Daily TMLR digest for Aug 25, 2025

0 views
Skip to first unread message

TMLR

unread,
Aug 25, 2025, 12:06:05 AM (14 days ago) Aug 25
to tmlr-anno...@googlegroups.com


Accepted papers
===============


Title: Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models

Authors: Paul Darm, Annalisa Riccardi

Abstract: Robust alignment guardrails for large language models (LLMs) are becoming increasingly important with their widespread application. In contrast to previous studies, we demonstrate that inference-time activation interventions can bypass safety alignments and effectively steer model generations towards harmful AI coordination. Our method applies fine-grained interventions at specific attention heads, which we identify by probing each head in a simple binary choice task. We then show that interventions on these heads generalise to the open-ended generation setting, effectively circumventing safety guardrails. We demonstrate that intervening on a few attention heads is more effective than intervening on full layers or supervised fine-tuning. We further show that only a few example completions are needed to compute effective steering directions, which is an advantage over classical fine-tuning. We also demonstrate applying interventions in the negative direction can prevent a common jailbreak attack. Our results suggest that, at the attention head level, activations encode fine-grained linearly separable behaviours. Practically, the approach offers a straightforward methodology to steer large language model behaviour, which could be extended to diverse domains beyond safety requiring fine-grained control over the model output.

URL: https://openreview.net/forum?id=VY0huMBr5n

---


New submissions
===============


Title: Improved DDIM Sampling with Moment Matching Gaussian Mixtures

Abstract: We propose using a Gaussian Mixture Model (GMM) as reverse transition operator (kernel) within the Denoising Diffusion Implicit Models (DDIM) framework, which is one of the most widely used approaches for accelerated sampling from pre-trained Denoising Diffusion Probabilistic Models (DDPM). Specifically we match the first and second order central moments of the DDPM forward marginals by constraining the parameters of the GMM. We see that moment matching is sufficient to obtain samples with equal or better quality than the original DDIM with Gaussian kernels. We provide experimental results with unconditional models trained on CelebAHQ and FFHQ, class-conditional models trained on ImageNet, and text-to-image generation using Stable Diffusion v2.1 on COYO700M datasets respectively. Our results suggest that using the GMM kernel leads to significant improvements in the quality of the generated samples when the number of sampling steps is small, as measured by FID and IS metrics. For example on ImageNet 256x256, using 10 sampling steps, we achieve a FID of 6.94 and IS of 207.85 with a GMM kernel compared to 10.15 and 196.73 respectively with a Gaussian kernel. Further, we derive novel SDE samplers for rectified flow matching models and experiment with the proposed approach. We see improvements using both 1-rectified flow and 2-rectified flow models.

URL: https://openreview.net/forum?id=CdSPjfmrQN

---
Reply all
Reply to author
Forward
0 new messages