader is configured to launch the kernel via DRTM, again
there will be little to no effect on the user experience. There are a
few CPU behavior differences that result from doing a DRTM but their
effect is only seen by Linux internals, for which this series makes
the kernel aware.
* The benefit is that it removes having to trust all the second and
third party code in the UEFI boot chain. For instance during the
Boothole vulnerability situation, Boothole had a near zero if not a
zero impact for DRTM systems, i.e. it could not be used to compromise
nor load a bad kernel.
* Removing the need to trust every driver, service, and setup code in
firmware is not the only benefit as DRTM provides several use cases
that are not otherwise possible. Please see my response to Paul Moore
or visit trenchboot.org/events to see the numerous talks on usages and
capabilities that are possible because of DRTM.


V/r,
Daniel P. Smith
Reply all
Reply to author
Forward
0 new messages