Bir ABCDEF sayısınının 10 luk sistemde çözümlenmiş halini mod7 de düşünün bakalım ne oluyor?
Bir ABCDEF sayısınının 10 luk sistemde çözümlenmiş halini mod7 de düşünün bakalım ne oluyor?
--
Yanlış anlaşılmalara ve polemik oluşturacak durumlara meydan verecek mesajlardan kaçınalım lütfen...
http://www.facebook.com/pages/Matematik-Geometri/150709609688?ref=mf
--
Yanlış anlaşılmalara ve polemik oluşturacak durumlara meydan verecek mesajlardan kaçınalım lütfen...
http://www.facebook.com/pages/Matematik-Geometri/150709609688?ref=mf
Amacımız düşündürmek idi. Kısa ispat istenince daha kısa yolu da yok.
Bir ABCDEF say�s�n�n�n 10 luk sistemde ��z�mlenmi� halini mod7 de d���n�n bakal�m ne oluyor?
--
Yanl�� anla��lmalara ve polemik olu�turacak durumlara meydan verecek mesajlardan ka��nal�m l�tfen...
http://www.facebook.com/pages/Matematik-Geometri/150709609688?ref=mf
Amacımız düşündürmek idi. Kısa ispat istenince daha kısa yolu da yok.
--
Yanlış anlaşılmalara ve polemik oluşturacak durumlara meydan verecek mesajlardan kaçınalım lütfen...
http://www.facebook.com/pages/Matematik-Geometri/150709609688?ref=mf
--
Yanlış anlaşılmalara ve polemik oluşturacak durumlara meydan verecek mesajlardan kaçınalım lütfen...
http://www.facebook.com/pages/Matematik-Geometri/150709609688?ref=mf
On 16 Kasım, 20:54, mustafa yagci <yagcimust...@yahoo.com> wrote:
> 7, 11 ve 13 ile bölünebilme kuralı ortak olduğundan şunu kullanmanızı öneririm:
>
> Örnek olarak abcdef altı basamaklı sayısını alalım.
> abcdef = abc000 + def = abc000 + def + abc - abc = abcabc + def - abc = abc.1001 + def - abc = abc.7.11.13 + def - abc
> olduğundan sayıyı üçerli bsamaklara ayırıp sondan başlayarak bu grupların farkları toplamının 7'ye (veya 11'e veya 13'e) bölümünden kalanı bulabilirsiniz.
> MY
>
> ________________________________
> From: mustafa durmuş <mustafadurmu...@hotmail.com>
> To: tm...@googlegroups.com
> Sent: Monday, November 14, 2011 10:31 PM
> Subject: RE: [TMOZ:466992] 7 ile bölünebilmenin ispatı var mı
>
>
>
> ________________________________
> From: mustafadurmu...@hotmail.com
> To: tm...@googlegroups.com
> Subject: RE: [TMOZ:466977] 7 ile bölünebilmenin ispatı var mı
> Date: Mon, 14 Nov 2011 20:29:21 +0000
>
> abcde sayısını ele alalım 10=3(mod7) , 100=2(mod7), 1000=6(mod7), 1000=6=-1(mod7), 10000=4(mod7)
>
>
> abcde=10000a+1000b+100c+10d+e= 4a+-1b+2c+3d+e basamak sayısı arttıkca devam edip gider
>
> ________________________________
> Date: Mon, 14 Nov 2011 22:19:17 +0200
> Subject: Re: [TMOZ:466977] 7 ile bölünebilmenin ispatı var mı
> From: dogaguzel...@gmail.com
> To: tm...@googlegroups.com
>
> hocam böyle yanıt mı olur. ispatı bilmiyorsaız yazmayın. düşündük ki sorduk.
>
> 14 Kasım 2011 22:10 tarihinde DNZKRDG <karadagde...@gmail.com> yazdı: