Daily TMLR digest for Jun 09, 2024

0 views
Skip to first unread message

TMLR

unread,
Jun 9, 2024, 12:00:07 AMJun 9
to tmlr-anno...@googlegroups.com


New submissions
===============


Title: Non-ergodicity in reinforcement learning: robustness via ergodicity transformations

Abstract: Envisioned application areas for reinforcement learning (RL) include autonomous driving, precision agriculture, and finance, which all require RL agents to make decisions in the real world. A significant challenge hindering the adoption of RL methods in these domains is the non-robustness of conventional algorithms. In this paper, we argue that a fundamental issue contributing to this lack of robustness lies in the focus on the expected value of the return as the sole ``correct'' optimization objective. The expected value is the average over the statistical ensemble of infinitely many trajectories. For non-ergodic returns, this average differs from the average over a single but infinitely long trajectory. Consequently, optimizing the expected value can lead to policies that yield exceptionally high returns with probability zero but almost surely result in catastrophic outcomes. This problem can be circumvented by transforming the time series of collected returns into one with ergodic increments. This transformation enables learning robust policies by optimizing the long-term return for individual agents rather than the average across infinitely many trajectories. We propose an algorithm for learning ergodicity transformations from data and demonstrate its effectiveness in an instructive, non-ergodic environment and on standard RL benchmarks.

URL: https://openreview.net/forum?id=N2Sbp2biU7

---

Title: Permutation invariant functions: statistical tests, density estimation, and computationally efficient embedding

Abstract: Permutation invariance is among the most common symmetry that can be exploited to simplify complex problems in machine learning (ML). There has been a tremendous surge of research activities in building permutation invariant ML architectures. However, less attention is given to: (1) how to statistically test for permutation invariance of coordinates in a random vector where the dimension is allowed to grow with the sample size; (2) how to leverage permutation invariance in estimation problems and how does it help reduce dimensions. In this paper, we take a step back and examine these questions in several fundamental problems: (i) testing the assumption of permutation invariance of multivariate distributions; (ii) estimating permutation invariant densities; (iii) analyzing the metric entropy of permutation invariant function classes and compare them with their counterparts without imposing permutation invariance; (iv) deriving an embedding of permutation invariant reproducing kernel Hilbert spaces for efficient computation. In particular, our methods for (i) and (iv) are based on a sorting trick and (ii) is based on an averaging trick. These tricks substantially simplify the exploitation of permutation invariance.

URL: https://openreview.net/forum?id=UbGwHVsFsQ

---

Title: PerSEval: Assessing Personalization in Text Summarizers

Abstract: Personalized summarization models cater to individuals' subjective understanding of saliency, as represented by their reading history and current topics of attention. Existing personalized text summarizers are primarily evaluated based on accuracy measures such as BLEU, ROUGE, and METEOR. However, a recent study argued that accuracy measures are inadequate for evaluating the $\textit{degree of personalization}$ of these models and proposed EGISES, the first metric to evaluate personalized text summaries. It was suggested that accuracy is a separate aspect and should be evaluated standalone. In this paper, we challenge the necessity of an accuracy leaderboard, suggesting that relying on accuracy-based aggregated results might lead to misleading conclusions. To support this, we delve deeper into EGISES, demonstrating both theoretically and empirically that it measures the $\textit{degree of responsiveness}$, a necessary but not sufficient condition for degree-of-personalization. We subsequently propose PerSEval, a novel measure that satisfies the required sufficiency condition. Based on the benchmarking of ten SOTA summarization models on the PENS dataset, we empirically establish that -- (i) PerSEval is reliable w.r.t human-judgment correlation (Pearson's $r$ = 0.73; Spearman's $\rho$ = 0.62; Kendall's $\tau$ = 0.42), (ii) PerSEval has high rank-stability, (iii) PerSEval as a rank-measure is not entailed by EGISES-based ranking, and (iv) PerSEval can be a standalone rank-measure without the need of any aggregated ranking.

URL: https://openreview.net/forum?id=yqT7eBz1VJ

---
Reply all
Reply to author
Forward
0 new messages