We all know mental maths is an essential skill while performing mathematical calculations. Mental maths questions with solutions and tricks are provided here for students to improve their mental calculation skill. Train your brain with these mental maths questions and perform any arithmetic calculations within seconds.
Mental maths is not just about recalling facts quickly but also applying known facts. A pupil may be able to recall number bonds to ten, for example, but they also need to know how to apply this knowledge to a question they are solving.
Some questions can be solved far quicker using mental strategies compared to written strategies. Mental maths is also essential in everyday life; consider how much more difficult it would be to calculate monetary totals in real life without the ability to quickly add approximate totals mentally.
When tackling more complex mathematical problems, such as multi-step problems or order of operations calculations, using mental strategies to solve parts of the calculation can also reduce the perceived complexity of the task, making it far more manageable.
However, it is important that pupils understand that completing calculations mentally is not always the best strategy. They need to become adept at analysing a calculation to decide if it is best to complete it using a mental or a written strategy.
In arithmetic tests, many pupils will take a long time using written methods when they could find the correct answer mentally. If a question is best solved using mental methods, pupils then need to select the most efficient method to solve the given calculation. This may seem a lot for pupils to grasp, which is why regularly practising mental maths tasks is important.
While a question might suggest using a mental method, an inefficient method could confuse the pupil and take them far longer than necessary to solve. If when adding 9 to a number, for example, the pupil counts in ones instead of adding 10 and adjusting, they are using an inefficient and slow method.
By encouraging discussion around different methods, pupils will not only be exposed to a range of methods, they will also develop their verbal reasoning skills. Additionally, by exposing pupils to a range of mental maths skills and methods they will develop their understanding that the most efficient method for one calculation may not be the most efficient method for the next. Daily questions and mental maths games are a great way to introduce more mental maths into your classroom.
Year 2 children are expected to add three one-digit numbers. With question d, pupils should look for number bonds first. If they can see that 7 + 3 = 10, solving the rest of the calculation becomes much easier. When solving this calculation, it is essential that pupils understand that addition is commutative.
With the question above, the suggestion is to find the nearest multiple of 10 and adjust. Subtracting 30 from 55 is far easier than subtracting 29. This method relies on pupils understanding that subtracting 30 and adding 1 is the same as subtracting 29.
Until pupils are confident with a range of different methods and explaining their method, it is often useful to provide them with a range of concrete and pictorial representations. Eventually, these can be removed and pupils can work with the abstract concepts alone, as is exemplified with the second question. Pupils should be able to use the information gained in the first question to help them solve the second question.
To solve this calculation, pupils could use their rapid recall of number bonds to 10 and 100. They could also use the inverse operation to calculate 100 subtract 60 = ?. An alternative method is to count on in tens from 60 to 100. Some pupils might use their fingers to help them keep track of their process while others might imagine a number line.
Adding decimals mentally can be difficult. This is the type of question where estimating, using whole numbers and jottings can be helpful. By estimating the answer first, pupils will get a good idea of what their answer should be. If, when finding the exact answer, the two are vastly different, pupils will know they have made a mistake. This does rely on pupils understanding how to estimate accurately.
When finding the exact answer, pupils could use number bonds, partitioning and jotting to help them. For example, adding the pence first and identifying that 3p + 7p = 10p then adding the 10p to 90p to make 1. Without jottings, such as crossing off digits, writing 10p etc, they may become confused as to what they have added.
By the end of Year 4, pupils are expected to know all the times tables up to 12 x 12. If pupils are not yet confident with all of their times tables, there are methods they can use to help them mentally calculate the answer.
Multiplying and dividing by 10 and 100 can cause some confusion with pupils. When completing these calculations mentally, encourage pupils to avoid thinking they are adding or subtracting zeros as this will embed misconceptions.
When multiplying by 10 mentally, there are several methods pupils could use. When multiplying a one-digit number by 10, they may be able to recall the answer (e.g. 8 x 10). They could also count in tens, although this method could be inaccurate. Pupils could also imagine a place value grid and mentally move the digits one column to the left. This method would also work for multiplying two-digit numbers by 10.
When dividing by 10, pupils could also use the method of imagining a place value grid and moving the digits one place to the right. If the pupil is confident multiplying by 10 using different methods, they could also use their understanding of inverse operations to find the answer. If, for example, they struggle with 30 10, they could instead complete ? x 10 = 30.
When multiplying by a multiple of 10, pupils can partition the multiple of ten to make the calculation easier to solve. In this example, the pupil could partition 40 into 10 x 4. This makes the calculation far easier to solve as they can multiply 4 by 5, then multiply the product by 10.
The methods pupils will have developed when multiplying by 10 can be applied to multiplying by 100. Another method that can be used is multiplying the multiplier by 10 then multiplying the product by 10. This would rely on the pupil understanding that x 10 x 10 is the same as x 100.
When dividing by 100, the methods are similar to dividing by 10. Pupils could imagine a place value grid and move the digits two places to the right. They could also use the inverse operation if they are more comfortable with multiplying by 100, or to simply check their answers. Similarly to multiplying by 100, pupils could also divide the dividend by 10 then divide the quotient by 10.
When completing 2 x 4 x 5, pupils could identify that 2 x 5 = 10 and multiply this by 4 or complete 4 x 5 and multiply the product by 2. By identifying easier calculations to multiply, they can find more manageable numbers to work with. There are times where pupils may struggle with this. For example, with the second question, if pupils first complete 9 x 2 = 18, they may then struggle to answer 5 x 18.
With questions involving the order of operations, rapid recall of number facts becomes very useful. While we have set out all the steps pupils would take to complete the calculations, they could use jottings to help them.
In this calculation, pupils can quickly recall the product of 5 and 5 then subtract 3 from this, which has then significantly simplified the calculation. A quick jotting of 22 would then allow the pupil to solve 4 cubed without forgetting their previous answer.
This real world word problem is a good example of when mental calculations are used in everyday life. First, pupils will need to decide how they are rounding (the answer shows rounding to the nearest 1). They can then add the rounded numbers mentally. These numbers are fairly easy to add as one is a multiple of 100, one is a multiple of 10 and one is a one-digit number. This sum can then be compared to the amount he has in his bank.
A combination of cognitive strategies that enhances flexible thinking and number sense. It is calculating mentally without the use of external memory aids. It improves computational fluency by developing efficiency, accuracy, and flexibility.
[There] is a significant positive correlation between mental computation and mathematical reasoning. It is noteworthy that rather than exposing students to familiar classical problems, students need to be enabled to deal with exceptional/non-routine problems, and especially young children should be encouraged to do mental computing in order for developing both skills.
Current research shows that singing, moving and overall enjoyment of a subject enhances the learning process and long term recall of material. All of these requirements are present when using mnemonics in the classroom. My research proved similar findings. All of the teachers that I surveyed noted higher levels of learning, engagement and fun while singing songs based on the core content material.
Teaching abstract theory alone was demotivating. Relevance could be established through: showing how theory can be applied in practice, establishing relevance to local cases, relating material to everyday applications, or finding applications in current newsworthy issues.
To play, pair students together. Taking turns rolling the dice, they must add the corresponding numbers together in their heads. For example, if a student rolls five and six, the equation is 878 + 777. Without pencil, paper or calculator, the student must solve the equation. If he or she is within a range of five numbers -- verifying the solution with a calculator -- the answer is considered correct.
A useful active learning strategy, the taped-problem approach is one of the most effective ways for students to build fact fluency, indicates a 2004 study that pioneered the strategy.
c80f0f1006