Daily TMLR digest for Dec 01, 2022

3 views
Skip to first unread message

TMLR

unread,
Nov 30, 2022, 7:00:14 PM11/30/22
to tmlr-anno...@googlegroups.com


Accepted papers
===============


Title: Degradation Attacks on Certifiably Robust Neural Networks

Authors: Klas Leino, Chi Zhang, Ravi Mangal, Matt Fredrikson, Bryan Parno, Corina Pasareanu

Abstract: Certifiably robust neural networks protect against adversarial examples by employing run-time defenses that check if the model is certifiably locally robust at the input under evaluation. We show through examples and experiments that any defense (whether complete or incomplete) based on checking local robustness is inherently over-cautious. Specifically, such defenses flag inputs for which local robustness checks fail, but yet that are not adversarial; i.e., they are classified consistently with all valid inputs within a distance of $\epsilon$. As a result, while a norm-bounded adversary cannot change the classification of an input, it can use norm-bounded changes to degrade the utility of certifiably robust networks by forcing them to reject otherwise correctly classifiable inputs. We empirically demonstrate the efficacy of such attacks against state-of-the-art certifiable defenses. Our code is available at https://github.com/ravimangal/degradation-attacks.



URL: https://openreview.net/forum?id=P0XO5ZE98j

---


New submissions
===============


Title: Enhancing Diffusion-Based Image Synthesis with Robust Classifier Guidance

Abstract: Denoising diffusion probabilistic models (DDPMs) are a recent family of generative models that achieve state-of-the-art results. In order to obtain class-conditional generation, it was suggested to guide the diffusion process by gradients from a time-dependent classifier. While the idea is theoretically sound, deep learning-based classifiers are infamously susceptible to gradient-based adversarial attacks. Therefore, while traditional classifiers may achieve good accuracy scores, their gradients are possibly unreliable and might hinder the improvement of the generation results. Recent work discovered that adversarially robust classifiers exhibit gradients that are aligned with human perception, and these could better guide a generative process towards semantically meaningful images. We utilize this observation by defining and training a time-dependent adversarially robust classifier and use it as guidance for a generative diffusion model. In experiments on the highly challenging and diverse ImageNet dataset, our scheme introduces significantly more intelligible intermediate gradients, better alignment with theoretical findings, as well as improved generation results under several evaluation metrics. Furthermore, we conduct an opinion survey whose findings indicate that human raters prefer our method's results.

URL: https://openreview.net/forum?id=tEVpz2xJWX

---

Title: Action Poisoning Attacks on Linear Contextual Bandits

Abstract: Contextual bandit algorithms have many applicants in a variety of scenarios. In order to develop trustworthy contextual bandit systems, understanding the impacts of various adversarial attacks on contextual bandit algorithms is essential. In this paper, we propose a new class of attacks: action poisoning attacks, where an adversary can change the action signal selected by the agent. We design action poisoning attack schemes against linear contextual bandit algorithms in both white-box and black-box settings. We further analyze the cost of the proposed attack strategies for a very popular and widely used bandit algorithm: Lin UCB. We show that, in both white-box and black-box settings, the proposed attack schemes can force the LinUCB agent to pull a target arm very frequently by spending only logarithm cost. We also extend the proposed attack strategies to generalized linear models and show the effectiveness of the proposed strategies.

URL: https://openreview.net/forum?id=yhGCKUsKJS

---

Title: Agent-State Construction with Auxiliary Inputs

Abstract: In many, if not every realistic sequential decision-making task, the decision-making agent is not able to model the full complexity of the world. The environment is often much larger and more complex than the agent, a setting also known as partial observability. In such settings, the agent must leverage more than just the current sensory inputs; it must construct an agent state that summarizes previous interactions with the world. Currently, a popular approach for tackling this problem is to learn the agent-state function via a recurrent network from the agent's sensory stream as input. Many impressive reinforcement learning applications have instead relied on environment-specific functions to aid the agent's inputs for history summarization. These augmentations are done in multiple ways, from simple approaches like concatenating observations to more complex ones such as uncertainty estimates. Although ubiquitous in the field, these additional inputs, which we term auxiliary inputs, are rarely emphasized, and it is not clear what their role or impact is. In this work we explore this idea further, and relate these auxiliary inputs to prior classic approaches to state construction. We present a series of examples illustrating the different ways of using auxiliary inputs for reinforcement learning. We show that these auxiliary inputs can be used to discriminate between observations that would otherwise be aliased, leading to more expressive features that smoothly interpolate between different states. Finally, we show that this approach is complementary to state-of-the-art methods such as recurrent neural networks and truncated back-propagation through time, and acts as a heuristic that facilitates longer temporal credit assignment, leading to better performance.

URL: https://openreview.net/forum?id=RLYkyucU6k

---
Reply all
Reply to author
Forward
0 new messages