Daily TMLR digest for Aug 05, 2022

0 views
Skip to first unread message

TMLR

unread,
Aug 4, 2022, 8:00:17 PM8/4/22
to tmlr-anno...@googlegroups.com


Accepted papers
===============


Title: Self-supervise, Refine, Repeat: Improving Unsupervised Anomaly Detection

Authors: Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan O Arik, Chen-Yu Lee, Tomas Pfister

Abstract: Anomaly detection (AD), separating anomalies from normal data, has many applications across domains, from security to healthcare. While most previous works were shown to be effective for cases with fully or partially labeled data, that setting is in practice less common due to labeling being particularly tedious for this task. In this paper, we focus on fully unsupervised AD, in which the entire training dataset, containing both normal and anomalous samples, is unlabeled. To tackle this problem effectively, we propose to improve the robustness of one-class classification trained on self-supervised representations using a data refinement process. Our proposed data refinement approach is based on an ensemble of one-class classifiers (OCCs), each of which is trained on a disjoint subset of training data. Representations learned by self-supervised learning on the refined data are iteratively updated as the data refinement improves. We demonstrate our method on various unsupervised AD tasks with image and tabular data. With a 10% anomaly ratio on CIFAR-10 image data / 2.5% anomaly ratio on Thyroid tabular data, the proposed method outperforms the state-of-the-art one-class classifier by 6.3 AUC and 12.5 average precision / 22.9 F1-score.

URL: https://openreview.net/forum?id=b3v1UrtF6G

---

Title: A Comprehensive Study of Real-Time Object Detection Networks Across Multiple Domains: A Survey

Authors: Elahe Arani, Shruthi Gowda, Ratnajit Mukherjee, Omar Magdy, Senthilkumar Sockalingam Kathiresan, Bahram Zonooz

Abstract: Deep neural network based object detectors are continuously evolving and are used in a multitude of applications, each having its own set of requirements. While safety-critical applications need high accuracy and reliability, low-latency tasks need resource and energy-efficient networks. Real-time detection networks, which are a necessity in high-impact real-world applications, are continuously proposed but they overemphasize the improvements in accuracy and speed while other capabilities such as versatility, robustness, resource, and energy efficiency are omitted. A reference benchmark for existing networks does not exist nor does a standard evaluation guideline for designing new networks, which results in ambiguous and inconsistent comparisons. We, therefore, conduct a comprehensive study on multiple real-time detection networks (anchor-based, keypoint-based, and transformer-based) on a wide range of datasets and report results on an extensive set of metrics. We also study the impact of variables such as image size, anchor dimensions, confidence thresholds, and architecture layers on the overall performance. We analyze the robustness of detection networks against distribution shift, natural corruptions, and adversarial attacks. Also, we provide the calibration analysis to gauge the reliability of the predictions. Finally, to highlight the real-world impact, we conduct two unique case studies, on autonomous driving and healthcare application. To further gauge the capability of networks in critical real-time applications, we report the performance after deploying the detection networks on edge devices. Our extensive empirical study can act as a guideline for the industrial community to make an informed choice on the existing networks. We also hope to inspire the research community towards a new direction of design and evaluation of networks that focuses on the bigger and holistic overview for a far-reaching impact.

URL: https://openreview.net/forum?id=ywr5sWqQt4

---

Title: Domain-invariant Feature Exploration for Domain Generalization

Authors: Wang Lu, Jindong Wang, Haoliang Li, Yiqiang Chen, Xing Xie

Abstract: Deep learning has achieved great success in the past few years. However, the performance of deep learning is likely to impede in face of non-IID situations. Domain generalization (DG) enables a model to generalize to an unseen test distribution, i.e., to learn domain-invariant representations. In this paper, we argue that domain-invariant features should be originating from both internal and mutual sides. Internal invariance means that the features can be learned with a single domain and the features capture intrinsic semantics of data, i.e., the property within a domain, which is agnostic to other domains. Mutual invariance means that the features can be learned with multiple domains (cross-domain) and the features contain common information, i.e., the transferable features w.r.t. other domains. We then propose DIFEX for Domain-Invariant Feature EXploration. DIFEX employs a knowledge distillation framework to capture the high-level Fourier phase as the internally-invariant features and learn cross-domain correlation alignment as the mutually-invariant features. We further design an exploration loss to increase the feature diversity for better generalization. Extensive experiments on both time-series and visual benchmarks demonstrate that the proposed DIFEX achieves state-of-the-art performance.

URL: https://openreview.net/forum?id=0xENE7HiYm

---

Title: Stable and Interpretable Unrolled Dictionary Learning

Authors: Bahareh Tolooshams, Demba E. Ba

Abstract: The dictionary learning problem, representing data as a combination of a few atoms, has long stood as a popular method for learning representations in statistics and signal processing. The most popular dictionary learning algorithm alternates between sparse coding and dictionary update steps, and a rich literature has studied its theoretical convergence. The success of dictionary learning relies on access to a good initial estimate of the dictionary and the ability of the sparse coding step to provide an unbiased estimate of the code. The growing popularity of unrolled sparse coding networks has led to the empirical finding that backpropagation through such networks performs dictionary learning. We offer the theoretical analysis of these empirical results through PUDLE, a Provable Unrolled Dictionary LEarning method. We provide conditions on the network initialization and data distribution sufficient to recover and preserve the support of the latent code. Additionally, we address two challenges; first, the vanilla unrolled sparse coding computes a biased code estimate, and second, gradients during backpropagated learning can become unstable. We show approaches to reduce the bias of the code estimate in the forward pass, and that of the dictionary estimate in the backward pass. We propose strategies to resolve the learning instability by tuning network parameters and modifying the loss function. Overall, we highlight the impact of loss, unrolling, and backpropagation on convergence. We complement our findings through synthetic and image denoising experiments. Finally, we demonstrate PUDLE's interpretability, a driving factor in designing deep networks based on iterative optimizations, by building a mathematical relation between network weights, its output, and the training set.

URL: https://openreview.net/forum?id=e3S0Bl2RO8

---


New submissions
===============


Title: Transferable and Adaptable Driving Behavior Prediction

Abstract: While autonomous vehicles still struggle to solve challenging situations during on-road driving, humans have long mastered the essence of driving with efficient, transferable, and adaptable driving capability. The obvious gap between humans and autonomous vehicles keeps us wondering about the essence of how human learns to drive. Inspired by humans' cognition model and semantic understanding during driving in a hierarchical learning procedure, we propose HATN, a hierarchical framework to generate high-quality, transferable, and adaptable predictions for driving behaviors in multi-agent dense-traffic environments. Our hierarchical method consists of a high-level intention identification policy and a low-level trajectory generation policy. We introduce a novel semantic definition for the two policies and generic state representation for each policy, so that the hierarchical framework is transferable across different driving scenarios. Besides, our model is able to capture variations of driving behaviors among individuals and scenarios by an online adaptation module. We demonstrate our algorithms in the task of trajectory prediction for real traffic data at intersections and roundabouts from the INTERACTION dataset. Through extensive numerical studies, it is evident that our method significantly outperformed other methods in terms of prediction accuracy, transferability, and adaptability. Pushing the performance by a considerable margin, we also provide a cognitive view of understanding the driving behavior behind such improvement. We highlight that in the future, more research attention and effort are deserved for the transferability and adaptability of autonomous driving planning and prediction algorithms. It is not only due to the promising performance elevation, but more fundamentally, they are crucial for the scalable and general deployment of autonomous vehicles.

URL: https://openreview.net/forum?id=PsDl6kbPYi

---
Reply all
Reply to author
Forward
0 new messages