Daily TMLR digest for Jun 17, 2024

0 views
Skip to first unread message

TMLR

unread,
Jun 17, 2024, 12:00:12 AM (14 days ago) Jun 17
to tmlr-anno...@googlegroups.com

Accepted papers
===============


Title: A Survey on Fairness Without Demographics

Authors: Patrik Joslin Kenfack, Samira Ebrahimi Kahou, Ulrich Aïvodji

Abstract: The issue of bias in Machine Learning (ML) models is a significant challenge for the machine learning community. Real-world biases can be embedded in the data used to train models, and prior studies have shown that ML models can learn and even amplify these biases. This can result in unfair treatment of individuals based on their inherent characteristics or sensitive attributes such as gender, race, or age. Ensuring fairness is crucial with the increasing use of ML models in high-stakes scenarios and has gained significant attention from researchers in recent years. However, the challenge of ensuring fairness becomes much greater when the assumption of full access to sensitive attributes does not hold. The settings where the hypothesis does not hold include cases where (1) only limited or noisy demographic information is available or (2) demographic information is entirely unobserved due to privacy restrictions. This survey reviews recent research efforts to enforce fairness when sensitive attributes are missing. We propose a taxonomy of existing works and, more importantly, highlight current challenges and future research directions to stimulate research in ML fairness in the setting of missing sensitive attributes.

URL: https://openreview.net/forum?id=3HE4vPNIfX

---

Title: Reproducibility study of FairAC

Authors: Gijs de Jong, Macha J. Meijer, Derck W. E. Prinzhorn, Harold Ruiter

Abstract: This work aims to reproduce the findings of the paper "Fair Attribute Completion on Graph with Missing Attributes" written by Guo et al. (2023) by investigating the claims made in the paper. This paper suggests that the results of the original paper are reproducible and thus, the claims hold. However, the claim that FairAC is a generic framework for many downstream tasks is very broad and could therefore only be partially tested. Moreover, we show that FairAC is generalizable to various datasets and sensitive attributes and show evidence that the improvement in group fairness of the FairAC framework does not come at the expense of individual fairness. Lastly, the codebase of FairAC has been refactored and is now easily applicable for various datasets and models.

URL: https://openreview.net/forum?id=ccDi5jtSF7

---


New submissions
===============


Title: In-Context Feature Adaptation for Bongard Problems

Abstract: Current machine learning methods struggle to solve Bongard problems, which are a type of IQ test that requires deriving an abstract “concept” from a set of positive and negative “support” images, and then classifying whether or not a new query image depicts the key concept. On Bongard-HOI, a benchmark for natural-image Bongard problems, most existing methods have reached at best 69% accuracy (where chance is 50%). Low accuracy is often attributed to neural nets’ lack of ability to find human-like symbolic rules. In this work, we point out that many existing methods are forfeiting accuracy due to a much simpler problem: they do not adapt image features given information contained in the support set as a whole, and rely instead on information extracted from individual supports. This is a critical issue, because the “key concept” in a typical Bongard problem can often only be distinguished using multiple positives and multiple negatives. We explore simple methods to incorporate this context and show substantial gains over prior works, leading to new state-of-the-art accuracy on Bongard-LOGO (75.3%) and Bongard-HOI (76.4%) compared to methods with equivalent vision backbone architectures and strong performance on the original Bongard problem set (60.8%).

URL: https://openreview.net/forum?id=kUuPUIPvJ6

---

Title: Biased Dueling Bandits with Stochastic Delayed Feedback

Abstract: The dueling bandit problem, an essential variation of the traditional multi-armed bandit problem, has become significantly prominent recently due to its broad applications in online advertising, recommendation systems, information retrieval, and more. However, in many real-world applications, the feedback for actions is often subject to unavoidable delays and is not immediately available to the agent. This partially observable issue poses a significant challenge to existing dueling bandit literature, as it significantly affects how quickly and accurately the agent can update their policy on the fly. In this paper, we introduce and examine the dueling bandit problem with stochastic delayed feedback, revealing that this new practical problem will delve into a more realistic and intriguing scenario involving a preference bias between the selections. We present two algorithms designed to handle situations involving delay. Our first algorithm, requiring complete delay distribution information, achieves the optimal regret bound for the dueling bandit problem when there is no delay. The second algorithm is tailored for situations where the distribution is unknown, but only the expected value of delay is available. We provide a comprehensive regret analysis for the two proposed algorithms and then evaluate their empirical performance on both synthetic and real datasets.

URL: https://openreview.net/forum?id=HwAZDVxkLX

---

Title: Evaluating MEDIRL: A Replication and Ablation Study of Maximum Entropy Deep Inverse Reinforcement Learning for Human Social Navigation

Abstract: In this study, we enhance the Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) framework, targeting its application in human-robot interaction (HRI) for modeling pedestrian behavior in crowded environments. Our work is grounded in the pioneering research by Fahad, Chen, and Guo, and aims to elevate MEDIRL’s efficacy in real-world HRI settings. We replicated the original MEDIRL model and conducted detailed ablation studies, focusing on key model components like learning rates, state dimensions, and network layers. Our findings reveal the effectiveness of a two-dimensional state representation over a three-dimensional approach, significantly improving model accuracy for pedestrian behavior prediction in HRI scenarios. These results not only demonstrate MEDIRL’s enhanced performance but also offer valuable insights for future HRI system development, emphasizing the importance of model customization to specific environmental contexts. Our research contributes to advancing the field of socially intelligent navigation systems, promoting more
intuitive and safer human-robot interactions.

URL: https://openreview.net/forum?id=ueNSmjdhyY

---

Title: Constraining Generative Models for Engineering Design with Negative Data

Abstract: Generative models have recently achieved remarkable success and widespread adoption in society, yet they still often struggle to generate realistic and accurate outputs. This challenge extends beyond language and vision into fields like engineering design, where safety-critical engineering standards and non-negotiable physical laws tightly constrain what outputs are considered acceptable.
In this work, we introduce two approaches to guide models toward constraint-satisfying outputs using `negative data' -- examples of what to avoid. Our negative data generative models (NDGMs) outperform state-of-the-art NDGMs by 4x in constraint satisfaction and easily outperform classic generative models using 8x less data in certain problems. To demonstrate this, we rigorously benchmark our NDGMs against 14 baseline models across numerous synthetic and real engineering problems, such as ship hulls with hydrodynamic constraints and vehicle design with impact safety constraints. Our benchmarks showcase both the best-in-class performance of our new NDGM models and the widespread dominance of NDGMs over classic generative models in general. In doing so, we advocate for the more widespread use of NDGMs in engineering design tasks.

URL: https://openreview.net/forum?id=FNBv2vweBI

---

Title: Learning-Based Link Anomaly Detection in Continuous-Time Dynamic Graphs

Abstract: Anomaly detection in continuous-time dynamic graphs is an emerging field yet under-explored in the context of learning algorithms. In this paper, we pioneer structured analyses of link-level anomalies and graph representation learning for identifying categorically anomalous links in these graphs. First, we introduce a fine-grained taxonomy for edge-level anomalies leveraging structural, temporal, and contextual graph properties. Based on these properties, we introduce a method for generating and injecting typed anomalies into graphs. Next, we introduce a novel method to generate continuous-time dynamic graphs featuring consistencies across either or combinations of time, structure, and context. To improve the capabilities of temporal graph methods in learning to detect specific types of anomalous links rather than the bare existence of a link, we extend the generic link prediction setting by: (1) conditioning link existence on contextual edge attributes; and (2) refining the training regime to accommodate diverse perturbations in the negative edge sampler. Building on this, we benchmark methods for typed anomaly detection. Comprehensive experiments on synthetic and real-world datasets -- featuring synthetic and labeled organic anomalies and employing six state-of-the-art learning methods -- validate our taxonomy and generation processes for anomalies and benign graphs, as well as our approach to adapting link prediction methods for anomaly detection. Our results further reveal that different learning methods excel in capturing different aspects of graph normality and detecting different types of anomalies. We conclude with a comprehensive list of findings highlighting opportunities for future research. The code is available at https://anonymous.4open.science/r/TGB-link-anomaly-detection-anonymous-CBF1.

URL: https://openreview.net/forum?id=8imVCizVEw

---

Title: SASSL: Enhancing Self-Supervised Learning via Neural Style Transfer

Abstract: Existing data augmentation in self-supervised learning, while diverse, fails to preserve the inherent structure of natural images. This results in distorted augmented samples with compromised semantic information, ultimately impacting downstream performance. To overcome this limitation, we propose SASSL: Style Augmentations for Self Supervised Learning, a novel data augmentation technique based on Neural Style Transfer. SASSL decouples semantic and stylistic attributes in images and applies transformations exclusively to their style while preserving content, generating diverse samples that better retain semantic information. Our augmentation technique boosts top-1 image classification accuracy on ImageNet by up to 2% compared to established self-supervised methods like MoCo, SimCLR, and BYOL, while achieving superior transfer learning performance across various datasets.

URL: https://openreview.net/forum?id=NxhXtkPYsk

---

Title: Normality-Guided Distributional Reinforcement Learning for Continuous Control

Abstract: Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) has been shown to improve performance by modeling the value distribution, not just the mean. We study the value distribution in several continuous control tasks and find that the learned value distribution is empirical quite close to normal. We design a method that exploits this property, employ variances predicted from a variance network, along with returns, to analytically compute target quantile bars representing a normal for our distributional value function. In addition, we propose a policy update strategy based on the correctness as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds. Our method yields statistically significant improvements in 10 out of 16 continuous task settings, while utilizing a reduced number of weights and achieving faster training time compared to an ensemble-based method for quantifying value distribution uncertainty.

URL: https://openreview.net/forum?id=z27hb0rmLT

---

Reply all
Reply to author
Forward
0 new messages